

# Identification of Quantitative Trait Loci for Component Traits of Flowering Capacity Across Temperature in *Petunia*

# QiuXia C. Chen, Yufang Guo, and Ryan M. Warner<sup>1</sup>

Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824 ORCID IDs: 0000-0002-4526-0389 (Y.G.); 0000-0003-1780-0146 (R.M.W.)

**ABSTRACT** For ornamental annual bedding plants, flowering performance is critical. Flowering performance includes the length of the flowering period, the longevity of individual flowers, and the number of flowers produced during the flowering period, or flowering capacity. Flowering capacity is a function of several component traits, including the number of branches producing flowers, the number of inflorescences per flowering branch, and the number of flower buds per inflorescence. We employed an F<sub>7</sub> *Petunia axillaris* × *P. exserta* recombinant inbred line population to identify QTL for flowering capacity component traits. The population was phenotyped at 14, 17, and 20° over two years. Fifteen robust QTL (rQTL; QTL detected in two or more temperatures/years) were identified across six of the seven *Petunia* chromosomes (Chr) for total flower bud number (FlBud), branch number (Branch), flowering branch number (FlBranch), and primary shoot flower bud number (FlBudPS). The largest effect QTL explained up to 28.8, 34.9, 36, and 23.1% of the phenotypic variation for FlBub, FlBudPS, Branch, and FlBranch, respectively. rQTL for FlBud and FlBranch co-localized on Chr 1, and rQTL for FlBud, FlBudPS, and FlBranch co-localized on Chr 4. These regions in particular should be useful for identifying genes controlling flowering capacity of this important ornamental plant.

**KEYWORDS** 

QTL branching Petunia axillaris Petunia exserta recombinant inbred line

Flower production is an important ornamental trait that can improve plant aesthetics and market value. The flowering performance of ornamental plants includes traits such as the total number of flowers produced (flowering capacity), individual flower longevity, and duration of bloom time for the species. Each of these traits are important characteristics for breeders to consider. However, the environmental and genetic control of flowering capacity is not well understood. Petunia (*Petunia ×hybrida*), derived from *P. axillaris* and *P. integrifolia* (Griesbach 2007), is an important ornamental bedding plant species for which strong flowering performance is critical.

Plant architecture greatly influences flowering capacity (Elitzur *et al.* 2009; Guo *et al.* 2017a). For example, the number of branches and the

doi: https://doi.org/10.1534/g3.119.400653

<sup>1</sup>Corresponding author. E-mail: warnerry@msu.edu

number of flowers per branch both contribute to flowering capacity. An increase in branch number can provide additional inflorescence meristems for floral bud initiation. Branching is a complex trait that is impacted by both genetic and environmental factors, including temperature, light quality and quantity, and nutrition (Dierig and Crafts-Brandner 2011; Finlayson *et al.* 2010; Mata and Botto 2011; de Jong *et al.* 2014). Increasing temperature from 14 to  $26^{\circ}$  decreased branch number for *Petunia axillaris*, *P. exserta*, *P. integrifolia*, and *P. ×hybrida* 'Mitchell' (Warner 2010). Branch number and flowering branch number were highly positively correlated with flower bud number in a *P. axillaris* × *P. exserta* F<sub>2</sub> population (Warner and Walworth 2010).

Strigolactones have been identified as important regulators of branching in plants (Gomez-Roldan *et al.* 2008). Three independent loci impacting apical dominance, designated as *decreased apical dominance* (*dad1*, *dad2*, and *dad3*) were identified in petunia (Napoli and Ruehle 1996). These mutants exhibit increased branching and reduced stem elongation compared to wild-type plants. These genes have since been cloned, with *dad1* and *dad3* encoding the carotenoid cleavage dioxygenases *PhCCD8* (Snowden *et al.* 2005) and *PhCCD7* (Drummond *et al.* 2009), respectively, involved in strigolactone biosynthesis, while *PhDAD2* encodes an  $\alpha/\beta$  hydrolase important for strigolactone perception and signaling (Hamiaux *et al.* 2012).

Copyright © 2019 Chen *et al.* 

Manuscript received May 2, 2019; accepted for publication August 29, 2019; published Early Online September 16, 2019.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplemental material available at Figshare: https://doi.org/10.25387/g3.9696170.

The number of flowers formed per inflorescence is also an important component of flowering capacity. The petunia inflorescence is a cyme producing from one, in the *extra petals* mutant, to many flowers (Souer *et al.* 1998). An F<sub>2</sub> *Petunia integrifolia*  $\times$  *P. axillaris* population exhibited a bimodal distribution for flower number on the primary shoot (FlBudPS), and a QTL explaining 43% of the variation for this trait was identified in chromosome 6 (Vallejo *et al.* 2015). An F<sub>7</sub> recombinant inbred line (RIL) population derived from that same F<sub>2</sub> population was phenotyped at 14, 17 and 20°. QTL for FlBudPS where identified in similar but non-overlapping regions of chromosome 6 explaining 32, 20, and 14% of observed variation at 14, 17, and 20°, respectively (Guo *et al.* 2017b).

The recent availability of Petunia spp. genome (Bombarely et al. 2016) and transcriptome (Guo et al. 2015) sequences greatly facilitates genetic mapping and gene discovery for traits of interest in the genus. In this study, an  $F_7$  interspecific Petunia axillaris  $\times$  P. exserta RIL population was utilized to characterize phenotypic variation and identify potential genetic interactions between total flower bud number and four flowering capacity component traits under a range of temperatures. We previously determined that P. axillaris produces more flower buds at first flowering than P. exserta (Warner 2010). This population was previously genotyped to develop single-nucleotide polymorphism (SNP) markers (Guo et al. 2017b). Identification of quantitative trait loci (QTL) for the component traits of flowering capacity can facilitate the development of marker-assisted breeding strategies to improve breeding efficiency for improved and novel cultivars and aid identification of candidate genes controlling these traits. The objective of this study was to identify QTL associated with flowering capacity component traits using the interspecific P. axillaris  $\times$  P. exserta F<sub>7</sub> RIL population.

# **MATERIALS AND METHODS**

Seeds of 171  $F_7 P.$  axillaris (PI 667515) × *P.* exserta (OPGC943) RILs and the two parents were sown on 05 Nov 2014 and again on 20 Nov. 2015 in 288-cell plug trays filled with 50% vermiculite and 50% soil-less media (70% peat moss, 21% perlite, 9% vermiculite [v/v]; Suremix, Michigan Grower Products Inc., Galesburg, MI, USA). These RILs were previously genotyped using a genotyping-by-sequencing approach (Guo *et al.* 2017b). Seed trays were covered with clear dome lids and kept in a growth chamber at 23° and 50% relative humidity under a 10-h photoperiod (provided by fluorescent lamps) for germination. Dome lids were removed when 75% of the seeds had germinated within a tray. Seedlings were thinned to one plant per cell as needed. When seedlings had developed two true leaves, the air temperature was lowered to 20°.

Twenty-one days after seeds were sown, the trays were moved to the Plant Science Greenhouses at Michigan State University (East Lansing, MI) under ambient light. On 02 Dec. 2014 and 15 Dec. 2015, nine plants per RIL and parent were transplanted into 10-cm diameter round pots (height: 8.5 cm; 450 mL volume) with the soilless media mix described above and moved into treatments.

Three temperature treatments, each consisting of three replications of one plant each per RIL and parent, were arranged in a randomized complete block design within each temperature. Treatment air temperatures were constant 14, 17, or 20° under a 16-h photoperiod. Actual average weekly air temperatures are presented in Fig. S1. All plants received supplemental lighting (95  $\pm$  15  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> of photosynthetically active radiation from 0600-2200 HR) provided by high-pressure so-dium lamps. Initially, plants were grown pot-tight and were subsequently spaced to 20 cm between pot centers in each row and column

14, 21, and 27 days after initiation of treatments (DAT) at 20, 17 and 14°, respectively. Plants were overhead irrigated as needed with deionized water containing a water-soluble fertilizer (125 ppm N, 30 ppm P, 145 ppm K; MSU Orchid RO Water Special <sup>13</sup>N-3P-15K; GreenCare Fertilizers, Inc., Kankakee, IL).

# Data collection

The number of nodes on the primary shoot were counted 0 and 14 DAT. Day 0 started on 06-08 Dec. 2014 and 19-21 Dec. 2015, depending on treatment. Development rate (DRate) was calculated as the increase in node number per unit time and expressed in nodes d<sup>-1</sup>. The following data were determined for each plant when the first flower opened on the main stem: days to anthesis (DTA), total number of open flowers and flower buds (bud length > 3mm) (FlBud), number of flower buds on the primary flowering lateral shoot (FlBudLS; collected in 2015-16 only), number of flower buds on the primary shoot (FlBudPS), total branch number (lateral shoot > 5cm; Branch), number of branches with flower buds (FlBranch), diameter of first open flower (FlDiam), node number below first open flower (excluding node of first flower) (Nodes), height to node of first open flower (as measured from media surface) (HghtFl), and length and width of the third leaf below the first flower (LLeng and LWid). Internode length (Internode) was calculated as the average distance between nodes (cm).

#### Data analysis

Data were analyzed using Statistical Analysis Software v9.4 (SAS Institute, Cary, NC). Broad-sense heritability ( $H^2$ ) was calculated for all evaluated traits as described by Fehr (1987) The equation was based on the variance component and calculated using the expected mean squares for each source  $H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$  where  $\sigma_g^2$  is the variance of the genotype effect and  $\sigma_e^2$  is the variance of the environmental effect. The variance of the environmental effect was calculated as  $\sigma_{\epsilon}^2 = \frac{\sigma_{gy}^2}{y} + \frac{\sigma_{gt}^2}{t} + \frac{\sigma_{gy}^2}{ty} + \frac{\sigma_{et}^2}{rty}$  where  $\sigma_{gy}^2$  is the variance among the genotype by temperature,  $\sigma_{gty}^2$  is the variance among genotype by temperature and year,  $\sigma_e^2$  is the residual, *y* is the number of years in the study, *t* is the number of temperature treatments, and *r* is the number of replicates. Broad-sense heritability was calculated at individual air temperature treatments using the above equation, however the variance of the environmental effect was calculated as  $\sigma_{\epsilon}^2 = \frac{\sigma_{gy}^2}{y} + \frac{\sigma_{et}^2}{ry}$  and terms as described above.

#### Linkage map construction

Genotyping of the population was described by Guo et al. (2017b). Of the 171 RILs phenotyped, 158 had genotypic data available and were utilized for linkage map generation and QTL mapping. A total of 6,291 single nucleotide polymorphisms (SNPs) were converted into 368 bins based on recombination breakpoints (Xu 2013). A genetic linkage map was generated using JoinMap 4.0 (Van Ooijen 2006) with the bin markers. Bins with a similarity value of 1.00 were removed from the calculations. The bin markers were placed into individual linkage groups using the LOD (logarithm of the odds) thresholds from 2.0 to 10.0 and linkage groups were determined using LOD thresholds of 4.0 to 6.0. Marker order and map distance were calculated using the regression module with the Kosambi mapping function (Kosambi 1943). The mapping parameters were set to a recombination frequency of 0.30, a LOD score of 3.00, and a goodness-of-fit jump threshold of 5. The linkage groups were oriented and assigned chromosome (Chr) numbers according to a previous study (Bossolini et al. 2011).

| Table 1 Descriptive statistics for a P. axillaris × P. exserta F <sub>7</sub> recombinant inbred line population at three temperatures in 2014-15 a | and |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2015-16                                                                                                                                             |     |

