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Abstract

The sensitivity of genotype-based diagnostics that predict antimicrobial susceptibility is lim-

ited by the extent to which they detect genes and alleles that lead to resistance. As novel

resistance variants are expected to emerge, such sensitivity is expected to decline unless

the new variants are detected and incorporated into the diagnostic. Here, we present a

mathematical framework to define how many diagnostic failures may be expected under

varying surveillance regimes and thus quantify the surveillance needed to maintain the sen-

sitivity of genotype-based diagnostics.

Introduction

Antimicrobial resistance (AMR) poses a grave threat to global public health, underscoring the

need for strategies to slow and control the spread of resistance. One direction is to develop fast

and reliable diagnostics that minimize the delay between diagnosis and selection of an appro-

priate treatment regimen based on the target pathogen’s antibiotic susceptibility profile [1,2].

A promising approach, use of pathogen genotype to predict AMR phenotype, has been facili-

tated by advances in rapid and cost-efficient amplification and sequencing. For example, the

Cepheid GeneXpert MTB/RIF assay for rifampicin resistance in Mycobacterium tuberculosis
and the SpeeDx ResistancePlus GC assay for ciprofloxacin resistance in Neisseria gonorrhoeae
are already in clinical use, and many others are in the pipeline [3–5].

These genotype-based diagnostics must maintain high sensitivity to remain useful clinically.

However, the emergence of novel resistance mechanisms will inevitably lead to a decline in

sensitivity, perhaps exacerbated by variable prevalence of resistance determinants across popu-

lations [6]. Key to maintaining sensitivity is, therefore, sustained sampling and routine updat-

ing of the diagnostics with newly described resistance determinants. However, despite its

importance for the structure of surveillance systems and, thus, for both public health agencies

and diagnostics developers, the rate of sampling necessary for timely detection of novel resis-

tance variants has been unclear.
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Here, we use datasets of clinical isolates of multiple pathogens collected over 7–14 years to

show that although the sensitivities of some genetic markers of resistance remain stably high,

sensitivities of other markers rapidly decline because of the emergence of novel resistance vari-

ants. We present a simple mathematical framework that defines the rates of sampling and phe-

notypic testing necessary for early detection of novel resistance variants.

Results

Waning sensitivity of resistance markers

In the ideal scenario for a genotype-based antibiotic resistance diagnostic, phenotypic resis-

tance is always encoded by a specific genotype—e.g., a single, stereotyped mutation or gene.

To date, some combinations of bacteria and antibiotics approximately satisfy this criterion:

target modification mutations in DNA gyrase subunit A gene (gyrA) maintain high sensitivity

for predicting ciprofloxacin nonsusceptibility in N. gonorrhoeae and Acinetobacter baumannii
(Fig 1A–1D). For other bacteria–antibiotic combinations, diagnostic genetic markers of resis-

tance show decreased sensitivity over time, corresponding to increased incidence of previously

rare or undetected resistance markers (Fig 1E–1J). The gyrA target modification mutation in

Klebsiella pneumoniae isolates [7], for example, becomes a less sensitive predictor of ciproflox-

acin nonsusceptibility as the incidence of isolates with acquired Qnr family pentapeptide

repeat protein gene (qnr) genes (which code for target protecting proteins) increases (Fig 1E

and 1F). Similarly, the emergence of the mosaic penicillin binding protein 2 gene (penA)

(XXXIV) allele in N. gonorrhoeae clinical isolates [8] corresponds to decreased sensitivity of

other target modification mutations for predicting penicillin nonsusceptibility (Fig 1G and

1H). Furthermore, decreased sensitivity of carbapenem-hydrolyzing class D beta-lactamase-58

gene (blaOXA-58) for predicting imipenem nonsusceptibility in A. baumannii clinical isolates

from the United States military healthcare system is associated with increased incidence of

other oxacillinases (Fig 1I and 1J).

