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A B S T R A C T

Quantitative structure–activity relationships (QSAR) provides a model that link biological activities of compounds
to thier chemical stuctures and molecular docking study reveals the interaction between drug and its target
enzyme. These studies were conducted on 1,3-dioxoisoindoline-4-aminoquinolines with the aim of producing a
model that could be used to design highly potent antiplasmodium. The compounds were first optimized using
Density Functional Theory (DFT) with basis set B3LYP/6-31G* then their descriptors calculated. Genetic Function
Algorithm (GFA) was used to select descriptors and build the model. One of the four models generated was found
to be the best having internal and external squared correlation coefficient (R2) of 0.9459 and 0.7015 respectively,
adjusted squared correlation coefficient (Radj) of 0.9278, leave-one-out (LOO) cross-validation coefficient (Q2

cv)
of 0.8882. The model shows that antiplasmodial activities of 1,3-dioxoisoindoline-4-aminoquinolines depend on
ATSC5i, GATS8p, minHBint3, minHBint5, MLFER_A and topoShape descriptors. The model was validated to be
predictive, robust and reliable. Hence, it can predict the antiplasmodium activities of new 1,3-dioxoisoindoline-4-
aminoquinolines.The docking result indicates strong binding between 1,3-dioxoisoindoline-4-aminoquinolines
and Plasmodium falciparum lactate dehydrogenase (pfLDH), and revealed the important of the morpholinyl sub-
stituent and amide linker in inhibiting pfLDH. These results could serve as a model for designing novel 1,3-diox-
oisoindoline-4-aminoquinolines as inhibitors of PfLDH with higher antiplasmodial activities.
1. Introduction

Malaria is an infection with high morbidity and mortality burden all
over world which is endemic in African region. Data from the World
Health Organization malaria report 2019 revealed the occurrence of an
estimate of 228 million cases and 405 000 deaths from the infection
worldwide in 2018. Nigeria has 25% and 19% of the global cases and
deaths respectively, follow by Democratic Republic of Congo with 11%
each of the global cases and deaths. The most vulnerable are children
below 5 years of age responsible for 67% (585 000) of the global malaria
deaths in 2018 (WHO, 2019). Plasmodium falciparum is the most deadly
of the five species of malaria parasite known to infect human (Cohen
et al., 2012; WHO, 2019).

Quinoline present in several antimalarial drugs such as Chloroquine,
Amodiaquine, Mefloquine, Primaquine, Ferroquine, etc. has been
considered as the most important moiety that impact antimalarial action
out of many heterocycle pharmacophores known for treatment of malaria
(Kumar et al., 2016; Ilhami et al., 2010). Chloroquine has been the most
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effective antimalaria for decades, but the wide spread of its resistance led
to the development of Artemisinin-based Combination Therapy (ACTs),
the WHO recommended drug for treatment of uncomplicated malaria
(Beteck et al., 2014). ACTs are drug combinations containing artemisinin
derivatives and other antimalarials such as quinoline compounds.
Resistance to ACTs was reported in some part of the world which jeop-
ardized their future effectiveness hence, the need for promising anti-
malaria that will meet the challenge of eradicating the disease (Burrows
et al., 2011; Aguiar et al., 2012). Alternative to ACTs are hybrid com-
pounds which have advantage of hitting two or more molecular targets
(Oliveira et al., 2015). Earlier this year, Rania and coworkers reported
the synthesis of 1,3-dioxoisoindoline-4-aminoquinolines (Figure 1) as
potent and noncytotoxic hybrid compounds having excellent anti-
plasmodial activities against W2 strain of P. falciparum (Rania et al.,
2019).

Conventional drug discovery methods are expensive and time-
consuming, hence, the need for more effective methods in terms of
time and resources (Jitender et al., 2010). Discovery of novel drug
ebruary 2020
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Figure 1. 1,3-dioxoisoindoline-4-aminoquinolines.

Table 1. Compounds of Figure 1 with their antiplasmodial activities.