|                    |                |       |       |              |       |               |       |                 | Transgr          | ession          |
|--------------------|----------------|-------|-------|--------------|-------|---------------|-------|-----------------|------------------|-----------------|
| Trait              | N <sup>z</sup> | Mean  | Sd    | Min          | Max   | PA            | PE    | t-value         | Upper            | Lower           |
| Temperature        | e 14 °         |       |       |              |       |               |       |                 |                  |                 |
| DRate <sup>y</sup> | 1022           | 0.25  | 0.09  | 0.00         | 0.50  | 0.31          | 0.27  | 1.09            | -0.83            | 2.18* 3         |
| DTA                | 1000           | 68.38 | 9.39  | 46.00        | 95.00 | 74.83         | 65.33 | 7.07*           | -2.48*           | 1.13            |
| FlBud              | 1000           | 36.19 | 14.76 | 8.00         | 95.00 | 51.83         | 41.17 | 3.95*           | -2.77*           | 2.47*           |
| FIBudLS            | 495            | 8.06  | 2.37  | 3.00         | 17.00 | 7.67          | 10.33 | -2.22           | -1.96            | 6.36*           |
| FIBudPS            | 1000           | 4.71  | 1.55  | 0.00         | 11.00 | 5.83          | 4.83  | 1.34            | -1.21            | 2.20*           |
| Branch             | 1000           | 11.27 | 2.35  | 5.00         | 21.00 | 12.67         | 12.67 | 0.00            | -5.42**          | 17.99**         |
| -IBranch           | 1000           | 9.67  | 2.20  | 1.00         | 21.00 | 12.00         | 10.33 | 2.50            | -2.29*           | 3.86*           |
| =IDiam             | 1000           | 5.50  | 0.66  | 3.50         | 8.00  | 5.67          | 5.25  | 5.00*           | -5.51**          | 4.57**          |
| Nodes              | 1000           | 16.98 | 2.61  | 10.00        | 30.00 | 27.50         | 15.67 | 17.75**         | 0.36             | 7.68**          |
| -IghtFl            | 1000           | 19.98 | 6.15  | 6.50         | 49.00 | 20.00         | 17.08 | 2.88*           | -5.58**          | 7.35**          |
| nternode           | 1000           | 1.19  | 0.35  | 0.32         | 2.45  | 0.73          | 1.10  | -5.83*          | -14.95**         | 5.82**          |
|                    | 991            | 10.74 | 2.18  | 4.00         | 18.50 | 5.67          | 11.75 | -5.83<br>-6.13* | -3.58*           | na <sup>w</sup> |
| Leng               | 991<br>991     | 4.97  | 2.18  | 4.00<br>1.50 | 9.00  | 5.67<br>2.67  | 5.92  |                 | -3.58*<br>-4.27* |                 |
| _Wid               | 991            | 4.97  | 1.09  | 1.50         | 9.00  | 2.67          | 5.92  | -6.89*          | -4.2/*           | na              |
| Temperature        |                |       |       |              |       |               |       |                 |                  |                 |
| DRate              | 1026           | 0.38  | 0.07  | 0.00         | 0.79  | 0.44          | 0.39  | 1.96            | -0.24            | 2.09            |
| DTA                | 1000           | 48.96 | 6.82  | 37.00        | 74.00 | 56.33         | 48.50 | 4.27*           | -0.83            | 1.11            |
| FlBud              | 1000           | 27.88 | 12.17 | 1.00         | 76.00 | 42.33         | 28.17 | 3.21*           | -1.44            | 1.62            |
| IBudLS             | 491            | 8.13  | 2.56  | 2.00         | 19.00 | 7.67          | 9.33  | -0.76           | -1.04            | 1.98            |
| FIBudPS            | 999            | 4.49  | 1.73  | 0.00         | 12.00 | 6.33          | 3.83  | 3.35*           | -3.03*           | 0.80            |
| Branch             | 1000           | 9.63  | 2.14  | 3.00         | 25.00 | 11.00         | 10.50 | 0.90            | -5.85**          | 3.78*           |
| IBranch            | 1000           | 8.30  | 2.20  | 0.00         | 17.00 | 10.33         | 9.50  | 1.25            | -2.94*           | 3.66*           |
| lDiam              | 1000           | 5.18  | 0.66  | 2.50         | 7.50  | 5.17          | 4.50  | 2.00            | -6.33**          | 0.88            |
| Vodes              | 999            | 16.56 | 2.44  | 11.00        | 28.00 | 24.83         | 14.83 | 14.55**         | -1.98            | 2.64*           |
| HghtFl             | 1000           | 20.00 | 5.58  | 6.00         | 38.00 | 24.58         | 16.75 | 6.93*           | -3.15*           | 7.60**          |
| nternode           | 999            | 1.21  | 0.31  | 0.38         | 2.38  | 0.99          | 1.13  | -2.36           | -14.10**         | 5.20**          |
| Leng               | 984            | 11.40 | 2.13  | 4.00         | 17.50 | 8.50          | 12.17 | -3.90*          | -6.71**          | 1.15            |
| Wid                | 984            | 5.42  | 1.15  | 1.50         | 15.00 | 3.75          | 6.42  | -8.88**         | -4.12*           | 1.00            |
|                    |                | 5.42  | 1.15  | 1.50         | 15.00 | 5.75          | 0.42  | 0.00            | 4.12             | 1.00            |
| Temperature        | e 20 °<br>1020 | 0.42  | 0.07  | 0.07         | 0.64  | 0.48          | 0.45  | 0.51            | 0.51             | 3.84*           |
| DRate<br>DTA       | 990            |       | 5.89  |              |       | 0.48<br>50.17 |       | 0.51<br>7.07*   |                  |                 |
|                    |                | 43.39 |       | 31.00        | 63.00 |               | 43.00 |                 | -1.53            | 1.68            |
| FlBud              | 990            | 22.66 | 12.87 | 2.00         | 84.00 | 30.33         | 22.17 | 3.06*           | -0.98            | 1.67            |
| BudLS              | 482            | 8.78  | 2.98  | 3.00         | 21.00 | 6.33          | 9.33  | -2.60           | -4.20*           | 3.54*           |
| FIBudPS            | 989            | 4.29  | 1.96  | 0.00         | 11.00 | 3.83          | 3.67  | 0.71            | -1.95            | 0.18            |
| Branch             | 990            | 8.74  | 1.98  | 2.00         | 19.00 | 9.50          | 8.83  | 2.83*           | -5.63**          | 3.21*           |
| Branch             | 990            | 7.26  | 2.39  | 0.00         | 19.00 | 8.00          | 7.67  | 0.63            | -2.80*           | 2.94*           |
| Diam               | 990            | 4.89  | 0.67  | 2.50         | 7.00  | 5.25          | 4.25  | 3.10*           | -4.44**          | 1.19            |
| Vodes              | 994            | 16.73 | 2.60  | 12.00        | 30.00 | 24.33         | 15.33 | 18.00**         | -3.84*           | 5.66**          |
| HghtFl             | 990            | 21.32 | 5.83  | 3.50         | 39.00 | 24.58         | 14.50 | 11.54**         | -6.25**          | 1.88            |
| nternode           | 989            | 1.28  | 0.34  | 0.21         | 2.54  | 1.02          | 0.95  | 1.26            | -10.94**         | 2.09            |
| Leng               | 983            | 12.03 | 2.28  | 3.50         | 19.50 | 8.92          | 12.33 | -2.51           | -4.69**          | 0.68            |
| Wid                | 983            | 5.87  | 1.25  | 1.50         | 15.00 | 3.67          | 6.25  | -5.24*          | -6.64**          | 0.00            |
|                    | /05            | 5.07  | 1.25  | 1.50         | 15.00 | 5.07          | 0.25  | J.24            | 0.04             | 0.15            |

<sup>Z</sup>n = sample number, Mean = population average, Sd = sample standard deviation, Min = minimum sample value, Max = maximum sample value, PA = average for P. axillaris, PE = average for P. exserta, t-value = t-test comparing RIL means to parental line means, Transgression= t-tests comparing the highest RIL mean to the higher parental mean (Upper) and the lowest RIL mean to the lower parental mean (Lower) for each trait.

y Trait abbreviations: development rate (DRate), days to anthesis (DTA), total flower bud number (FIBud), number of flowers buds on the primary flowering lateral shoot (FIBudLS), number of flower buds on the primary shoot (FIBudPS), number of lateral branches (Branch), number of branches with flower buds (FIBranch), flower diameter (FIDiam), number of nodes below the first flower (Nodes), height to the first flower (HghtFI), internode length (Internode), leaf length (LLeng), and leaf width (LWid).  $\overset{\rm x_{*}}{\underset{\sim}{}}$  and  $^{**}$  indicate significance at P < 0.05 and 0.001, respectively.

ma = test was not performed because LLeng and LWid values for P. axillaris were lower than for any RIL at this temperature.

# QTL mapping

The 158 RILs and a total of 356 bin markers were used for QTL mapping. QTL analysis was performed using the composite interval mapping (CIM) Model 6 algorithm in QTL Cartographer v2.5 software (Wang et al. 2012). The forward-backward regression method was used with five markers to control for genetic background, as described in the software manual (Wang et al. 2012). The control parameters were set to a window size of 10.0 cM and the marker probability threshold was defined at 0.05. A walk speed of 1.0 cM and a LOD threshold of 3.6 (Lander and Kruglyak 1995) were used to identify significant QTL. LOD values for each QTL were calculated from the likelihood-ratio (LR) statistics. The proportion of total phenotypic variation explained

Table 2 The number of plants flowering first on a lateral shoot at different air temperatures in a *P. axillaris*  $\times$  *P. exserta* F<sub>7</sub> recombinant inbred line population in 2014 and 2015

| Treatment   | 2014      | 2015      |
|-------------|-----------|-----------|
| Temperature |           |           |
| 14          | 121 (24%) | 123 (25%) |
| 17          | 41 (8%)   | 48 (10%)  |
| 20          | 8 (2%)    | 21 (4%)   |

(%VE) by each QTL was estimated using R<sup>2</sup> values. QTL were visualized using MapChart v2.32 software (Voorrips 2002) using a subset of markers to facilitate visualization. Markers were filtered for visualization with the criteria that markers must be a minimum of 1 cM apart. QTL for the same trait with overlapping confidence intervals that were detected in two or more temperatures or years were considered the same QTL and were denoted as robust QTL (rQTL). The peak position of the rQTL potentially falls between the positions of the previous QTL. QTL names were determined by denoting "q" for QTL, followed by the trait abbreviation, the chromosome where the QTL was detected, and the order within the chromosome.

#### Data availability

Supplemental tables and figures, as well as phenotypic and genotypic data used to conduct statistical analyses, are available at GSA Figshare.Table S1 lists trait correlation coefficients within each temperature treatment. Figure S1 shows actual average weekly greenhouse temperatures over the experimental periods. Figures S2-S4 show population distributions for measured traits at 14°, 17°, and 20°, respectively. Figure S5 shows the full *P. axillaris* × *P. exserta*  $F_7$  RIL genetic linkage map. The original GBS data are available under the NCBI GenBank BioProject number PRJNA353949. Seeds for the *P. axillaris* × *P. exserta*  $F_7$  RIL population are available by contacting the corresponding author. Supplemental material available at Figshare: https://doi.org/10.25387/g3.9696170.

#### RESULTS

The population exhibited transgressive segregation for all evaluated traits at least one temperature (Table 1; Fig. S2-S4), with most traits exhibiting transgressive segregation in at least one direction in all temperature treatments. The percentage of plants exhibiting first flower opening on a lateral shoot increased eightfold as air temperature

decreased from 20 to  $14^{\circ}$  (Table 2). Development rate was calculated for each RIL 14 days after treatment initiation. The average DRate was 0.25, 0.38, and 0.42 nodes d<sup>-1</sup> for plants grown at 14, 17, and 20°, respectively, a 68% increase from 14 to 20° (Table 1). Development rate was negatively correlated with DTA and positively correlated with Nodes even though DTA was also positively correlated with Nodes at all air temperatures (Table 3). Development rate was positively correlated with Branch at 14° however it was negatively correlated with FlBud (Table S1).

#### Petunia exserta

exhibited the earliest flowering time of the two parents at all air temperatures (Table 1). Six of the RILs (AE11, AE20, AE230, AE301, AE315, and AE81) flowered earlier than either parent at all air temperatures in both years. However, there were 67 more lines that flowered earlier than either parent in 2015-16 (data not shown). Average DTA for the population was 68, 49, and 43 d at 14, 17, and 20°, respectively. DTA was positively correlated with FlBud and FlDiam at all air temperatures, however it was only positively correlated with Branch at 17 and 20° (Tables 3 and S1). Additionally, DTA was positively correlated with FlBudPS at all air temperatures but negatively correlated with FlBudPS at 17 and 20°.

FlBud was positively correlated with FlBudPS and FlDiam at all air temperatures and positively correlated with Branch at 17 and 20° while negatively correlated at 14° (Tables 3 and S1). Mean FlBud was 36, 28, and 23 at 14, 17, and 20° respectively, which represents a 36% decrease in flower number from 14 to 20° (Table 1). *Petunia axillaris* had higher FlBud at all temperatures, higher Branch at 20° and higher FlBudPS at 17° Compared to *P. exserta*.

# Broad-sense heritability estimates

Broad-sense heritability was relatively high for all measured traits (Table 4). Similar heritability estimates were observed across the different air temperatures for all traits excluding DRate, which was 46% and 44% lower at 14° Compared to 17 or 20°, respectively. With the exception of DRate, FlBudLS, FlBranch, and FlBudPS, all traits had high heritability (>0.7) across the air temperature treatments.

#### Linkage map

A total of 356 out of 368 bins were mapped to the seven *Petunia* Chrs (Fig. S5). The linkage map contained an average of 51 bins per Chr (Table 5). Chr 5 had the fewest markers with 23, while Chr 3 had the most with 92 bin s. The linkage map spanned a total genetic distance of

Table 3 Pearson's correlation coefficients across air temperature treatments for traits measured in P. axillaris × P. exserta F<sub>7</sub> recombinant inbred line population in 2014-15 and 2015-16

| Trait <sup>z</sup> | DRate                | DTA     | FlBud   | FIBudLS | FIBudPS | Branch | FlBranch | FlDiam  | Nodes   | HghtFl | Internode | LLeng  |
|--------------------|----------------------|---------|---------|---------|---------|--------|----------|---------|---------|--------|-----------|--------|
| DTA                | -0.78** <sup>y</sup> |         |         |         |         |        |          |         |         |        |           |        |
| FlBud              | -0.45**              | 0.64**  |         |         |         |        |          |         |         |        |           |        |
| FIBudLS            | 0.11**               | -0.12** | 0.26**  |         |         |        |          |         |         |        |           |        |
| FIBudPS            | -0.27**              | 0.39**  | 0.72**  | 0.53**  |         |        |          |         |         |        |           |        |
| Branch             | -0.22**              | 0.34**  | 0.28**  | -0.05   | 0.16**  |        |          |         |         |        |           |        |
| FlBranch           | -0.36**              | 0.52**  | 0.67**  | -0.04   | 0.55**  | 0.65** |          |         |         |        |           |        |
| FlDiam             | -0.32**              | 0.36**  | 0.38**  | -0.05   | 0.21**  | 0.08** | 0.20**   |         |         |        |           |        |
| Nodes              | 0.20**               | 0.13**  | 0.11**  | 0.13**  | -0.02   | 0.18** | 0.03     | 0.05*   |         |        |           |        |
| HghtFl             | 0.08**               | -0.06*  | -0.03   | 0.30**  | 0.11**  | 0.28** | 0.02     | 0.06*   | 0.37**  |        |           |        |
| Internode          | -0.03                | -0.12** | -0.08** | 0.23**  | 0.15**  | 0.19** | 0.02     | 0.04    | -0.14** | 0.86** |           |        |
| LLeng              | 0.03                 | -0.14** | -0.25** | -0.14** | -0.01   | -0.01  | -0.07**  | -0.17** | -0.41** | -0.04  | 0.18**    |        |
| LWid               | 0.09**               | -0.21** | -0.27** | 0.04    | 0.03    | 0.03   | -0.07**  | -0.27** | -0.32** | 0.13** | 0.31**    | 0.78** |

<sup>z</sup>Trait abbreviations as defined in Table 1.