Defining required sampling rate as a function of diagnostic failure

threshold

Given the possible emergence of novel resistance variants, maintenance of a genotype-based

AMR diagnostic requires surveillance and phenotyping of clinical specimens predicted to be

susceptible, characterization of novel resistance determinants, and subsequent updating of the

diagnostic. Once a resistant strain not captured by the current diagnostic test appears in the

population, there is a simple relationship between the cumulative number of such cases and

the probability that at least one will be detected: if f is the proportion of all genotypically sus-

ceptible cases that receive confirmatory phenotypic testing, and N is the number of variant

cases, then the probability x that the new variant is detected in at least one of those cases is

given by x = 1−(1−f)N. Therefore, to have a probability of at least x that the new variant will be

detected by the time N cases of it have occurred, the proportion undergoing confirmatory test-

ing must be

f � 1 � ð1 � xÞ1=N

Thus, to be 95% (x = 0.95) confident that a novel variant is detected by the time it has

occurred in a total of 100 (N) cases, a sampling fraction (f) of approximately 0.03 is required

(i.e., 3% of incident cases must be phenotypically tested) (Fig 2A). Given the 555,608 cases of

gonorrhea in the US in 2017 [9], the required sampling rate for a 95% probability of detection

of a novel variant by the time it occurred in 100 cases would be 16,669 cases per year, or 1,390

Surveillance for genotype-based AMR diagnostics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000547 November 12, 2019 2 / 10

Agent Study, Center for Communicable Disease

Dynamics) from the National Institute of General

Medical Sciences (ML) and Grant R01AI132606

from the National Institute of Allergy and Infectious

Diseases (ALH, SMK, YHG). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: AMR, antimicrobial resistance;

blaOXA, carbapenem-hydrolyzing class D beta-

lactamase gene; GyrA, DNA gyrase subunit A;

ISAba1, A. baumannii insertion sequence 1; NAAT,

nucleic acid amplification test; PBP2, penicillin

binding protein 2; penA, penicillin binding protein 2

gene; qnr, Qnr family pentapeptide repeat protein

gene.

https://doi.org/10.1371/journal.pbio.3000547


Surveillance for genotype-based AMR diagnostics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000547 November 12, 2019 3 / 10

https://doi.org/10.1371/journal.pbio.3000547


cases per month (i.e., f = 3% of incident cases). For surveillance programs aimed at detecting

novel resistance variants that undermine the sensitivity of a genotype-based diagnostic that

has already been implemented in the population, cases with isolates predicted to be resistant

by the diagnostic would be excluded from the sampling population, reducing the required

sampling rate.

By survival analysis in which the hazard function is defined as the incidence of the novel

variant multiplied by the proportion of incident cases that are phenotyped (f), if the variant

has a growth rate of r (i.e., is increasing in fractional incidence [or prevalence, assuming the

overall case incidence remains constant] in a population at a rate r), then the time (beginning

at t0, when the variant first emerged in a single case) at which there is a probability of 1−x of

having detected the variant (or an x probability of having failed to detect the variant) is

t ¼
1

r
ln 1 �

rlnðxÞ
fN0

� �

where N0 is the initial population-wide incidence of the variant in cases.

Based on this model, we can estimate the cost effectiveness of surveillance for genotype–

phenotype discordance. We assume surveillance phenotyping is performed on a fraction f of

all incident cases I per unit time such that there is x probability of detection of each novel vari-

ant by the time t that N cases of the novel variant have occurred. If the cost of phenotyping an

individual isolate is CP, then the total cost from the phenotyping effort required to detect a

novel resistance variant is

CP total ¼ f I t CP

If the cost of a treatment failure is CTF, a composite of the costs from the individual clinical fail-

ure and secondary cases, the variant occurs in the mean number of expected cases, and assum-

ing that every attempted treatment of infection caused by a pathogen with the variant results

in failure, then the expected total cost of treatment failure due to a novel resistance variant is

CTF total ¼
CTF

f

For a pathogen with a given case incidence I (e.g., 500,000 cases per year) and phenotyping

cost CP (e.g., US$20 per isolate), the total cost from the phenotyping effort required to detect a

novel resistance variant and the total cost from the treatment failures that may be attributed to

that novel variant can be determined for a range of assumptions about variant growth rate r
and cost of treatment failure CTF (Fig 2B). Similarly, the cumulative cost associated with phe-

notyping and treatment failure can be assessed as a function of sampling fraction in order to

identify the most cost-effective sampling fraction, defined as that which minimizes the total

cost of sampling and treatment failures (Fig 2C).