Compounds R m N IC50(nM)

1 H 1 2 5.65

2 H 1 4 3.66

3 H 1 6 3.35

4 H 1 8 0.24

5 H 2 2 0.30

6 H 2 4 0.41

7 H 2 6 0.29

8 H 2 8 0.15

9 H 3 2 0.28

10 H 3 4 0.84

11 H 3 6 1.57

12 H 3 8 0.58

13 F 1 2 1.99

14 F 1 4 1.05

15 F 1 6 1.49

16 F 2 2 0.36

17 F 2 4 0.22

18 F 2 6 0.66

19 Morpholinyl 1 2 3.21

20 Morpholinyl 1 4 1.28

21 Morpholinyl 1 6 1.78

22 Morpholinyl 2 2 0.13

23 Morpholinyl 2 4 0.22

24 Morpholinyl 2 6 0.64

25 Diethylamino 1 2 1.14

26 Diethylamino 1 4 1.17

27 diethylamino 1 6 1.22

28 diethylamino 2 2 0.097

29 diethylamino 2 4 0.26

30 diethylamino 2 6 0.53

31 2-(piperazin-1-yl)ethan-1-ol 1 2 1.04

32 2-(piperazin-1-yl)ethan-1-ol 1 4 0.86

33 2-(piperazin-1-yl)ethan-1-ol 1 6 0.46

34 2-(piperazin-1-yl)ethan-1-ol 2 2 0.28

35 2-(piperazin-1-yl)ethan-1-ol 2 4 0.14

36 2-(piperazin-1-yl)ethan-1-ol 2 6 0.18
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candidates require efficient and vigorous methods that can screen
chemical databases against molecules with known biological activities
(Tropsha, 2010). QSAR and molecular docking studies have been suc-
cessfully deployed in the discovery and design of many drugs for their
time and cost effectiveness (Talele et al., 2010). This work aim at
applying these techniques to reveal the connection between chemical
structures of 1,3-dioxoisoindoline-4-aminoquinolines and their anti-
plasmodial activities so as to come up with a model that could be used to
design highly potent antimalaria.

2. Materials and method

2.1. Data collection

36 compounds of 1,3-dioxoisoindoline-4-aminoquinolines (Figure 1)
and their antiplasmodial activities against W2 strain of Plasmodium fal-
ciparum were obtained from the work of Rania and co-workers (Rania
et al., 2019) and used in this research. The antiplasmodial activities of the
compounds were gotten as IC50 (nM) and converted to pIC50 {pIC50 ¼
-logIC50 (M)} for the purpose of this work. The compounds with their
respective activities were presented in Table 1.

2.2. Geometric optimization

The 2D structures of the molecules shown in Table 1 were drawn
using Chemdraw version 12.0.2 software (Li et al., 2004), converted to
3D and optimized using Spartan 14 Version 1.1.4 software (using B3LYP
functional and 6-31G basis set) (Becke, 1993) (see Supplementary file
Table 1 for 2D and 3D structures).

2.3. Molecular descriptors calculation

A total of 1875 molecular descriptors of the optimized molecules of
1,3-dioxoisoindoline-4-aminoquinolines derivatives were computedwith
PaDEL-Descriptor software version 2.20 (Yap, 2011).

2.4. Normalization and data pretreatment

Using Eq. (1), the computed descriptors were normalized so that each
variable will have equal opportunity in construction of the model (Singh,
2013).

X¼ Xi � Xmin

Xmax � Xmin
(1)

where X is the normalized descriptors, Xi is the descriptor's value for each
molecule, Xmin and Xmax are minimum and maximum values for each
descriptor. Data Pretreatment software of Drug Theoretical and Chem-
informatics Laboratory (DTC Lab) was used to eliminate redundancy in
the normalized data.
2

2.5. Data Division

Kennard-Stone's algorithm was employed to divide the data into
training set and test set (Kenard and Stone, 1969) using Data Division
software of DTC Lab. Training set (70%) was used in building the model
while test set (30%) in validating the model.



Table 3. Experimental and predicted pIC50 of 1,3-dioxoisoindoline-4-aminoqui-
nolines with their residuals.