 $y_*$  and \*\* indicate significance at P < 0.05 and 0.001, respectively.

Table 4 Broad-sense heritability estimates at different air temperatures for a *P. axillaris*  $\times$  *P. exserta* F<sub>7</sub> recombinant inbred line population in 2014-15 and 2015-16

| Trait <sup>z</sup> | All temperatures  | 14 ° | 17 ° | 20 ° |
|--------------------|-------------------|------|------|------|
| DRate              | 0.56 <sup>y</sup> | 0.28 | 0.52 | 0.50 |
| DTA                | 0.82              | 0.72 | 0.74 | 0.72 |
| FlBud              | 0.83              | 0.71 | 0.77 | 0.74 |
| FlBudLS            | 0.72              | 0.69 | 0.56 | 0.57 |
| FIBudPS            | 0.87              | 0.72 | 0.74 | 0.64 |
| Branch             | 0.86              | 0.79 | 0.74 | 0.70 |
| FlBranch           | 0.63              | 0.63 | 0.50 | 0.51 |
| FlDiam             | 0.90              | 0.83 | 0.80 | 0.75 |
| Nodes              | 0.96              | 0.93 | 0.93 | 0.92 |
| HghtFl             | 0.94              | 0.88 | 0.88 | 0.87 |
| Internode          | 0.94              | 0.88 | 0.88 | 0.84 |
| LLeng              | 0.86              | 0.84 | 0.83 | 0.81 |
| LWid               | 0.87              | 0.86 | 0.84 | 0.78 |

<sup>z</sup>Trait abbreviations as defined in Table 1.

 $^{y}$ Broad sense heritability – measure of phenotypic variance attributable to genetic differences among genotype as calculated as  $V_{G}/(V_{G} + V_{E})$  where  $V_{G}$  is the among-genotype variance component from ANOVA and  $V_{E}$  is the residual variance component from ANOVA.

270.08 cM, contained 87% of the total SNP markers, and had an average of 0.76 cM between markers. The Chrs ranged from 15.7 to 75.8 cM with an average genetic distance of 38.6 cM per Chr. The average marker interval ranged from 0.40 to 1.36 cM. The markers had good coverage of the genome except for a small region on Chr 7 which contained the biggest gap at 15.1 cM.

# **QTL** analysis

Cumulatively, 15 QTL were detected for FlBud on Chrs 1-4 (Table 6) and six of these were rQTL (Figure 1). The rQTL *qFB1.1* was detected in five of the six environments across the two years. Two rQTL, *qFB4.1* and *qFB4.2*, on Chr 4 were detected in four of the six environments and explained up to 27.2 and 28.8% of the phenotypic variation, respectively. The additive effects for the FlBud QTL ranged from 1.15 to 4.54. *P. exserta* contributed the beneficial alleles for two rQTL but *P. axillaris* contributed the beneficial allele for the remaining QTL, including four rQTL.

For the FlBud component traits FlBudPS and FlBudLS, 14 and seven QTL were detected, respectively (Table 6). For FlBudPS, QTL were detected on all Chr except on Chr 5. The QTL for FlBudPS were detected on Chr 2, 3, 4, and 6. There were four rQTL for FlBudPS but no rQTL was detected for FlBudLS. The rQTL *qFBP4.1* and *qFBP4.4* for FlBudPS co-localized to the same regions on Chr 4 as the rQTL *qFB4.1* and *qFB4.2* for FlBudPS explained more than 25% of the phenotypic variation in at least one environment, whereas none of the QTL for FlBudLS explained more than 10%. The additive effects ranged from 0.15 to 0.48 and 0.47 to 0.78 for FlBudPS and FlBudLS, respectively. For FlBudPS *P. exserta* contributed the beneficial alleles for three QTL, however, *P. axillaris* contributed the beneficial alleles for the remaining QTL including the four rQTL. Additionally, *P. axillaris* contributed the beneficial alleles.

A total of 17 QTL each were detected for Branch and FlBranch, with 13 of these QTL co-localizing on Chr 1, 3, 4, 5, and 6 (Table 6). There were two rQTL for Branch, and both were detected on Chr 3 (Table 6; Figure 1). The rQTL *qBR3.3* explained from 7.5 to 36% of the phenotypic variation, depending on temperature and year. This rQTL also had the greatest additive effect on Branch. *Petunia axillaris* contributed

| Table 5 Summary of genetic linkage map for <i>P. axillaris</i> | × | Ρ. |
|----------------------------------------------------------------|---|----|
| exserta $F_7$ recombinant inbred line population               |   |    |

| Chr   | Bins (No.) | Length (cM) | SNP (No.) | Average marker<br>density (cM) |
|-------|------------|-------------|-----------|--------------------------------|
| 1     | 39         | 15.75       | 1032      | 0.40                           |
| 2     | 64         | 33.95       | 1106      | 0.53                           |
| 3     | 92         | 75.80       | 945       | 0.82                           |
| 4     | 51         | 46.09       | 782       | 0.90                           |
| 5     | 23         | 21.38       | 525       | 0.93                           |
| 6     | 62         | 43.03       | 624       | 0.69                           |
| 7     | 25         | 34.08       | 465       | 1.36                           |
| Total | 356        | 270.08      | 5479      | 0.76                           |

the beneficial alleles for six Branch QTL while *P. exserta* contributed the beneficial allele for the remaining QTL, including the two rQTL. Three rQTL were detected for FlBranch on Chr 1, 4, and 5, respectively (Table 6; Figure 1). None of the QTL for FlBranch explained more than 25% of the phenotypic variation, but six explained 10–20%. Additionally, the QTL for FlBranch have additive effects ranging from 0.29 to 0.77 and the beneficial alleles were equally contributed by *P. axillaris* and *P. exserta*.

A total of 15 rQTL were detected for four traits on Chr 1-6 (Table 6; Figure 1). Six of these rQTL were detected on Chr 4, with only one rQTL detected each on Chr 5 and 6. Three rQTL detected for FlBud, FlBudPS, and FlBranch co-localized to a 5 cM region, whereas the three rQTL detected for FlBud, and FlBudPS co-localized to a region of approximately 3 cM on Chr 4. Additionally, two rQTL detected for FlBud and FlBranch co-localized to a 1 cM region on Chr 1.

# DISCUSSION

Flower number is an important trait that influences the aesthetic value of ornamental plants. Desirable flower characteristics include increased flower number and repeat or continuous blooming. However, quantitative analysis and candidate gene identification for these traits have not been comprehensively studied in ornamental crops. In this study, QTL for flowering capacity component traits of an  $F_7 P$ . axillaris  $\times P$ . exserta RIL population were identified following phenotypic evaluation across multiple temperature environments and years. The QTL results are presented on a genetic linkage map, although the P. axillaris genome sequence is available (Bombarely et al. 2016). This is due to the level of fragmentation of the P. axillaris genome and the employment of bin markers for mapping, in which bins are often comprised of multiple SNPs that map to more than one genomic scaffold. The physical location of every SNP in each bin marker utilized for this study was previously reported (Guo et al. 2017b). The total linkage map distance reported here (270.1 cM) is shorter than would be expected. However, previous linkage maps generated for Petunia have often resulted in short linkage groups due to a low frequency of recombination (Strommer et al. 2002; Galliot et al. 2006; Vallejo et al. 2015; Guo et al. 2017b).

Fifteen QTL were detected for FlBud with both parents contributing favorable alleles (Table 6). The flowering capacity of a plant is a product of multiple traits that influence total flower number, including the number of branches, the number of inflorescences per branch, and the number of flowers per inflorescence. Dissecting the genetic control of these traits is challenging because a single genotype may exhibit a wide range of phenotypic variation in differing environments. The complex interaction between genotype and environment is compounded because multiple genes could be in linkage within the genetic region associated with the trait (Darvasi and Pisante-Shalom 2002).

| <b>Table 6</b> Summary of QTL identified at three greenhouse temperatures for the <i>P. axillaris</i> $\times$ <i>P. exserta</i> $F_7$ recombinant inbred line |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| population in 2014 and 2015. Robust QTL (rQTL) are highlighted in bold                                                                                         |