Fig 1. Emergence of novel resistance variants and their impact on sensitivities of previous variants. Fractional incidence

(A, C, E, G, and I) and sensitivity (B, D, F, H, and J) of genetic variants over time in predicting CIP NS in N. gonorrhoeae
(A-B), CIP NS in A. baumannii (C-D), CIP NS in K. pneumoniae (E-F), PEN NS in N. gonorrhoeae (G-H), and IPM NS in A.

baumannii (I-J). Fractional incidence is defined as the proportion of all strains from each year that have the genetic variant or

the NS phenotype. Fractional incidence of different markers may not sum to 100% due to uncharacterized resistance markers

or strains carrying multiple markers. Sensitivity is defined as the fraction of NS strains from each year that have the genetic

variant. Specificity (true negative rate) of variants in predicting NS is not accounted for in these plots. blaOXA, carbapenem-

hydrolyzing class D beta-lactamase gene; CIP, ciprofloxacin; GyrA, DNA gyrase subunit A; IPM, imipenem; ISAba1, A.

baumannii insertion sequence 1; NS, nonsusceptibility; PBP2, penicillin binding protein 2; PEN, penicillin; penA, penicillin

binding protein 2 gene; qnr, Qnr family pentapeptide repeat protein gene.

https://doi.org/10.1371/journal.pbio.3000547.g001
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Discussion

Although this sampling model is based on few assumptions and should be generalizable to any

resistance variant, the practical implementation of this model requires consideration of multi-

ple additional factors. First, although this model assumes instantaneous testing of isolates, if

the phenotyping of the collected clinical isolates is batched, then the intervals between testing

could lead to delays in detection. However, the delay is bounded by the selected threshold of

allowed failures, the testing interval, and the growth rate of the novel variant in the population.

Fig 2. A framework for the detection of novel resistance variants. (A) Quantification of sampling fraction (the fraction of incident cases that are phenotyped, f)
required for 95% probability (x = 0.95) of detection of novel variants as a function of the total number of novel resistance cases (N) that occur prior to detection.

Sampling fractions required for 95% probability of detection of a variant that has occurred in a total of 10, 100, or 1,000 cases are indicated in panel A. (B)

Estimation of the total cost associated with the phenotyping required for 95% confidence in detection of a novel resistance variant by the time is has occurred in N
cases, assuming an annual case incidence (I) of 500,000, a variant growth rate (r) of 0.5 or 5 per year, and a phenotyping cost (CP) of US$20 per isolate, and the

total cost associated with the mean N expected treatment failures that may be attributed to that novel variant, assuming each individual treatment failure incurs a

cost (CTF) of US$100,000 or US$10,000. (C) Estimation of the cumulative cost associated with the phenotyping required for 95% confidence in detection of a novel

resistance variant by the time it has occurred in N cases and the total cost incurred by the N treatment failures attributed to that novel variant, assuming an annual

case incidence (I) of 500,000, a variant growth rate (r) of 0.5 or 5 per year, a phenotyping cost (CP) of US$20 per isolate, and a cost incurred by each individual

treatment failure (CTF) of US$100,000 or US$10,000. Sampling fractions (f) that minimize the cumulative cost are indicated in C.

https://doi.org/10.1371/journal.pbio.3000547.g002
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Second, changes in disease incidence impact the surveillance and sampling strategy. For

example, gonorrhea incidence in the US increased 65% between 2008 and 2017 and 18.6%

between 2016 and 2017 alone (https://www.cdc.gov/std/stats17). To maintain the same level of

confidence that the novel variant will be detected by the desired time or threshold number of

cases, disease incidence would need to be closely monitored and surveillance matched accord-

ingly. Given the directly proportional relationship between case incidence and the number of

isolates that must be sampled per unit time (sampling rate) to achieve a given objective, an

18.6% increase in incidence of genotypically susceptible strains must correspond to an 18.6%

increase in sampling rate in order to maintain the same sampling fraction (f) and, thus, the

same confidence in detection of a novel variant by the time it has appeared in a given number

of cases.