Compounds Experimental pIC50 Predicted pIC50 Residual

1 5.248 5.331 -0.083

2a 5.437 5.523 -0.087

3 5.475 5.523 -0.048

4a 6.62 6.355 0.2644

5 6.523 6.716 -0.193

6a 6.387 6.777 -0.39

7 6.538 6.434 0.1035

8 6.824 6.914 -0.09

9 6.553 6.518 0.0352

10a 6.076 5.909 0.1669

11 5.804 5.746 0.0581

12a 6.237 6.236 0.0007

13 5.701 5.655 0.0459

14 5.979 5.8 0.179

15 5.827 6.006 -0.179

16 6.444 6.447 -0.003

17a 6.658 6.526 0.1317

18 6.18 6.204 -0.024

19 5.493 5.57 -0.077
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2.6. Model generation

Regression analysis of the training set was carried out using Genetic
Function Approximation (GFA) technique in Material Studio software to
generate the model. Activities in pIC50 were taken as the dependent
variable and the descriptors independent variables.

2.7. Internal validation of the model generated

The model generated was assessed using Friedman formula (Fried-
man, 1991) defined as;

LOF¼ SEE�
1� cþdp

M

�2 (2)

LOF is the Friedman's Lack of fit which is a measure of fitness of a
model, SEE is the standard error of estimation, p is the total number of
descriptors in the model, d is the user-defined smoothing parameter, c is
the number of terms in the model and M is the number of compounds in
the training set.

SEE is defined as;

SEE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Yexp�Yprd

�2
N � P� 1

s
(3)

which is the same as the standard deviation of the model and its value has
to be low for a model to be good.

Correlation coefficient, R2 of a built model is another parameter
considered and the closer it is to 1.0, the better the model built. R2 is
expressed as;

R2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

Yexp � Yprd

�2P�
Yexp � Ymtrn

�2
vuut (4)

where Yprd, Yexp and Ymtrn are the predicted, experimental and mean
experimental activities in the training set, respectively.

The stability of a model is not reliable on the value of R2 as it is
directly proportional to the number of descriptors in the model. Thus, for
a reliable and stable model, R2 is adjusted according to the expression:

R2
adj ¼

ðn� 1ÞðR2 � pÞ
n� p� 1

(5)

where p is the number of descriptors in the model and n number of
compounds used in training set.

The cross-validation coefficient, Q2
cv expressed as:
Table 2. Validation parameters for the selected model.

S/N Parameter Value

1 Friedman LOF 0.083

2 R2
train 0.946

3 Adjusted R-squared 0.928

4 Cross-validated R-squared (Q2
cv) 0.888

5 Significant regression Yes

6 Significance-of-regression F-value 48.26

7 Critical SOR F-value (95%) 2.672

8 Replicate points 0

9 Computed experimental error 0

10 Lack-of-fit points 18

11 Min expt. error for nonsignificant LOF (95%) 0.103

12 R2
test 0.702

3

Q2
cv ¼ 1�

P�
Yprd � Yexp

�2P� �2 (6)

Yexp � Ymtrn

where Yprd, Yexp and Ymtrn are the predicted, experimental and average
experimental activity in the training set, respectively.

2.8. External validation of the model generated

Test set was used in validating the generated model externally by
assessing the value of R2

pred expressed as;

R2
pred ¼ 1�

P�
Yprd � Yexp

�2P�
Yexp � Ymtrn

�2 (7)

where Yprd and Yexp are respectively the predicted and experimental
activities of the test set and Ymtrn the mean experimental activity of the
training set. The closer the value is to 1.0, the better the model generated
(Tropsha et al., 2003).
20a 5.893 5.53 0.363

21a 5.75 5.796 -0.046

22 6.886 6.793 0.0932

23 6.658 6.634 0.0238

24 6.194 6.342 -0.148

25 5.943 5.998 -0.055

26a 5.932 5.912 0.0194

27a 5.914 6.147 -0.233

28 7.013 6.726 0.287

29 6.585 6.566 0.0193

30 6.276 6.286 -0.011

31 5.983 5.867 0.1161

32a 6.066 5.858 0.2075

33 6.337 6.202 0.1356

34 6.553 6.644 -0.091

35 6.854 6.942 -0.088

36 6.745 6.751 -0.006

a Test set.