| Trait <sup>z</sup>            | QTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chr                                                                                                                                             | Nearest marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)                                                                                                                                                                                                                      | Interval (cM) <sup>y</sup>                                                                                                                                                                                                                                                                                                                          | LOD×                                                                                                                                                                                             | LOD threshold <sup>w</sup>                                                                                                                                                                                                                                                                                 | $\alpha^{\vee}$                                                                                                                                                                                                                                                                                                                                                                    | %VE <sup>u</sup>                                                                                                                                                                                                                               |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FlBud                         | qFB1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                               | AE_bin_72_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                             | 4.3-5.9                                                                                                                                                                                                                                                                                                                                             | 5.93                                                                                                                                                                                             | 2.56                                                                                                                                                                                                                                                                                                       | -1.81                                                                                                                                                                                                                                                                                                                                                                              | 10.63                                                                                                                                                                                                                                          |
|                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                             | 3.5-5.8                                                                                                                                                                                                                                                                                                                                             | 4.20                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | -3.06                                                                                                                                                                                                                                                                                                                                                                              | 7.29                                                                                                                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | AE_bin_71_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.91                                                                                                                                                                                                                             | 4.1-8.1                                                                                                                                                                                                                                                                                                                                             | 6.61                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                       | -2.02                                                                                                                                                                                                                                                                                                                                                                              | 11.64                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.91                                                                                                                                                                                                                             | 4.4-6.9                                                                                                                                                                                                                                                                                                                                             | 3.14                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                       | -2.21                                                                                                                                                                                                                                                                                                                                                                              | 5.32                                                                                                                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.91                                                                                                                                                                                                                             | 5.8-8.2                                                                                                                                                                                                                                                                                                                                             | 4.30                                                                                                                                                                                             | 2.55                                                                                                                                                                                                                                                                                                       | -2.33                                                                                                                                                                                                                                                                                                                                                                              | 6.42                                                                                                                                                                                                                                           |
|                               | qFB2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                               | AE_bin_63_260_253_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.71                                                                                                                                                                                                                             | 5.6-5.9                                                                                                                                                                                                                                                                                                                                             | 4.15                                                                                                                                                                                             | 2.43                                                                                                                                                                                                                                                                                                       | 3.41                                                                                                                                                                                                                                                                                                                                                                               | 9.94                                                                                                                                                                                                                                           |
|                               | qFB2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                               | AE_bin_3_202_229_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32.41                                                                                                                                                                                                                            | 31.7-32.6                                                                                                                                                                                                                                                                                                                                           | 3.91                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                       | -2.94                                                                                                                                                                                                                                                                                                                                                                              | 6.74                                                                                                                                                                                                                                           |
|                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 | AE_bin_3_202_229_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32.61                                                                                                                                                                                                                            | 31.7-33.6                                                                                                                                                                                                                                                                                                                                           | 4.85                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | -4.25                                                                                                                                                                                                                                                                                                                                                                              | 8.44                                                                                                                                                                                                                                           |
|                               | qFB3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_103_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.41                                                                                                                                                                                                                             | 1.6-5.7                                                                                                                                                                                                                                                                                                                                             | 3.81                                                                                                                                                                                             | 2.55                                                                                                                                                                                                                                                                                                       | 2.10                                                                                                                                                                                                                                                                                                                                                                               | 5.73                                                                                                                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | AE_bin_104_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.21                                                                                                                                                                                                                             | 2.8-5.2                                                                                                                                                                                                                                                                                                                                             | 3.04                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | 2.54                                                                                                                                                                                                                                                                                                                                                                               | 5.22                                                                                                                                                                                                                                           |
|                               | qFB3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_105_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.81                                                                                                                                                                                                                            | 7.3-18.8                                                                                                                                                                                                                                                                                                                                            | 3.32                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                       | 1.42                                                                                                                                                                                                                                                                                                                                                                               | 5.54                                                                                                                                                                                                                                           |
|                               | qFB3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_107_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.11                                                                                                                                                                                                                            | 19.8-23.4                                                                                                                                                                                                                                                                                                                                           | 3.15                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                       | 1.35                                                                                                                                                                                                                                                                                                                                                                               | 5.22                                                                                                                                                                                                                                           |
|                               | qFB3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_110_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.21                                                                                                                                                                                                                            | 24.4-32.3                                                                                                                                                                                                                                                                                                                                           | 4.07                                                                                                                                                                                             | 2.43                                                                                                                                                                                                                                                                                                       | 2.53                                                                                                                                                                                                                                                                                                                                                                               | 9.71                                                                                                                                                                                                                                           |
|                               | qFB3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_115_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.91                                                                                                                                                                                                                            | 34.5-38.5                                                                                                                                                                                                                                                                                                                                           | 2.63                                                                                                                                                                                             | 2.56                                                                                                                                                                                                                                                                                                       | 1.15                                                                                                                                                                                                                                                                                                                                                                               | 4.46                                                                                                                                                                                                                                           |
|                               | qFB3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_120_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42.71                                                                                                                                                                                                                            | 41.7-46.1                                                                                                                                                                                                                                                                                                                                           | 4.01                                                                                                                                                                                             | 2.56                                                                                                                                                                                                                                                                                                       | 1.41                                                                                                                                                                                                                                                                                                                                                                               | 6.64                                                                                                                                                                                                                                           |
|                               | qFB3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_143_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.71                                                                                                                                                                                                                            | 61.9-66.4                                                                                                                                                                                                                                                                                                                                           | 2.65                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                       | 1.90                                                                                                                                                                                                                                                                                                                                                                               | 4.53                                                                                                                                                                                                                                           |
|                               | qFB3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                               | AE_bin_159_15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74.11                                                                                                                                                                                                                            | 73.9-74.3                                                                                                                                                                                                                                                                                                                                           | 3.23                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | 2.68                                                                                                                                                                                                                                                                                                                                                                               | 5.63                                                                                                                                                                                                                                           |
|                               | qFB4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                               | AE_bin_231_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.21                                                                                                                                                                                                                            | 14.9-18.1                                                                                                                                                                                                                                                                                                                                           | 5.58                                                                                                                                                                                             | 2.43                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 12.35                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.21                                                                                                                                                                                                                            | 15.2-17.5                                                                                                                                                                                                                                                                                                                                           | 7.83                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                       | 2.47                                                                                                                                                                                                                                                                                                                                                                               | 18.00                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | AE_bin_198_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.21                                                                                                                                                                                                                            | 15.7-18.3                                                                                                                                                                                                                                                                                                                                           | 12.05                                                                                                                                                                                            | 2.55                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 27.15                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                               | AE_bin_202_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.21                                                                                                                                                                                                                            | 18.1-22.6                                                                                                                                                                                                                                                                                                                                           | 5.03                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | 3.50                                                                                                                                                                                                                                                                                                                                                                               | 9.07                                                                                                                                                                                                                                           |
|                               | qFB4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                               | AE_bin_207_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.01                                                                                                                                                                                                                            | 23.7-25.1                                                                                                                                                                                                                                                                                                                                           | 8.79                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                       | 3.71                                                                                                                                                                                                                                                                                                                                                                               | 16.30                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | AE_bin_224_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.41                                                                                                                                                                                                                            | 25.1-25.9                                                                                                                                                                                                                                                                                                                                           | 6.22                                                                                                                                                                                             | 2.43                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 12.43                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | AE_bin_208_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.71                                                                                                                                                                                                                            | 25.6-26.2                                                                                                                                                                                                                                                                                                                                           | 14.43                                                                                                                                                                                            | 2.56                                                                                                                                                                                                                                                                                                       | 2.99                                                                                                                                                                                                                                                                                                                                                                               | 28.75                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                               | AE_bin_222_330_313_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.21                                                                                                                                                                                                                            | 26.1-26.6                                                                                                                                                                                                                                                                                                                                           | 11.14                                                                                                                                                                                            | 2.50                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 21.17                                                                                                                                                                                                                                          |
|                               | qFB4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                               | AE_bin_226_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.11                                                                                                                                                                                                                            | 27.0-28.9                                                                                                                                                                                                                                                                                                                                           | 5.22                                                                                                                                                                                             | 2.65                                                                                                                                                                                                                                                                                                       | 3.61                                                                                                                                                                                                                                                                                                                                                                               | 9.44                                                                                                                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.11                                                                                                                                                                                                                            | 27.0-27.2                                                                                                                                                                                                                                                                                                                                           | 9.65                                                                                                                                                                                             | 2.55                                                                                                                                                                                                                                                                                                       | 4.04                                                                                                                                                                                                                                                                                                                                                                               | 15.94                                                                                                                                                                                                                                          |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |
|                               | qFB4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                               | AE_bin_216_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.01                                                                                                                                                                                                                            | 38.8-43.5                                                                                                                                                                                                                                                                                                                                           | 3.08                                                                                                                                                                                             | 2.43                                                                                                                                                                                                                                                                                                       | 2.07                                                                                                                                                                                                                                                                                                                                                                               | 6.44                                                                                                                                                                                                                                           |
| Trait <sup>z</sup>            | QTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chr                                                                                                                                             | Nearest marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)                                                                                                                                                                                                                      | Interval (cM) <sup>y</sup>                                                                                                                                                                                                                                                                                                                          | LOD×                                                                                                                                                                                             | LOD threshold <sup>w</sup>                                                                                                                                                                                                                                                                                 | α <sup>v</sup>                                                                                                                                                                                                                                                                                                                                                                     | %VE <sup>u</sup>                                                                                                                                                                                                                               |
| Trait <sup>z</sup><br>FIBudPS | QTL<br>qFBP1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chr<br>1                                                                                                                                        | Nearest marker<br>AE_bin_74_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Environment<br>2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Posit. (cM)<br>8.01                                                                                                                                                                                                              | Interval (cM) <sup>y</sup><br>7.3-8.7                                                                                                                                                                                                                                                                                                               | LOD*<br>3.24                                                                                                                                                                                     | LOD threshold <sup>w</sup><br>2.68                                                                                                                                                                                                                                                                         | <mark>α<sup>ν</sup></mark><br>-0.15                                                                                                                                                                                                                                                                                                                                                | %VE <sup>u</sup><br>5.02                                                                                                                                                                                                                       |
|                               | QTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chr                                                                                                                                             | Nearest marker<br>AE_bin_74_1<br>AE_bin_63_260_253_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Environment<br>2014-20C<br>2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Posit. (cM)<br>8.01<br>5.61                                                                                                                                                                                                      | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9                                                                                                                                                                                                                                                                                                    | LOD×<br>3.24<br>3.17                                                                                                                                                                             | LOD threshold <sup>w</sup><br>2.68<br>2.52                                                                                                                                                                                                                                                                 | α <sup>ν</sup><br>-0.15<br>0.30                                                                                                                                                                                                                                                                                                                                                    | %VE <sup>u</sup><br>5.02<br>5.74                                                                                                                                                                                                               |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chr<br>1<br>2                                                                                                                                   | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1                                                                                                                                                                                                                                                                                                                                                                                                                             | Environment<br>2014-20C<br>2015-20C<br>2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71                                                                                                                                                                                              | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0                                                                                                                                                                                                                                                                                         | LOD×<br>3.24<br>3.17<br>6.83                                                                                                                                                                     | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67                                                                                                                                                                                                                                                         | α <sup>ν</sup><br>-0.15<br>0.30<br>0.48                                                                                                                                                                                                                                                                                                                                            | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26                                                                                                                                                                                                      |
|                               | OTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chr<br>1<br>2<br>2                                                                                                                              | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_2_2                                                                                                                                                                                                                                                                                                                                                                                                        | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71                                                                                                                                                                                     | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6                                                                                                                                                                                                                                                                            | LOD*<br>3.24<br>3.17<br>6.83<br>2.96                                                                                                                                                             | LOD threshold*<br>2.68<br>2.52<br>2.67<br>2.63                                                                                                                                                                                                                                                             | α <sup>ν</sup><br>-0.15<br>0.30<br>0.48<br>-0.22                                                                                                                                                                                                                                                                                                                                   | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26<br>6.18                                                                                                                                                                                              |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chr<br>1<br>2<br>2<br>3                                                                                                                         | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_2_2           AE_bin_115_2                                                                                                                                                                                                                                                                                                                                                                                 | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91                                                                                                                                                                            | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5                                                                                                                                                                                                                                                                 | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35                                                                                                                                                     | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.63<br>2.68                                                                                                                                                                                                                                             | α <sup>ν</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15                                                                                                                                                                                                                                                                                                                           | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26<br>6.18<br>5.20                                                                                                                                                                                      |
|                               | OTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chr<br>1<br>2<br>2<br>3<br>3                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_2_2           AE_bin_115_2           AE_bin_120_1                                                                                                                                                                                                                                                                                                                                                          | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71                                                                                                                                                                   | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8                                                                                                                                                                                                                                                    | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16                                                                                                                                             | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68                                                                                                                                                                                                                                             | α <sup>v</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                   | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91                                                                                                                                                                              |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chr<br>1<br>2<br>2<br>3                                                                                                                         | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_2_2           AE_bin_115_2                                                                                                                                                                                                                                                                                                                                                                                 | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21                                                                                                                                                          | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5                                                                                                                                                                                                                                       | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51                                                                                                                                     | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.68<br>2.37                                                                                                                                                                                                                             | α <sup>v</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15<br>0.38                                                                                                                                                                                                                                                                                                           | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93                                                                                                                                                                     |
|                               | OTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chr<br>1<br>2<br>2<br>3<br>3                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_2_2           AE_bin_115_2           AE_bin_120_1                                                                                                                                                                                                                                                                                                                                                          | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-27C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21                                                                                                                                                 | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3                                                                                                                                                                                                                          | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29                                                                                                                             | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.68<br>2.37<br>2.56                                                                                                                                                                                                                     | α <sup>ν</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15<br>0.38<br>0.28                                                                                                                                                                                                                                                                                                   | %VE <sup>u</sup><br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68                                                                                                                                                             |
|                               | OTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chr<br>1<br>2<br>2<br>3<br>3                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1                                                                                                                                                                                                                                                                                                                                    | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21                                                                                                                                        | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1                                                                                                                                                                                                             | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46                                                                                                                     | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52                                                                                                                                                                                                             | α <sup>v</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15<br>0.38<br>0.28<br>0.36                                                                                                                                                                                                                                                                                           | %VE <sup>u</sup> 5.02           5.74           13.26           6.18           5.20           4.91           18.93           9.68           16.12                                                                                               |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chr<br>1<br>2<br>3<br>3<br>4                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1                                                                                                                                                                                                                                                                                                                                    | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21                                                                                                                               | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7                                                                                                                                                                                                | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96                                                                                                            | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68                                                                                                                                                                                                     | α <sup>v</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15<br>0.38<br>0.28<br>0.36<br>0.34                                                                                                                                                                                                                                                                                   | %VE"           5.02           5.74           13.26           6.18           5.20           4.91           18.93           9.68           16.12           25.38                                                                                 |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chr<br>1<br>2<br>3<br>3<br>4                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1                                                                                                                                                                                                                                                                                                                                    | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01                                                                                                                      | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2                                                                                                                                                                                   | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81                                                                                                    | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.52<br>2.68<br>2.67                                                                                                                                                                             | α <sup>ν</sup><br>-0.15<br>0.30<br>0.48<br>-0.22<br>0.15<br>0.15<br>0.38<br>0.28<br>0.36<br>0.34<br>0.36                                                                                                                                                                                                                                                                           | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45                                                                                                                                              |
|                               | QTL<br>qFBP1.1<br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br>qFBP4.1<br>qFBP4.2<br>qFBP4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chr<br>1<br>2<br>3<br>3<br>4<br>4                                                                                                               | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_231_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1                                                                                                                                                                                                                                                                          | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91                                                                                                             | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9                                                                                                                                                                      | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08                                                                                           | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.52<br>2.68<br>2.67<br>2.68                                                                                                                                                                             | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40                                                                                                                                                                                                        | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94                                                                                                                                     |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chr<br>1<br>2<br>3<br>3<br>4                                                                                                                    | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81                                                                                                                                                                                                                                                  | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C<br>2014-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41                                                                                           | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9                                                                                                                                                         | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56                                                                                  | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.67<br>2.68<br>2.67<br>2.68<br>2.37                                                                                                                                                     | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40           0.46                                                                                                                                                                                         | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17                                                                                                                            |
|                               | QTL<br>qFBP1.1<br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br>qFBP4.1<br>qFBP4.2<br>qFBP4.3<br>qFBP4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4                                                                                                | Nearest marker           AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_229_48                                                                                                                                                                                                                          | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C<br>2014-17C<br>2014-17C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61                                                                                  | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8                                                                                                                                            | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02                                                                          | LOD thresholdw<br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.67<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56                                                                                                                                             | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40           0.46           0.42                                                                                                                                                                          | %VE"           5.02           5.74           13.26           6.18           5.20           4.91           18.93           9.68           16.12           25.38           13.45           34.94           27.17           16.41                 |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.2<br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                      | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_231_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_229_48           AE_bin_226_1                                                                                                                                                                                                                            | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11                                                                                  | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2                                                                                                                               | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94                                                                 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.37<br>2.56<br>2.37<br>2.56<br>2.52                                                                                                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40           0.46           0.42           0.47                                                                                                                                                           | %VE"           5.02           5.74           13.26           6.18           5.20           4.91           18.93           9.68           16.12           25.38           13.45           34.94           27.17           16.41           25.18 |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.4<br>qFBP4.5<br>qFBP4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                            | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_231_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_229_48           AE_bin_220_5                                                                                                                                                                                                                            | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81                                                                                  | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7                                                                                                                    | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98                                                         | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.52<br>2.52<br>2.52<br>2.52<br>2.52                                                                                                         | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40           0.46           0.42           0.47           0.34                                                                                                                                            | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16                                                                                                 |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.2<br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                      | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_231_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_229_48           AE_bin_220_5           AE_bin_272_3_88_2                                                                                                                                                                                                | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-20C<br>2015-17C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51                                                                         | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8                                                                                                         | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68                                                 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.52<br>2.52<br>2.56                                                                                                         | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.34           0.36           0.40           0.46           0.42           0.47           0.34           0.24                                                                                                                                            | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97                                                                       |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5<br>qFBP4.6<br><b>qFBP6.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                            | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_210_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1                                                                                                                                       | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2015-14C<br>2015-20C<br>2014-20C<br>2015-17C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2015-17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71                                                                | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0                                                                                            | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87                                         | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52                                                                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.36           0.34           0.36           0.40           0.46           0.42           0.47           0.34           0.24                                                                                                                                            | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19                                                                                |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5<br>qFBP4.6<br><b>qFBP6.1</b><br>qFBP6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6                                                                            | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1           AE_bin_272_3_88_1           AE_bin_253_20                                                                                                          | Environment<br>2014-20C<br>2015-17C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51                                                                         | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8                                                                                                         | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68                                                 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.63<br>2.56                                                                 | $\alpha^{v}$ -0.15 0.30 0.48 -0.22 0.15 0.15 0.38 0.36 0.34 0.36 0.40 0.46 0.42 0.47 0.34 0.24 0.32 0.23                                                                                                                                                                                                                                                                           | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97                                                                       |
|                               | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5<br>qFBP4.6<br><b>qFBP6.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>6                                                                       | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_210_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1                                                                                                                                       | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-17C<br>2014-20C<br>2014-17C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71<br>35.01                                     | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1                                                                               | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76                                 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.63<br>2.56<br>2.56<br>2.53                                                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.36           0.34           0.36           0.40           0.46           0.42           0.47           0.34           0.24                                                                                                                                            | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13                                                                        |
| FIBudPS                       | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5<br>qFBP4.6<br><b>qFBP6.1</b><br>qFBP6.2<br>qFBP7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7                                                                       | Ae_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_22           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1           AE_bin_272_3_88_1           AE_bin_253_20           AE_bin_316_1                                                                                   | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>16.21<br>16.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71<br>35.01<br>21.11                   | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1<br>19.0-22.3                                                                  | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76<br>3.46                         | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.63<br>2.56                                                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.36           0.34           0.36           0.40           0.46           0.42           0.47           0.34           0.24           0.23           -0.19                                                                                                             | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13<br>7.20                                                                |
| FIBudPS                       | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br>qFBP2.2<br>qFBP3.1<br>qFBP3.2<br><b>qFBP4.1</b><br>qFBP4.3<br><b>qFBP4.4</b><br>qFBP4.5<br>qFBP4.6<br><b>qFBP6.1</b><br>qFBP6.2<br>qFBP7.1<br>qFBL2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>2                                                             | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_122           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_229_48           AE_bin_220_5           AE_bin_272_3_88_1           AE_bin_253_20           AE_bin_316_1           AE_bin_3_202_229_2                                                                                     | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-17C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71<br>35.01<br>21.11<br>32.41                            | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1<br>19.0-22.3<br>31.4-32.6                                                     | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76<br>3.46<br>4.37                 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.63<br>2.56<br>2.63<br>2.56                                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.40           0.42           0.47           0.34           0.22           0.23           -0.19           -0.78                                                                                             | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13<br>7.20<br>9.83                                                        |
| FIBudPS                       | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br><b>qFBP2.2</b><br><b>qFBP3.1</b><br><b>qFBP3.2</b><br><b>qFBP4.1</b><br><b>qFBP4.4</b><br><b>qFBP4.4</b><br><b>qFBP4.5</b><br><b>qFBP4.5</b><br><b>qFBP4.6</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP7.1</b><br><b>qFBP2.2</b><br><b>qFBP7.1</b><br><b>qFBP2.2</b><br><b>qFBP5.2</b><br><b>qFBP6.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>2<br>3<br>3                                                             | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_163_260_253_1           AE_bin_120_23_1           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1           AE_bin_253_20           AE_bin_316_1           AE_bin_3_202_229_2           AE_bin_161_14_267_2               | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-17C | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71<br>35.01<br>21.11<br>32.41<br>74.71                   | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1<br>19.0-22.3<br>31.4-32.6<br>74.1-75.5                                        | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76<br>3.46<br>4.37<br>2.98         | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.63<br>2.56<br>2.63<br>2.56<br>2.63<br>2.56                                 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.36           0.34           0.40           0.42           0.47           0.34           0.22           0.23           -0.19           -0.78           -0.47                                                                             | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13<br>7.20<br>9.83<br>5.95                                                |
| FIBudPS                       | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br><b>qFBP2.2</b><br><b>qFBP3.1</b><br><b>qFBP3.2</b><br><b>qFBP4.1</b><br><b>qFBP4.2</b><br><b>qFBP4.3</b><br><b>qFBP4.4</b><br><b>qFBP4.4</b><br><b>qFBP4.5</b><br><b>qFBP4.5</b><br><b>qFBP4.6</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP7.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>2<br>3<br>4                                                             | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_22           AE_bin_122           AE_bin_115_2           AE_bin_120_1           AE_bin_231_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_223_81           AE_bin_226_1           AE_bin_272_3_88_2           AE_bin_272_3_88_1           AE_bin_3_202_229_2           AE_bin_3_202_229_2           AE_bin_231_1                          | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C                                                                                                                                                                                                 | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>27.11<br>30.81<br>33.51<br>33.71<br>35.01<br>21.11<br>32.41<br>74.71<br>15.21 | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1<br>19.0-22.3<br>31.4-32.6<br>74.1-75.5<br>14.4-18.0<br>26.4-26.9<br>27.0-28.2 | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>11.96<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76<br>3.46<br>4.37<br>2.98<br>3.40 | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.52<br>2.56<br>2.53<br>2.56<br>2.53<br>2.56<br>2.50         | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.46           0.42           0.47           0.34           0.23           -0.19           -0.78           -0.47           0.53                                                                                            | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13<br>7.20<br>9.83<br>5.95<br>7.11                                        |
| FIBudPS                       | QTL<br>qFBP1.1<br><b>qFBP2.1</b><br><b>qFBP2.2</b><br><b>qFBP3.1</b><br><b>qFBP3.2</b><br><b>qFBP4.1</b><br><b>qFBP4.3</b><br><b>qFBP4.4</b><br><b>qFBP4.5</b><br><b>qFBP4.6</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.2</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBP6.1</b><br><b>qFBF6.2</b><br><b>qFBP6.1</b><br><b>qFBF6.2</b><br><b>qFBP6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.1</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b><br><b>qFBF6.2</b> | Chr<br>1<br>2<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>6<br>7<br>2<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | AE_bin_74_1           AE_bin_63_260_253_2           AE_bin_63_260_253_1           AE_bin_63_260_253_1           AE_bin_163_260_253_1           AE_bin_22           AE_bin_122_           AE_bin_115_2           AE_bin_120_1           AE_bin_210_1           AE_bin_207_2           AE_bin_210_117_218_4_1_1           AE_bin_222_81           AE_bin_220_5           AE_bin_272_3_88_2           AE_bin_272_3_88_1           AE_bin_3_202_229_2           AE_bin_3_202_229_2           AE_bin_231_1           AE_bin_231_1 | Environment<br>2014-20C<br>2015-20C<br>2015-17C<br>2014-14C<br>2014-20C<br>2014-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-20C<br>2014-20C<br>2014-17C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-14C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Posit. (cM)<br>8.01<br>5.61<br>5.71<br>31.71<br>35.91<br>42.71<br>16.21<br>16.21<br>16.21<br>16.21<br>18.21<br>25.01<br>25.91<br>26.41<br>26.61<br>33.51<br>33.71<br>35.01<br>21.11<br>32.41<br>74.71<br>15.21<br>26.61          | Interval (cM) <sup>y</sup><br>7.3-8.7<br>5.5-5.9<br>5.6-6.0<br>29.7-32.6<br>34-38.5<br>39.1-45.8<br>15.1-17.5<br>15.7-18.3<br>15.1-18.1<br>16.5-18.7<br>24.1-25.2<br>25.7-25.9<br>26.2-26.9<br>26.2-26.9<br>26.5-26.8<br>27.0-27.2<br>29-31.7<br>33-33.8<br>33.6-34.0<br>34.5-35.1<br>19.0-22.3<br>31.4-32.6<br>74.1-75.5<br>14.4-18.0<br>26.4-26.9 | LOD*<br>3.24<br>3.17<br>6.83<br>2.96<br>3.35<br>3.16<br>6.51<br>3.29<br>6.46<br>7.81<br>18.08<br>11.56<br>7.02<br>11.94<br>6.98<br>2.68<br>4.87<br>2.76<br>3.46<br>4.37<br>2.98<br>3.40<br>2.76  | LOD threshold <sup>w</sup><br>2.68<br>2.52<br>2.67<br>2.63<br>2.68<br>2.68<br>2.37<br>2.56<br>2.52<br>2.68<br>2.67<br>2.68<br>2.37<br>2.56<br>2.52<br>2.67<br>2.56<br>2.52<br>2.52<br>2.67<br>2.56<br>2.52<br>2.56<br>2.52<br>2.63<br>2.56<br>2.63<br>2.56<br>2.63<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | α <sup>v</sup> -0.15           0.30           0.48           -0.22           0.15           0.38           0.28           0.36           0.34           0.36           0.442           0.44           0.34           0.44           0.32           0.47           0.34           0.24           0.32           0.23           -0.19           -0.78           -0.53           0.50 | %VE"<br>5.02<br>5.74<br>13.26<br>6.18<br>5.20<br>4.91<br>18.93<br>9.68<br>16.12<br>25.38<br>13.45<br>34.94<br>27.17<br>16.41<br>25.18<br>12.16<br>5.97<br>10.19<br>6.13<br>7.20<br>9.83<br>5.95<br>7.11<br>6.42                                |