Furthermore, the incidence of clinical isolates predicted to be susceptible (susceptible case

incidence), rather than overall case incidence, is of primary relevance for detecting novel resis-

tance determinants. Thus, a third issue to consider in sampling strategy is that the susceptible

case incidence may be subject to more rapid changes than overall case incidence, depending

on varying selective pressures for or against resistance introduced by a variety of factors,

including antibiotic use and the diagnostic itself. Thus, in establishing a plan for a sampling

strategy, a conservative approach would be to account for these fluctuations by calculating the

necessary sampling rate as a fraction of all cases.

Relatedly, demographic and geographic heterogeneity in selective pressures, and thus in the

likelihood of emergence of novel resistance variants, introduces an additional complication in

selecting the populations for surveillance and sampling. Behavioral and socioeconomic factors

may contribute to differential emergence of antibiotic resistance across subpopulations [10],

and certain resistance mechanisms and variants may be more likely to appear in specific sub-

populations or transmission networks [6]. For example, for some pathogens, settings such as

oncology and critical care units within hospitals, where antibiotic use is highest and where

patients who have failed prior antibiotic therapies are likely to concentrate, may provide ideal

locations for surveillance. Thus, although a diverse sampling of the population may be optimal

in the absence of epidemiological analysis of risk factors for emergence of resistance, the latter

may facilitate more targeted sampling strategies that help to reduce delays in detection of

novel variants. Similarly, although this model assumes random sampling across a population,

it should be noted that this may be difficult to achieve. For example, the Centers for Disease

Control and Prevention’s Gonococcal Isolate Surveillance Project currently only samples from

male patients attending selected sexual health clinics, introducing demographic and geo-

graphic bias [11]. Assessment of the impact of demographic and geographic factors on detec-

tion efficiency of novel variants may help improve sampling strategies and yield a sampling

scheme–tailored model with more estimates.

Delays in updating genotype-based diagnostics may also influence the rates of emergence

of new variants because these diagnostics introduce selective pressure against isolates with the

diagnostic targets and increased fitness for those lacking the targets [12–14]. Thus, assay adapt-

ability is likely to be an important determinant of diagnostic sustainability. For genotype-

based diagnostics that rely on testing for specific alleles, once specimens with unknown path-

ways to resistance have been identified, it will be important to define the genetic basis of resis-

tance and incorporate it into the diagnostic assay. Thus, long-term support of such diagnostics

will require a system for rapidly determining the genetic basis of resistance in novel resistant

variants, an activity that is currently challenging for some pathogen species with less tractable

genetics and in cases of multifactorial resistance mechanisms. This requirement may create an

advantage for diagnostics that rely on phylogenetic similarity [15] and are agnostic to the resis-

tance determinant, for which genetic experiments could be avoided but regularly updating the

Surveillance for genotype-based AMR diagnostics
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reference database will be critical for maintaining sensitivity. However, such approaches are

not likely to perform well for drugs for which resistance is frequently gained and lost through

de novo mutation and/or horizontal gene transfer and thus are associated with less phyloge-

netic signal (e.g., as with azithromycin in N. gonorrhoeae [8]).

Estimating the costs of expected treatment failures and phenotypic testing as a function of

sampling fraction may be useful for identifying the most cost-effective phenotyping rate. How-

ever, although published estimates of direct healthcare costs associated with each case of a

given infectious disease may serve as a proxy for the cost of treatment failure, such estimates

are likely highly variable and will need to be tailored based on factors such as the type of strain

(e.g., multidrug-resistant versus extensively drug-resistant M. tuberculosis) and the progression

of the disease (e.g., uncomplicated gonorrhea versus progression to pelvic inflammatory dis-

ease or epididymitis) [16,17]. It will also be important to determine how to incorporate into

this estimate indirect costs such as productivity loss, further transmission, or increased antibi-

otic resistance due to inappropriate use. Furthermore, assessing cost effectiveness requires esti-

mating the rate at which a novel variant can be expected to spread in the population, which

may be difficult to reliably predict for all novel variants. However, cost-efficient surveillance

may be achieved by tailoring models based on relevant clinical and epidemiological parameters

of the pathogen and evaluations of novel variant emergence patterns after implementation of

the diagnostic.