Table 4. Pearson's correlation, Variance Inflation Factor (VIF) and Mean Effect (MF) of descriptors used in the selected model.

Descriptor Inter-correlation VIF MF

ATSC5i GATS8p minHBint3 minHBint5 MLFER_A topoShape

ATSC5i 1 1.391 -0.005

GATS8p -0.1181 1 2.994 0.983

minHBint3 -0.3422 0.3350 1 1.500 -0.010

minHBint5 -0.4024 0.6021 0.3330 1 5.148 -0.020

MLFER_A 0.1375 0.1420 0.1317 -0.5053 1 2.704 -0.110

topoShape -0.0275 -0.0451 0.2254 -0.2468 0.2461 1 1.221 0.166
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2.9. Y-Randomization test

RandomMulti-Linear regression models are generated (using training
set) in Y-randomization test whose R2 and Q2 values have to be low for
the QSAR model to be robust (Tropsha et al., 2003). Coefficient of
determination, cR2

p, whose value has to be greater than 0.5 for passing
this test is also calculated in the Y-randomization test and is expressed as;

cR2
p ¼Rx

�
R2 � R2

r

�2 (8)

where R is the correlation coefficient for Y-randomization and R2
r is the

average ‘R’ of the random models.
2.10. Applicability domain of the generated model

Leverage (hi) method was used in describing the applicability domain
of the QSAR models (Veerasamy et al., 2011) and for a chemical com-
pound is expressed as;

hi ¼XiðXTXÞ�1
XT

I (9)

where Xi is training compounds matrix of i. X is the n x k descriptor
matrix of the training set compound and XT is the transpose matrix of X
used to generate the model. The warning leverage, h* is the maximum
value for X and is expressed as;

h* ¼ 3ðpþ 1Þ
n

(10)

where n is the number of training compounds and p is the number of
descriptors in the model.
Table 5. Y-Randomization test result.

Model R R2 Q2

Original 0.9726 0.9459 0.8883

Random 1 0.4172 0.1741 -0.7131

Random 2 0.4080 0.1665 -0.6273

Random 3 0.6915 0.4782 0.0379

Random 4 0.4669 0.2180 -0.4743

Random 5 0.6025 0.3631 -0.2769

Random 6 0.3653 0.1335 -0.6688

Random 7 0.4835 0.2338 -0.6283

Random 8 0.5267 0.2774 -0.4792

Random 9 0.2620 0.0686 -0.8088

Random 10 0.6430 0.4135 -0.3519

Random Models Parameters

Average r: 0.4867

Average r2: 0.2526

Average Q2: -0.4990

cRp2: 0.8189
2.11. Descriptors analyses

Correlation analysis was carried out to check the presence of corre-
lation among the descriptors in the built model. This was further evalu-
ated by computing the variance inflation factor (VIF) for each descriptor
using the equation below (see supplementary file Table 2 for the values of
descriptors used in the model):

VIFi ¼ 1
1� R2

ij

(11)

VIFi is the variance inflation factor for a given descriptor i in the
model R2

ij is the correlation coefficient of the multiple regression be-
tween the descriptor i and the remaining j descriptors in the model
(Beheshti et al., 2016).

The relative significance and influence of every descriptor in the
model was estimated by its mean effect (MF) value. The MFj for a given
descriptor j in a model is given as;

MFj ¼
βj
Pi¼n

i¼1dijPm
j βj

Pn
i dij

(12)
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where bj is the coefficient of descriptor j in the model, dij is the value of
the descriptor j in the descriptor matrix for each molecule in the training
set, m is the number of descriptors that appear in the model, and n is the
number of molecule that made up the training set (Habibi-Yangjeh and
Danandeh-Jenagharad, 2009).