(continued)

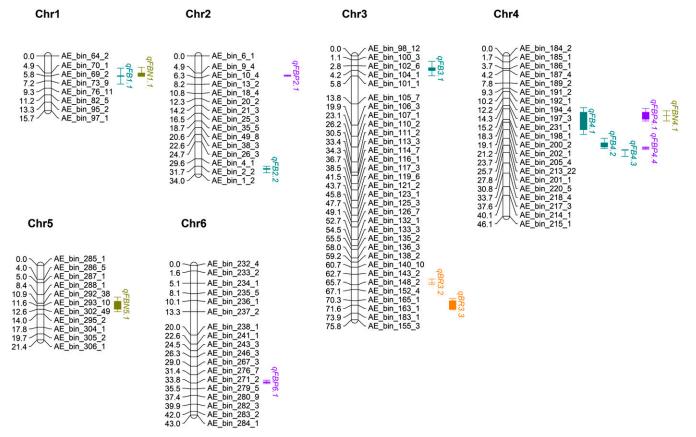
| Table                          | <b>6,</b> continu                                                                                                                                                                                                                             | ed                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trait <sup>z</sup>             | QTL                                                                                                                                                                                                                                           | Chr                                                                            | Nearest marker                                                                                                                                                                                                                                                                                                                                                                                                    | Environment                                                                                                                                                                                                                                                             | Posit. (cM)                                                                                                                                                                                 | Interval (cM) <sup>y</sup>                                                                                                                                                                                                                                                       | LOD×                                                                                                                                                                          | LOD threshold <sup>w</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup>                                                                                                                                                                                                                                                                                  | %VE <sup>u</sup>                                                                                                                                                                                                                                                                                                         |
| Branch                         | qBR1.1                                                                                                                                                                                                                                        | 1                                                                              | AE_bin_88_525_28_2                                                                                                                                                                                                                                                                                                                                                                                                | 2014-14C                                                                                                                                                                                                                                                                | 11.01                                                                                                                                                                                       | 11.0-11.4                                                                                                                                                                                                                                                                        | 7.52                                                                                                                                                                          | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.80                                                                                                                                                                                                                                                                                            | 11.00                                                                                                                                                                                                                                                                                                                    |
|                                | qBR1.2                                                                                                                                                                                                                                        | 1                                                                              | AE_bin_89_94_49_1                                                                                                                                                                                                                                                                                                                                                                                                 | 2015-14C                                                                                                                                                                                                                                                                | 11.81                                                                                                                                                                                       | 11.7-15.3                                                                                                                                                                                                                                                                        | 5.36                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.49                                                                                                                                                                                                                                                                                            | 9.07                                                                                                                                                                                                                                                                                                                     |
|                                | qBR2.1                                                                                                                                                                                                                                        | 2                                                                              | AE_bin_4_1                                                                                                                                                                                                                                                                                                                                                                                                        | 2014-14C                                                                                                                                                                                                                                                                | 30.61                                                                                                                                                                                       | 27.0-31.7                                                                                                                                                                                                                                                                        | 2.86                                                                                                                                                                          | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.62                                                                                                                                                                                                                                                                                           | 4.17                                                                                                                                                                                                                                                                                                                     |
|                                | qBR3.1                                                                                                                                                                                                                                        | 3                                                                              | AE_bin_142_3                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-14C                                                                                                                                                                                                                                                                | 61.61                                                                                                                                                                                       | 61.3-62.5                                                                                                                                                                                                                                                                        | 8.58                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.66                                                                                                                                                                                                                                                                                           | 16.61                                                                                                                                                                                                                                                                                                                    |
|                                | qBR3.2                                                                                                                                                                                                                                        | 3                                                                              | AE_bin_147_3                                                                                                                                                                                                                                                                                                                                                                                                      | 2014-14C                                                                                                                                                                                                                                                                | 65.21                                                                                                                                                                                       | 64.5-65.5                                                                                                                                                                                                                                                                        | 11.42                                                                                                                                                                         | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.09                                                                                                                                                                                                                                                                                           | 23.62                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                               |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2014-20C                                                                                                                                                                                                                                                                | 65.21                                                                                                                                                                                       | 64.1-65.7                                                                                                                                                                                                                                                                        | 4.90                                                                                                                                                                          | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.44                                                                                                                                                                                                                                                                                           | 9.14                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                               |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2015-17C                                                                                                                                                                                                                                                                | 65.21                                                                                                                                                                                       | 64.5-65.7                                                                                                                                                                                                                                                                        | 3.74                                                                                                                                                                          | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.49                                                                                                                                                                                                                                                                                           | 8.69                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                               |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2015-20C                                                                                                                                                                                                                                                                | 65.21                                                                                                                                                                                       | 64.5-65.7                                                                                                                                                                                                                                                                        | 3.06                                                                                                                                                                          | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.42                                                                                                                                                                                                                                                                                           | 5.64                                                                                                                                                                                                                                                                                                                     |
|                                | qBR3.3                                                                                                                                                                                                                                        | 3                                                                              | AE_bin_165_1                                                                                                                                                                                                                                                                                                                                                                                                      | 2014-14C                                                                                                                                                                                                                                                                | 70.31                                                                                                                                                                                       | 69.7-71.3                                                                                                                                                                                                                                                                        | 18.45                                                                                                                                                                         | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.35                                                                                                                                                                                                                                                                                           | 35.97                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                               |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   | 2015-20C                                                                                                                                                                                                                                                                | 70.31                                                                                                                                                                                       | 69.7-70.9                                                                                                                                                                                                                                                                        | 3.68                                                                                                                                                                          | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.46                                                                                                                                                                                                                                                                                           | 7.63                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                               |                                                                                | AE_bin_166_17                                                                                                                                                                                                                                                                                                                                                                                                     | 2014-17C                                                                                                                                                                                                                                                                | 72.31                                                                                                                                                                                       | 71.3-72.5                                                                                                                                                                                                                                                                        | 3.87                                                                                                                                                                          | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.48                                                                                                                                                                                                                                                                                           | 7.50                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                               |                                                                                | AE_bin_173_12                                                                                                                                                                                                                                                                                                                                                                                                     | 2015-14C                                                                                                                                                                                                                                                                | 72.71                                                                                                                                                                                       | 72.4-72.9                                                                                                                                                                                                                                                                        | 10.75                                                                                                                                                                         | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.73                                                                                                                                                                                                                                                                                           | 20.15                                                                                                                                                                                                                                                                                                                    |
|                                | qBR3.4                                                                                                                                                                                                                                        | 3                                                                              | AE_bin_182_17_237_2                                                                                                                                                                                                                                                                                                                                                                                               | 2014-14C                                                                                                                                                                                                                                                                | 74.01                                                                                                                                                                                       | 73.9-74.3                                                                                                                                                                                                                                                                        | 17.63                                                                                                                                                                         | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.32                                                                                                                                                                                                                                                                                           | 33.43                                                                                                                                                                                                                                                                                                                    |
|                                | qBR3.5                                                                                                                                                                                                                                        | 3                                                                              | AE_bin_154_3                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-17C                                                                                                                                                                                                                                                                | 75.01                                                                                                                                                                                       | 74.7-75.3                                                                                                                                                                                                                                                                        | 6.23                                                                                                                                                                          | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.62                                                                                                                                                                                                                                                                                           | 14.05                                                                                                                                                                                                                                                                                                                    |
|                                | qBR4.1                                                                                                                                                                                                                                        | 4                                                                              | AE_bin_198_1                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-17C                                                                                                                                                                                                                                                                | 17.21                                                                                                                                                                                       | 16.8-18.3                                                                                                                                                                                                                                                                        | 3.44                                                                                                                                                                          | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.49                                                                                                                                                                                                                                                                                            | 8.66                                                                                                                                                                                                                                                                                                                     |
|                                | qBR4.2                                                                                                                                                                                                                                        | 4                                                                              | AE_bin_210_117_218_4_2_2                                                                                                                                                                                                                                                                                                                                                                                          | 2015-20C                                                                                                                                                                                                                                                                | 26.11                                                                                                                                                                                       | 26.0-26.2                                                                                                                                                                                                                                                                        | 10.16                                                                                                                                                                         | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73                                                                                                                                                                                                                                                                                            | 20.48                                                                                                                                                                                                                                                                                                                    |
|                                | qBR4.3                                                                                                                                                                                                                                        | 4                                                                              | AE_bin_221_1                                                                                                                                                                                                                                                                                                                                                                                                      | 2014-20C                                                                                                                                                                                                                                                                | 27.01                                                                                                                                                                                       | 26.7-27.0                                                                                                                                                                                                                                                                        | 11.20                                                                                                                                                                         | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.74                                                                                                                                                                                                                                                                                            | 25.81                                                                                                                                                                                                                                                                                                                    |
|                                | qBR4.4                                                                                                                                                                                                                                        | 4                                                                              | AE_bin_220_5                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-17C                                                                                                                                                                                                                                                                | 29.81                                                                                                                                                                                       | 27.1-33.4                                                                                                                                                                                                                                                                        | 3.12                                                                                                                                                                          | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                                                                                                                            | 6.78                                                                                                                                                                                                                                                                                                                     |
|                                | qBR5.1                                                                                                                                                                                                                                        | 5                                                                              | AE_bin_290_8                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-14C                                                                                                                                                                                                                                                                | 10.31                                                                                                                                                                                       | 9.1-12.0                                                                                                                                                                                                                                                                         | 4.44                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.44                                                                                                                                                                                                                                                                                           | 7.55                                                                                                                                                                                                                                                                                                                     |
|                                | qBR5.2                                                                                                                                                                                                                                        | 5                                                                              | AE_bin_303_4                                                                                                                                                                                                                                                                                                                                                                                                      | 2014-14C                                                                                                                                                                                                                                                                | 13.41                                                                                                                                                                                       | 13.3-16.9                                                                                                                                                                                                                                                                        | 3.54                                                                                                                                                                          | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.51                                                                                                                                                                                                                                                                                           | 4.91                                                                                                                                                                                                                                                                                                                     |
|                                | qBR6.1                                                                                                                                                                                                                                        | 6                                                                              | AE_bin_232_4                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-14C                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                        | 0-2.7                                                                                                                                                                                                                                                                            | 3.21                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.40                                                                                                                                                                                                                                                                                           | 5.62                                                                                                                                                                                                                                                                                                                     |