2.12. Docking study

Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme is
regarded as a potential molecular target for antimalarials because of the
parasite's reliance on glycolysis to produce energy (Penna-Coutinho
et al., 2011). Therefore, molecular docking study was conducted be-
tween PfLDH and 1,3-dioxoisoindoline-4-aminoquinolines to investigate
their interaction. Crystal structure of PfLDH was obtained from protein
data bank (PDB ID: 1CET). Ten compounds with best activities were
prepared as the ligands for this study. PfLDH was prepared as the re-
ceptor with the aid of Discovery Studio software. The prepared receptor
and ligands were docked using Autodock Vina in Pyrx software (Trott
and Olson, 2010). Discovery Studio Visualizer was use to analyze the
results.

3. Result and discussion

Four QSAR models were built using GFA in material studio software
to study how the biological activities of 1,3-dioxoisoindoline-4-amino-
quinolines as potent antiplasmodium relate with their chemical struc-
tures. One of the QSAR models generated was selected for its statistical
significance and reported herein as follow:
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pIC50 ¼ �0:013998081 * ATSC5i
�13:821502296 * GATS8p

þ0:328734328 * minHBint3
þ0:138391673 * minHBint5
þ3:211439246 * MLFER A
�2:474169940 * topoShape
þ20:552944618

Table 2 presents the validation parameters of the model which passed
the thresholds required for a QSAR model to be accepted (Veerasamy
et al., 2011; Tropsha, 2010).

The model contained 2D Autocorrelation descriptors ATSC5i and
GATS8p which described how the considered properties (first ionization
potential and atomic polarizabilities) are distributed along the topolog-
ical structures of the molecules. ATSC5i is defined as centered Broto-
Moreau autocorrelation of lag 5 weighted by first ionization potential
and it present in the model related the first ionization potential of pairs
atoms that are separated by five bonds (lag 5) with the antiplasmodial
activities of 1,3-dioxoisoindoline-4-aminoquinolines, while GATS8p is
defined as Geary autocorrelation of lag 8 weighted by atomic polariz-
abilities and it present in themodel associated the presence of polarizable
pairs of atoms eight bonds apart on the antiplasmodial activities the
compounds. The model also contained 2D atom type electro-topological
state descriptors minHBint3 and minHBint5 which are defined as Mini-
mum E-State descriptors of strength for potential Hydrogen Bonds of path
length 3 (minHBint3) and of path length 5 (minHBint5). These de-
scriptors indicated the importance of hydrogen bonds of path length 3
and 5 (Arthur et al., 2016). Other descriptors in the model were Overall
or summation solute hydrogen bond acidity, MLFER_A which is related
with molecular linear free energy relations (Platts et al., 1999) and
Petitjean topological shape index, topoShape.
Figure 3. Plot of the standardized residual

Figure 2. (a) Plot of predicted activities against experimental activities (b) Plot
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Table 3 shows the residual values between the experimental and
predicted activities of 1,3-dioxoisoindoline-4-aminoquinolines as potent
Plasmodium falciparum inhibitors. The low residual values were indica-
tive of the high predictability of the model.

Table 4 presents the result of statistical analysis of the descriptors.
The low values of the inter-correlation between any pair of descriptors as
shown by the Pearson's correlation matrix suggest no significant inter-
correlation among the descriptors used in building the model. This was
confirmed by the low value of the Variance Inflation Factor which was
less than 10 for every descriptor. Hence, the descriptors used in building
the model were good. The mean effects of the descriptors gave the
relative influences of the descriptors on the antiplasmodial activities of
the compounds where the signs and the magnitudes indicated the di-
rections and extent of the influences respectively. The MF values sug-
gested that the descriptors ATSC5i, minHBint3, minHBint5 andMLFER_A
decrease the antimalarial activities of 1,3-dioxoisoindoline-4-aminoqui-
nolines with increase in their values while the descriptors GATS8p and
topoShape increase the antimalarial activities of 1,3-dioxoisoindoline-4-
aminoquinolines with increase in their values. The magnitude of the MF
values shows that the descriptor GATS8p has greatest influence on the
antiplasmodial activities of the compounds and should be highly
considered when designing more potent 1,3-dioxoisoindoline-4-amino-
quinolines. The descriptor ATSC5i had the least influence on the anti-
plasmodial activities of the compounds as shown by the magnitude of its
MF.