|                                | qBR6.2                                                                                                                                                                                                                                        | 6                                                                              | AE_bin_248_11_176_1                                                                                                                                                                                                                                                                                                                                                                                               | 2015-14C                                                                                                                                                                                                                                                                | 27.91                                                                                                                                                                                       | 26.0-28.5                                                                                                                                                                                                                                                                        | 3.19                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41                                                                                                                                                                                                                                                                                            | 5.38                                                                                                                                                                                                                                                                                                                     |
|                                |                                                                                                                                                                                                                                               |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          |
|                                | qBR6.3                                                                                                                                                                                                                                        | 6                                                                              | AE_bin_273_3                                                                                                                                                                                                                                                                                                                                                                                                      | 2015-14C                                                                                                                                                                                                                                                                | 33.11                                                                                                                                                                                       | 32.4-33.6                                                                                                                                                                                                                                                                        | 3.83                                                                                                                                                                          | 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.44                                                                                                                                                                                                                                                                                            | 6.42                                                                                                                                                                                                                                                                                                                     |
| Trait <sup>z</sup>             | QTL                                                                                                                                                                                                                                           | Chr                                                                            | Nearest marker                                                                                                                                                                                                                                                                                                                                                                                                    | Environment                                                                                                                                                                                                                                                             | Posit. (cM)                                                                                                                                                                                 | Interval (cM) <sup>y</sup>                                                                                                                                                                                                                                                       | LOD×                                                                                                                                                                          | LOD threshold <sup>w</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup>                                                                                                                                                                                                                                                                                  | %VE <sup>u</sup>                                                                                                                                                                                                                                                                                                         |
| Trait <sup>z</sup><br>FlBranch | ,                                                                                                                                                                                                                                             |                                                                                | Nearest marker<br>AE_bin_70_1                                                                                                                                                                                                                                                                                                                                                                                     | Environment<br>2014-17C                                                                                                                                                                                                                                                 | Posit. (cM)<br>4.91                                                                                                                                                                         | Interval (cM) <sup>y</sup><br>3.3-5.1                                                                                                                                                                                                                                            | LOD <sup>×</sup><br>3.84                                                                                                                                                      | LOD threshold <sup>w</sup><br>2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | α <sup>v</sup><br>-0.46                                                                                                                                                                                                                                                                         | %VE <sup>u</sup><br>9.39                                                                                                                                                                                                                                                                                                 |
|                                | QTL<br>qFBN1.1                                                                                                                                                                                                                                | Chr<br>1                                                                       | Nearest marker<br>AE_bin_70_1<br>AE_bin_69_2                                                                                                                                                                                                                                                                                                                                                                      | Environment<br>2014-17C<br>2014-20C                                                                                                                                                                                                                                     | Posit. (cM)<br>4.91<br>5.81                                                                                                                                                                 | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9                                                                                                                                                                                                                                 | LOD*<br>3.84<br>3.18                                                                                                                                                          | LOD threshold <sup>w</sup><br>2.49<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup><br>-0.46<br>-0.30                                                                                                                                                                                                                                                                | %VE <sup>u</sup><br>9.39<br>6.38                                                                                                                                                                                                                                                                                         |
|                                | QTL<br><b>qFBN1.1</b><br>qFBN1.2                                                                                                                                                                                                              | Chr<br>1<br>1                                                                  | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1                                                                                                                                                                                                                                                                                                                            | Environment<br>2014-17C<br>2014-20C<br>2015-14C                                                                                                                                                                                                                         | Posit. (cM)<br>4.91<br>5.81<br>11.81                                                                                                                                                        | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3                                                                                                                                                                                                                    | LOD <sup>×</sup><br>3.84<br>3.18<br>5.24                                                                                                                                      | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48                                                                                                                                                                                                                                                        | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86                                                                                                                                                                                                                                                                                 |
|                                | QTL<br>qFBN1.1<br>qFBN1.2<br>qFBN3.1                                                                                                                                                                                                          | Chr<br>1<br>1<br>3                                                             | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3                                                                                                                                                                                                                                                                                                     | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C                                                                                                                                                                                                             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61                                                                                                                                               | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5                                                                                                                                                                                                       | LOD*<br>3.84<br>3.18<br>5.24<br>8.41                                                                                                                                          | LOD threshold*<br>2.49<br>2.60<br>2.55<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65                                                                                                                                                                                                                                               | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86<br>16.32                                                                                                                                                                                                                                                                        |
|                                | QTL<br><b>qFBN1.1</b><br>qFBN1.2<br>qFBN3.1<br>qFBN3.2                                                                                                                                                                                        | Chr<br>1<br>1<br>3<br>3                                                        | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3                                                                                                                                                                                                                                                                              | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C                                                                                                                                                                                                 | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21                                                                                                                                      | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7                                                                                                                                                                                          | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20                                                                                                                                  | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65<br>-0.48                                                                                                                                                                                                                                      | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86<br>16.32<br>9.83                                                                                                                                                                                                                                                                |
|                                | QTL<br><b>qFBN1.1</b><br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3                                                                                                                                                                             | Chr<br>1<br>1<br>3<br>3<br>3                                                   | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1                                                                                                                                                                                                                                                       | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C                                                                                                                                                                                     | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31                                                                                                                             | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6                                                                                                                                                                             | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87                                                                                                                          | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α <sup>v</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65<br>-0.48<br>-0.63                                                                                                                                                                                                                             | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86<br>16.32<br>9.83<br>17.02                                                                                                                                                                                                                                                       |
|                                | QTL<br>qFBN1.1<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.4                                                                                                                                                                         | Chr<br>1<br>3<br>3<br>3<br>3                                                   | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12                                                                                                                                                                                                                               | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C                                                                                                                                                                         | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71                                                                                                                    | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9                                                                                                                                                                | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68                                                                                                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72                                                                                                                                                                                            | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86<br>16.32<br>9.83<br>17.02<br>20.02                                                                                                                                                                                                                                              |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.4<br>qFBN3.5                                                                                                                                                                         | Chr<br>1<br>3<br>3<br>3<br>3<br>3                                              | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_145_3           AE_bin_165_1           AE_bin_173_12           AE_bin_154_3                                                                                                                                                                                                        | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C                                                                                                                                                             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01                                                                                                           | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3                                                                                                                                                   | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70                                                                                                         | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64                                                                                                                                                             | %VE <sup>u</sup><br>9.39<br>6.38<br>8.86<br>16.32<br>9.83<br>17.02<br>20.02<br>17.19                                                                                                                                                                                                                                     |
|                                | QTL<br>qFBN1.1<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.4                                                                                                                                                                         | Chr<br>1<br>3<br>3<br>3<br>3                                                   | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12                                                                                                                                                                                                                               | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2015-17C<br>2014-20C                                                                                                                                     | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21                                                                                                  | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7                                                                                                                                      | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11                                                                                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.68<br>2.68<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37                                                                                                                                              | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86                                                                                                                                                                        |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1                                                                                                                                                              | Chr<br>1<br>3<br>3<br>3<br>3<br>4                                              | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_145_1           AE_bin_165_1           AE_bin_173_12           AE_bin_154_3           AE_bin_198_1                                                                                                                                                                                 | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2014-20C<br>2015-20C                                                                                                                                     | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21                                                                                         | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2                                                                                                                         | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09                                                                                         | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.68<br>2.60<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65<br>-0.48<br>-0.63<br>-0.72<br>-0.64<br>0.37<br>0.77                                                                                                                                                                                           | %VEu           9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11                                                                                                                                                          |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.4<br>qFBN3.5<br><b>qFBN4.1</b><br>qFBN4.2                                                                                                                                            | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4                                         | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_154_3           AE_bin_198_1           AE_bin_200_2                                                                                                                                                          | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2014-20C<br>2015-20C<br>2015-17C                                                                                                                         | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11                                                                                | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0                                                                                                            | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93                                                                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.55<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65<br>-0.48<br>-0.63<br>-0.72<br>-0.64<br>0.37<br>0.77<br>0.41                                                                                                                                                                                   | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80                                                                                                                                         |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2                                                                                                                                        | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4                                    | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_198_1           AE_bin_200_2           AE_bin_210_117_218_4_2_2                                                                                                                                              | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2014-20C<br>2015-20C<br>2015-20C<br>2015-20C                                                                                                             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11                                                                       | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2                                                                                               | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38                                                                         | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>ν</sup><br>-0.46<br>-0.30<br>0.48<br>-0.65<br>-0.48<br>-0.63<br>-0.72<br>-0.64<br>0.37<br>0.77<br>0.41<br>0.71                                                                                                                                                                           | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42                                                                                                                         |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2<br>qFBN4.3<br>qFBN4.4                                                                                                                  | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4                          | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_198_1           AE_bin_210_117_218_4_2_2           AE_bin_221_1                                                                                                                                              | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2014-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2014-20C                                                                                                 | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01                                                              | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8                                                                                  | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83                                                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.77           0.41           0.71           0.32                                                                                  | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52                                                                                                          |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2<br>qFBN4.3<br>qFBN4.2<br>qFBN4.5.1                                                                                                     | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>5                     | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_198_1           AE_bin_210_117_218_4_2_2           AE_bin_221_1           AE_bin_287_1                                                                                                                       | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2014-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2014-20C<br>2014-20C<br>2015-17C                                                                         | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01                                                      | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1                                                                         | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.88                                                         | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.77           0.41           0.72           -0.32                                                                                 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19                                                                                           |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2<br>qFBN4.3<br>qFBN4.4                                                                                                                  | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4                          | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_198_1           AE_bin_210_117_218_4_2_2           AE_bin_287_1           AE_bin_290_8                                                                                                                       | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2014-20C<br>2015-17C<br>2015-14C                                                                         | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31                                             | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0                                                             | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.88<br>4.50                                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2.55<br>2. | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.77           0.41           0.72           -0.38           -0.44                                                                 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67                                                                            |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2<br>qFBN4.3<br>qFBN4.2<br>qFBN4.5.1                                                                                                     | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>5                     | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_198_1           AE_bin_210_117_218_4_2_2           AE_bin_287_1           AE_bin_290_8           AE_bin_292_38                                                                                               | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-14C<br>2015-14C                                                             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91                                    | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3                                                | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66                                 | LOD thresholdw<br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.63<br>2.55<br>2.60<br>2.55<br>2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.77           0.41           0.72           -0.38           -0.44           -0.32                                                 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67           8.66                                                             |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.2<br>qFBN4.3<br>qFBN4.2<br>qFBN4.5.1                                                                                                     | Chr<br>1<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>5                     | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_154_3           AE_bin_210_12           AE_bin_210_117_218_4_2_2           AE_bin_221_1           AE_bin_290_8           AE_bin_290_10                                                                        | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C                                                 | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91<br>11.61                           | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3<br>9.4-13.3                                    | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66<br>2.96                         | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.71           0.72           -0.64           0.37           0.41           0.72           -0.38           -0.44           -0.37   | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67           8.66           5.98                                              |
|                                | QTL<br><b>qFBN1.1</b><br><b>qFBN3.1</b><br><b>qFBN3.2</b><br><b>qFBN3.3</b><br><b>qFBN3.4</b><br><b>qFBN3.5</b><br><b>qFBN4.1</b><br><b>qFBN4.2</b><br><b>qFBN4.3</b><br><b>qFBN4.3</b><br><b>qFBN4.4</b><br><b>qFBN5.1</b><br><b>qFBN5.2</b> | Chr<br>1<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>5<br>5                | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_154_3           AE_bin_210_12           AE_bin_210_117_218_4_2_2           AE_bin_221_1           AE_bin_290_8           AE_bin_290_8           AE_bin_292_38           AE_bin_293_10           AE_bin_302_49 | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-17C<br>2015-14C<br>2014-14C<br>2014-17C                                     | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91<br>11.61<br>12.61                  | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3<br>9.4-13.3<br>10.3-13.3                       | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66<br>2.96<br>3.67                 | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.68<br>2.55<br>2.43<br>2.55<br>2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.41           0.71           0.32           -0.38           -0.44           -0.37           -0.44           -0.37           -0.31 | %VE <sup>4</sup><br>9.39<br>6.38<br>8.86<br>16.32<br>9.83<br>17.02<br>20.02<br>17.19<br>9.86<br>23.11<br>6.80<br>20.42<br>7.52<br>6.19<br>7.67<br>8.66<br>5.98<br>8.38                                                                                                                                                   |
|                                | QTL<br><b>qFBN1.1</b><br><b>qFBN1.2</b><br><b>qFBN3.1</b><br><b>qFBN3.3</b><br><b>qFBN3.3</b><br><b>qFBN3.4</b><br><b>qFBN3.5</b><br><b>qFBN4.1</b><br><b>qFBN4.2</b><br><b>qFBN4.3</b><br><b>qFBN5.1</b><br><b>qFBN5.2</b>                   | Chr<br>1<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>5<br>5           | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_154_3           AE_bin_210_2           AE_bin_210_117_218_4_2_2           AE_bin_221_1           AE_bin_290_8           AE_bin_292_38           AE_bin_293_10           AE_bin_295_2                         | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2014-14C<br>2014-17C<br>2014-20C             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91<br>11.61<br>12.61<br>14.01                  | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3<br>9.4-13.3<br>10.3-13.3<br>13.3-18.9          | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66<br>2.96<br>3.67<br>2.70 | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.41           0.71           0.32           -0.38           -0.44           -0.37           -0.31           -0.29                 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67           8.66           5.98           8.38           6.07                |
|                                | QTL<br>qFBN1.2<br>qFBN3.1<br>qFBN3.2<br>qFBN3.3<br>qFBN3.3<br>qFBN3.5<br>qFBN4.1<br>qFBN4.2<br>qFBN4.3<br>qFBN5.1<br>qFBN5.2<br>qFBN5.3<br>qFBN5.3<br>qFBN5.3                                                                                 | Chr<br>1<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>6 | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_154_3           AE_bin_210_117_218_42_22           AE_bin_221_1           AE_bin_227_1           AE_bin_290_8           AE_bin_292_38           AE_bin_295_2           AE_bin_232_4                                                  | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-17C<br>2015-14C<br>2014-14C<br>2014-17C<br>2014-20C<br>2014-20C<br>2015-14C | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91<br>11.61<br>12.61<br>14.01<br>0.01 | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3<br>9.4-13.3<br>10.3-13.3<br>13.3-18.9<br>0-2.7 | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66<br>2.96<br>3.67<br>2.70<br>3.21 | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.43<br>2.55<br>2.43<br>2.55<br>2.43<br>2.68<br>2.49<br>2.60<br>2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.41           0.71           0.42           -0.38           -0.44           -0.37           -0.31           -0.29           -0.40 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67           8.66           5.98           8.38           6.07           5.64 |
|                                | QTL<br><b>qFBN1.1</b><br><b>qFBN1.2</b><br><b>qFBN3.1</b><br><b>qFBN3.3</b><br><b>qFBN3.3</b><br><b>qFBN3.4</b><br><b>qFBN3.5</b><br><b>qFBN4.1</b><br><b>qFBN4.2</b><br><b>qFBN4.3</b><br><b>qFBN5.1</b><br><b>qFBN5.2</b>                   | Chr<br>1<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>5<br>5                | Nearest marker           AE_bin_70_1           AE_bin_69_2           AE_bin_89_94_49_1           AE_bin_142_3           AE_bin_147_3           AE_bin_165_1           AE_bin_173_12           AE_bin_154_3           AE_bin_210_2           AE_bin_210_117_218_4_2_2           AE_bin_221_1           AE_bin_290_8           AE_bin_292_38           AE_bin_293_10           AE_bin_295_2                         | Environment<br>2014-17C<br>2014-20C<br>2015-14C<br>2015-14C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-17C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-20C<br>2015-17C<br>2015-17C<br>2015-14C<br>2015-17C<br>2014-14C<br>2014-17C<br>2014-20C             | Posit. (cM)<br>4.91<br>5.81<br>11.81<br>61.61<br>65.21<br>70.31<br>72.71<br>75.01<br>17.21<br>20.11<br>26.11<br>27.01<br>6.01<br>10.31<br>10.91<br>11.61<br>12.61<br>14.01                  | Interval (cM) <sup>y</sup><br>3.3-5.1<br>4.6-5.9<br>11.7-15.3<br>61.3-62.5<br>64.5-65.7<br>68.5-71.6<br>72.4-72.9<br>74.7-75.3<br>16.8-18.7<br>15.8-18.2<br>18.3-22.0<br>26.0-26.2<br>26.6-27.8<br>0-9.1<br>9.1-12.0<br>10.4-12.3<br>9.4-13.3<br>10.3-13.3<br>13.3-18.9          | LOD*<br>3.84<br>3.18<br>5.24<br>8.41<br>4.20<br>6.87<br>10.68<br>7.70<br>3.11<br>9.09<br>2.93<br>9.38<br>2.83<br>2.83<br>2.83<br>2.88<br>4.50<br>3.66<br>2.96<br>3.67<br>2.70 | LOD threshold <sup>w</sup><br>2.49<br>2.60<br>2.55<br>2.55<br>2.55<br>2.68<br>2.68<br>2.68<br>2.60<br>2.55<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.68<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60<br>2.55<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α <sup>v</sup> -0.46           -0.30           0.48           -0.65           -0.48           -0.63           -0.72           -0.64           0.37           0.41           0.71           0.32           -0.38           -0.44           -0.37           -0.31           -0.29                 | %VE <sup>u</sup> 9.39           6.38           8.86           16.32           9.83           17.02           20.02           17.19           9.86           23.11           6.80           20.42           7.52           6.19           7.67           8.66           5.98           8.38           6.07                |

<sup>z</sup>Trait abbreviations as defined in Table 1.

<sup>y</sup>Confidence interval as determined by 1-LOD values.

<sup>x</sup>LOD values calculated from likelihood-ratio statistics.

<sup>W</sup>LOD threshold determined at 0.05 probability based on 1,000 permutations.


v Additive effect of QTL, positive values indicate beneficial alleles from *P. axillaris* 

<sup>u</sup>Percentage of variation explained by QTL estimated using R<sup>2</sup> statistics.

In a two-year field evaluation of this same *P. axillaris*  $\times$  *P. exserta* RIL population (Cao *et al.* 2018), and a *P. integrifolia*  $\times$  *P. axillaris* RIL population (Cao *et al.* 2019), QTL for flower count (number of open flowers per plant, collected weekly for seven weeks) were identified on Chr 1, 2 and 4 in the AE population and 1 and 2 in the IA population. QTL for FlBud identified in the current study on Chr 1, 2 and 4 did not co-localize with the flower count QTL. However, for both traits, positive additivity was provided by *P. exserta* for the QTL on Chr 1 and by *P. axillaris* on Chr 4, while for the two FlBud

QTL on Chr 2 each parent contributed positive additivity at one locus (Table 6).

In this study, a total of 15 rQTL for FlBud and four flowering capacity component traits were identified on Chr 1-6 (Table 6; Figure 1). Of the 6 rQTL for FlBud, one (qFB1.1) co-localized with a rQTL for the flowering capacity component trait FlBranch (qFBN1.1) on Chr 1, one (qFB4.1) co-localized with rQTL for both FlBudPS (qFBP4.1) and FlBranch (qFBN4.1) on Chr 4, and two (qFB4.2 and qFB4.3) co-localized with a rQTL for FlBudPS (qFBP4.4), also on Chr 4. For



**Figure 1** Summary of rQTL for flowering traits at three temperatures in a *P. axillaris*  $\times$  *P. exserta* F<sub>7</sub> recombinant inbred line population in 2014 and 2015. Note that only a subset of bin markers are included to ease visualization. The shaded rectangle represents the range of peak positions and the line segments represent the combined confidence interval at 1-LOD value.

flower bud number-related QTL, *P. axillaris* contributed more beneficial alleles, whereas *P. exserta* contributed more beneficial alleles for branching-related QTL. However, both parents contributed favorable alleles for all traits. These results support the utility of incorporating wild species into breeding programs to introgress alleles that may have been lost during breeding to improve flower component traits, although linkage drag on other important traits is of concern.

Four branching QTL, including one rQTL each for Branch and FlBranch, were detected on the same chromosome as the previously identified QTL for branch number in a P. integrifolia  $\times$  P. axillaris F<sub>2</sub> population (Vallejo et al., 2015). Additionally, four QTL including one rQTL for FlBudPS was detected on the same chromosome as the previously identified QTL for flower buds on the main stem in the F<sub>2</sub> population. The QTL for total number of flower bud on the primary stem on Chr 6 (FBP6.1) and total branch number on Chr 1 (BR1.1) explained 43 and 26% of the variation, respectively, in the F<sub>2</sub> population (Vallejo et al., 2015). Conversely, in this study, the QTL for these traits that were detected on the same Chr explained only 6-11% of the variation (Table 6). Additionally, in the RIL population, two major QTL for each trait FlBud and FlBudPS were detected on Chr 4 and one major QTL on Chr 3 and one on Chr 4 for Branch. Whereas the QTL (FB1.1) for flower number on Chr 1 in the P. integrifolia  $\times$  P. axillaris population was not a major QTL and only explained 13% of the variation, but it had a large additive effect (17.78 flowers) from P. axillaris (Vallejo et al., 2015). While the largest additive effect for any total flower number QTL in the *P. axillaris* × *P. exserta* population was also inherited from P. axillaris, the effect was much lower at 4.54.

Additionally, in the RIL population, *P. exserta* contributed the beneficial alleles for the QTL on Chr 1 for FlBud, which indicates that both parents can provide beneficial alleles for this trait.

Across all temperatures and within each temperature, FlBud was consistently most highly positively correlated with FlBranch and FlBudPS (Table 1). Additionally, FlBranch and FlBudPS were highly positively correlated at each temperature, and a large effect rQTL for FlBranch (*qFBN4.1*) co-localized with a large effect rQTL for FlBudPS (*qFBP4.1*), suggesting potential for a common mechanism regulating vegetative and inflorescence branching. Some genes impacting both branch number and flower number per inflorescence have been identified. For example, the tomato *BLIND* gene encodes a MYB transcription factor that controls lateral meristem initiation, with *blind* mutants exhibiting reduced numbers of lateral shoots and flowers per inflorescence (Schmitz *et al.* 2002).