The reliability, robustness and stability of the built QSAR model were
confirmed by Y- Randomization test. This was true for the low R2 and Q2

values for several trials in the result presented in Table 5. The cR2p value
which was greater than 0.5 also shows the model is good and not gotten
by chance.
s against the leverages (Williams plot).

of Standardized residuals against experimental activities of the compounds.



Figure 4. 3D interaction between Ligand 22 and pfLDH.
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The linearity of the plot of predicted activities against experimental
activities of the compounds (Figure 2a) shows the strength of the model
in predicting antiplasmodial activities of the 1,3-dioxoisoindoline-4-ami-
noquinolines. The dispersal of standardized residuals of both training and
test set on both sides of zero (Figure 2b) suggested no systematic error in
the generated model (Jalali-Heravi and Kyani, 2004).

The Williams plot presented by Figure 3 shows no outliers in the
compounds but three influential compounds because their leverages
were greater than the warning leverage (h* ¼ 0.84) which might arose
from their structural feature. All the compounds were within the appli-
cability domain except the influential compounds which were all from
test set (compound 4, 10 and 32). These compounds should not be
considered when designing novel 1,3-dioxoisoindoline-4-
aminoquinolines.
Figure 5. 2D interaction betw
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The result of the molecular docking study conducted between Plas-
modium falciparum lactate dehydrogenase, PfLDH (receptor) and ten 1,3-
dioxoisoindoline-4-aminoquinolines with highest activities (ligands) is
presented in Table 3 of the supplementary file. All the docked ligands
interacted strongly with the active sites of the receptor with binding af-
finity ranging from -6.7 to -9.2 kcal/mol. They all exhibited significant
hydrogen bonding and hydrophobic interaction with the amino acids of
the protein. Figures 4and 5 presented respectively the 3D and 2D 22-
pfLDH interactions which had the best binding affinity (-9.2 kcal/mol).
Five conventional hydrogen bond were formed between one of the C¼O
of the 1,3-dioxoisoindoline moiety and residue MET30, NH of the quin-
oline moiety and residue GLU122 and TYR85, C¼O of the amide linker
and residue GLY99 and NH of the amino group and residue ASP53. Two
Carbon hydrogen bonds type were formed between two carbons of the
een Ligand 22 and pfLDH.



A.W. Mahmud et al. Heliyon 6 (2020) e03449
morpholinyl substituent on the 1,3-dioxoisoindoline moiety and C¼O of
PRO246 and ASN140 of the target. The ligand also formed Hydrophobic
interactions with the receptor via Pi-Sigma type with ILE54 and ILE119,
Alkyl-Alkyl type with PRO246 and ILE119 and Pi-Alkyl type with
PHE100 and ILE31 of the target. Unfavorable donor-donor interaction
was also observed between the H of the amino group of the ligand H of
the ILE54 of the receptor. The docked compounds have better binding
affinity and interactions than chloroquine (a well known inhibitor of
pfLDH).

4. Conclusion

QSAR andmolecular docking techniques were successfully applied on
1,3-dioxoisoindoline-4-aminoquinolines as potent antiplasmodial in
order to produce a model that relates the chemical structures of the
molecules and their antiplasmodial activities. A predictable, reliable and
robust model was generated using Genetic Function Approximation
(GFA) technique in Material Studio software. The model has internal and
external validation R2 values of 0.9459 and 0.701544 respectively. The
model revealed that the antiplasmodial activities of 1,3-dioxoisoindo-
line-4-aminoquinolines is influence by ATSC5i, GATS8p, minHBint3,
minHBint5, MLFER_A and topoShape descriptors with greatest and least
effect from GATS8p and ATSC5i respectively. The docking study revealed
the important of some strategic point on the structural features of the
molecules in inhibiting Plasmodium falciparum lactate dehydrogenase
(PfLDH). This information could be used together with the built model to
design novel 1,3-dioxoisoindoline-4-aminoquinolines inhibitors of
PfLDH with higher antiplasmodial activities.
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