Several plant hormones have been implicated in regulating branching, including auxins, cytokinins, and strigolactones (Shimizu-Sato *et al.* 2009; Drummond *et al.* 2009). Auxins maintain shoot apical dominance and repress axillary outgrowth by downregulating cytokinin biosynthesis (Eklof *et al.* 1997; Nordstrom *et al.* 2004). In contrast, cytokinins promote axillary bud outgrowth even in the presence of auxin at certain developmental stages (Müeller and Leyser 2011). One rQTL for FlBud co-localized to the same region as the rQTL for FlBranch and FlBudPS on Chr 4 (Figure 1). In rice, a QTL for spikelets per panicle and primary branch number co-localized (Balkunde *et al.* 2013). One of the four candidate genes within the QTL region was a putative expressed nitrilase, which converts indole-3-acetonitrile (IAN) to the auxin indole-3-acetic acid (IAA) through hydrolysis (Kobayashi *et al.* 1993).

Strigolactones are carotenoid-derived plant hormones that have been identified as inhibitors of axillary bud outgrowth and shoot formation (Drummond et al. 2012; Gomez-Roldan et al. 2008; Kretzschmar et al. 2012). In chrysanthemum, phenotypic variation for shoot branching was associated with allelic variation in genes in the strigolactone pathway (Klie et al. 2016). The nearest bin marker to the branching QTL qBR4.2 and qFBN4.3 (AE\_bin\_210\_117), which explained ca. 20% of the variation for Branch and FlBranch, contains five SNPs located on the P. axillaris genome scaffold containing PhDAD2 (Peaxi162Scf000081; 2.9 Mb; (Bombarely et al. 2016)), which encodes an  $\alpha/\beta$  hydrolase involved in strigolactone perception. Orthologs of the branching- and strigolactone pathway-related genes MORE AXILLARY BRANCHING (MAX), CAROTENOID CLEAVAGE DIOXYGENASE (CCD), and TCP have been identified in petunia, including PhMAX2B, PhCCD7, PhCCD8 and PhTCP1-3 (Drummond et al. 2009; Drummond et al. 2012; Drummond et al. 2015). No branching QTL identified in this study localized to PhCCD7 or PhCCD8. However, PhMAX2B is located on scaffold Peaxi162Scf00384 of the P. axillaris genome. This 1.35 Mb scaffold contains a marker (AE\_bin\_301\_62\_14\_156\_2\_2) flanking the rQTL qFBN.5.1 for flower branch number. Additionally, PhTCP1 is located on genome scaffold Peaxi162Scf00086, which contains a marker (AE\_bin\_89\_94\_49\_1), located ca. 300 kb from PhTCP1, flanking QTL for both branch number (qBR1.2) and flowering branch number (qFBN1.2). Understanding the potential role of these genes, and identifying additional genes of interest in these QTL regions, will help develop a more thorough understanding of the quantitative mechanism for branching regulation in petunia, and the contribution of branching to flowering capacity.

The current study of flower production and its component traits provides new insight into its complex genetic control. Co-localization of rQTL for flower number and flowering capacity component traits on Chr 1 and 4 provide attractive targets for future studies to fine map these candidate regions to identify genes controlling flower capacity component traits and molecular markers for improving flower production in petunia through marker-assisted breeding.

#### ACKNOWLEDGMENTS

Funding was provided by USDA Specialty Crops Research Initiative Award number 2011-51181-30666 to R.M.W. and the American Floral Endowment. R.M.W. is supported in part by Michigan AgBioResearch and through USDA National Institute of Food and Agriculture, Hatch project number MICL02451. The authors would like to thank Nathan DuRussel and Sue Hammar for technical support.

#### LITERATURE CITED

- Balkunde, S., H. L. Le, H. S. Lee, D. M. Kim, J. W. Kang et al., 2013 Fine mapping of a QTL for the number of spikelets per panicle by using near-isogenic lines derived from an interspecific cross between Oryza sativa and Oryza minuta. Plant Breed. 132: 70–76. https://doi.org/ 10.1111/pbr.12020
- Bombarely, A., M. Moser, A. Amrad, M. Bao, L. Bapaume *et al.*, 2016 Insight into the evolution of the Solanaceae from the parental genomes of *Petunia hybrida*. Nat. Plants 2: 16074. https://doi.org/ 10.1038/nplants.2016.74
- Bossolini, E., U. Klahre, A. Brandenburg, D. Reinhardt, and C. Kuhlemeier, 2011 High resolution linkage maps of the model organism *Petunia* reveal substantial synteny decay with the related genome of tomato. Genome 54: 327–340. https://doi.org/10.1139/g10-116

- Cao, Z., Y. Guo, Q. Yang, Y. He, M. I. Fetouh *et al.*, 2018 Genome-wide search for quantitative trait loci controlling important plant and flower traits in petunia using an interspecific recombinant inbred population of *Petunia axillaris* and *Petunia exserta*. G3 (Bethesda) 8: 2309–2317. https://doi.org/10.1534/g3.118.200128
- Cao, Z., Y. F. Guo, Q. Yang, Y. H. He, M. I. Fetouh *et al.*, 2019 Genomewide identification of quantitative trait loci for important plant and flower traits in petunia using a high-density linkage map and an interspecific recombinant inbred population derived from *Petunia integrifolia* and *P. axillaris*. Hortic. Res. 6: 27. https://doi.org/10.1038/ s41438-018-0091-5
- Darvasi, A., and A. Pisante-Shalom, 2002 Complexities in the genetic dissection of quantitative trait loci. Trends Genet. 18: 489–491. https:// doi.org/10.1016/S0168-9525(02)02767-1
- de Jong, M., G. George, V. Ongaro, L. Williamson, B. Willetts *et al.*,
  2014 Auxin and strigolactone signaling are required for modulation of *Arabidopsis* shoot branching by nitrogen supply. Plant Physiol.
  166: 384–395. https://doi.org/10.1104/pp.114.242388
- Dierig, D. A., and S. J. Crafts-Brandner, 2011 The relationship of temperature to plant morphology of *Lesquerella*. Crop Sci. 51: 2165–2173. https://doi.org/10.2135/cropsci2011.01.0007
- Drummond, R. S. M., B. J. Janssen, Z. W. Luo, C. Oplaat, S. E. Ledger *et al.*, 2015 Environmental control of branching in petunia. Plant Physiol. 168: 735–751. https://doi.org/10.1104/pp.15.00486
- Drummond, R. S. M., N. M. Martinez-Sanchez, B. J. Janssen, K. R. Templeton, J. L. Simons et al., 2009 Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol. 151: 1867–1877. https://doi.org/ 10.1104/pp.109.146720
- Drummond, R. S. M., H. Sheehan, J. L. Simons, N. M. Martinez-Sanchez, R. M. Turner *et al.*, 2012 The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front. Plant Sci. 2: 115. https://doi.org/10.3389/ fpls.2011.00115
- Eklof, S., C. Astot, J. Blackwell, T. Moritz, O. Olsson et al., 1997 Auxincytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol. 38: 225–235. https://doi.org/10.1093/oxfordjournals.pcp.a029157
- Elitzur, T., H. Nahum, Y. Borovsky, I. Pekker, Y. Eshed *et al.*, 2009 Co-ordinated regulation of flowering time, plant architecture and growth by *FASCICULATE*: the pepper orthologue of *SELF PRUNING*. J. Exp. Bot. 60: 869–880. https://doi.org/10.1093/jxb/ern334
- Fehr, W. R., 1987 Heritability, pp. 95–105 in *Principles of Cultivar Development, Vol. 1: Theory and Technique.* Macmillan, New York.
- Finlayson, S. A., S. R. Krishnareddy, T. H. Kebrom, and J. J. Casal, 2010 Phytochrome regulation of branching in *Arabidopsis*. Plant Physiol. 152: 1914–1927. https://doi.org/10.1104/pp.109.148833
- Galliot, C., M. E. Hoballah, C. Kuhlemeier, and J. Stuurman, 2006 Genetics of flower size and nectar volume in *Petunia* pollination syndromes. Planta 225: 203–212. https://doi.org/10.1007/s00425-006-0342-9
- Gomez-Roldan, V., S. Fermas, P. B. Brewer, V. Puech-Pages, E. A. Dun et al., 2008 Strigolactone inhibition of shoot branching. Nature 455: 189–194. https://doi.org/10.1038/nature07271
- Griesbach, R. J., 2007 Petunia, pp. 301–336 in Flower breeding and genetics: Issues, challenges and opportunities for the 21st century, edited by Anderson, N. O. Springer, Dordrecht, The Netherlands.
- Guo, X. H., G. P. Chen, M. Naeem, X. H. Yu, B. Y. Tang et al., 2017a The MADS-box gene SIMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci. 258: 90–101. https:// doi.org/10.1016/j.plantsci.2017.02.005
- Guo, Y., W. K. Lin, Q. Chen, V. A. Vallejo, and R. M. Warner,
  2017b Genetic determinants of crop timing and quality traits in two interspecific *Petunia* recombinant inbred line populations. Sci. Rep. 7: 3200. https://doi.org/10.1038/s41598-017-03528-9
- Guo, Y., K. E. Wiegert-Rininger, V. A. Vallejo, C. S. Barry, and R. M. Warner, 2015 Transcriptome-enabled marker discovery and mapping of plastochron-related genes in *Petunia spp.* BMC Genomics 16: 726. https:// doi.org/10.1186/s12864-015-1931-4

Hamiaux, C., R. S. M. Drummond, B. J. Janssen, S. E. Ledger, J. M. Cooney et al., 2012 DAD2 Is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22: 2032–2036. https://doi.org/10.1016/j.cub.2012.08.007

Klie, M., I. Menz, M. Linde, and T. Debener, 2016 Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol. Genet. Genomics 291: 957–969. https://doi.org/10.1007/s00438-015-1155-y

Kobayashi, M., H. Izui, T. Nagasawa, and H. Yamada, 1993 Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc. Natl. Acad. Sci. USA 90: 247–251. https://doi.org/10.1073/pnas.90.1.247

Kosambi, D. D., 1943 The estimation of map distances from recombination values. Ann. Eugen. 12: 172–175. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x

Kretzschmar, T., W. Kohlen, J. Sasse, L. Borghi, M. Schlegel et al., 2012 A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341–344. https://doi.org/10.1038/nature10873

Lander, E., and L. Kruglyak, 1995 Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247. https://doi.org/10.1038/ng1195-241

Mata, D. A., and J. F. Botto, 2011 Photoperiod, light, and temperature requirements to control plant architecture and flowering time in Salvia exserta. J. Hortic. Sci. Biotechnol. 86: 408–414. https://doi.org/10.1080/ 14620316.2011.11512782

Müeller, D., and O. Leyser, 2011 Auxin, cytokinin and the control of shoot branching. Ann. Bot. (Lond.) 107: 1203–1212. https://doi.org/10.1093/ aob/mcr069

Napoli, C. A., and J. Ruehle, 1996 New mutations affecting meristem growth and potential in *Petunia hybrida* Vilm. J. Hered. 87: 371–377. https://doi.org/10.1093/oxfordjournals.jhered.a023016

Nordstrom, A., P. Tarkowski, D. Tarkowska, R. Norbaek, C. Astot et al., 2004 Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA 101: 8039–8044. https://doi.org/ 10.1073/pnas.0402504101

Schmitz, G., E. Tillmann, F. Carriero, C. Fiore, F. Cellini *et al.*, 2002 The tomato *Blind* gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc. Natl. Acad. Sci. USA 99: 1064–1069. https://doi.org/10.1073/pnas.022516199 Shimizu-Sato, S., M. Tanaka, and H. Mori, 2009 Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 69: 429–435. https://doi.org/10.1007/s11103-008-9416-3

Snowden, K. C., A. J. Simkin, B. J. Janssen, K. R. Templeton, H. M. Loucas et al., 2005 The Decreased apical dominance 1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17: 746–759. https://doi.org/10.1105/ tpc.104.027714

Souer, E., A. van der Krol, D. Kloos, C. Spelt, M. Bliek et al., 1998 Genetic control of branching pattern and floral identity during *Petunia* inflorescence development. Development 125: 733–742.

Strommer, J., J. Peters, J. Zethof, P. De Keukeleire, and T. Gerats, 2002 AFLP maps of *Petunia hybrida*: building maps when markers cluster. Theor. Appl. Genet. 105: 1000–1009. https://doi.org/10.1007/ s00122-002-1009-y

Vallejo, V. A., J. Tychonievich, W.-K. Lin, L. Wangchu, C. S. Barry et al., 2015 Identification of QTL for crop timing and quality traits in an interspecific *Petunia* population. Mol. Breed. 35: 2. https://doi.org/ 10.1007/s11032-015-0218-4

Van Ooijen, J., 2006 JoinMap (R) 4, Software for the calculation of genetic linkage maps in experimental populations, Kayazma BV, Wageningen, Netherlands.

Voorrips, R. E., 2002 MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77–78. https://doi.org/10.1093/ jhered/93.1.77

Wang, S., C. J. Basten, and Z. B. Zeng, 2012 Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, NC.

Warner, R. M., 2010 Temperature and Photoperiod Influence Flowering and Morphology of Four *Petunia spp*. HortScience 45: 365–368. https:// doi.org/10.21273/HORTSCI.45.3.365

Warner, R. M., and A. E. Walworth, 2010 Quantitative inheritance of crop timing traits in interspecific hybrid *Petunia* populations and interactions with crop quality parameters. J. Hered. 101: 308–316. https://doi.org/ 10.1093/jhered/esp131

Xu, S. Z., 2013 Genetic mapping and genomic selection using recombination breakpoint data. Genetics 195: 1103–1115. https://doi.org/10.1534/ genetics.113.155309

Communicating editor: G. Morris