This model is based on the assumption that the most efficient and reliable method for

detection of novel resistance variants is routine phenotypic testing of strains predicted to be

susceptible. However, identification of treatment failures represents an additional and poten-

tially more efficient route to detection [18]. Although the cost-effectiveness framework is

based on the assumption that the vast majority of treatment failures will go undetected,

depending on factors such as overall case incidence, health system factors, and severity of clini-

cal failure associated with the pathogen, identification of treatment failures may be a more

practical alternative to large-scale phenotypic sampling programs. However, identification of

treatment failures may be encumbered by a number of factors, including long treatment regi-

mens and/or partial abatement of symptoms and, thus, failure to follow up. Furthermore,

infections might be cleared even in the case of undetected resistance, and multidrug therapy

may similarly mask novel resistance to individual drugs. For example, one of the first identified

cases of infection with the N. gonorrhoeae FC428 clone (associated with ceftriaxone resistance

and intermediate azithromycin resistance) in the United Kingdom was identified as negative

by N. gonorrhoeae nucleic acid amplification test (NAAT) 2 weeks after treatment with ceftri-

axone and azithromycin, and a second patient in this transmission network showed clinical

response to treatment with ceftriaxone and azithromycin before relapse, potentially resulting

in transmission to and asymptomatic carriage in her partner [19]. Thus, although continued

collection of clinical outcome data is crucial to defining the relationship between phenotypic

susceptibility test results and expected treatment outcome, surveillance programs designed to

regularly sample a sufficient fraction of isolates in a given population, incorporating relevant

epidemiological information, may represent the most reliable strategy for comprehensive

detection of novel resistance variants.

Materials and methods

See Table 1 for details of the datasets assessed. For all datasets, raw sequence data were down-

loaded from the NCBI Sequence Read Archive. Genomes were assembled using SPAdes v3.13

[20] with default parameters. Assembly quality was assessed using QUAST v4.3 [21], and con-

tigs<500 bp in length and/or with<10× average coverage were excluded. Antibiotic
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resistance loci were identified in the assembled contigs using BLAST [22], extracted, and

aligned using MUSCLE [23] to assess the fractional incidence (the proportion of all isolates

from each year that have the variant) and sensitivity (the proportion of all nonsusceptible iso-

lates from each year that have the variant) of resistance variants. Survival analysis was used to

relate sampling fractions (the proportion of incident strains receiving confirmatory phenotyp-

ing) to the cumulative number of cases of the novel variant prior to detection, the time to

detection of the novel variant after emergence, and the cost of phenotyping and treatment fail-

ures. The hazard function, or the rate of identifying a strain with the novel variant given that it

has not yet been detected, was defined as

lðtÞ ¼ frN0e
ðr� mÞt

where f is the fraction of incident cases phenotyped, r is the growth rate of the novel variant

(the rate at which the variant is increasing in fractional incidence [or prevalence, assuming the

overall case incidence remains constant] in a population), N0 is the number of cases with the

novel variant at the time of emergence (assumed to be 1), μ is the rate of recovery from infec-

tion with a strain with the novel variant (assumed to be�r, such that [r−μ]~r), and t is the

time since emergence of the novel variant.

Author Contributions

Conceptualization: Allison L. Hicks, Stephen M. Kissler, Marc Lipsitch, Yonatan H. Grad.

Data curation: Allison L. Hicks.

Formal analysis: Allison L. Hicks, Stephen M. Kissler, Marc Lipsitch, Yonatan H. Grad.

Funding acquisition: Yonatan H. Grad.

Supervision: Marc Lipsitch, Yonatan H. Grad.

Writing – original draft: Allison L. Hicks.

Writing – review & editing: Allison L. Hicks, Stephen M. Kissler, Marc Lipsitch, Yonatan H.

Grad.

References
1. Turner KM, Christensen H, Adams EJ, McAdams D, Fifer H, McDonnell A, et al. Analysis of the potential

for point-of-care test to enable individualised treatment of infections caused by antimicrobial-resistant

and susceptible strains of Neisseria gonorrhoeae: a modelling study. BMJ Open. 2017; 7(6):e015447.

https://doi.org/10.1136/bmjopen-2016-015447 PMID: 28615273; PubMed Central PMCID:

PMC5734280.

Table 1. Summary of datasets.

Species Dataset

description

NS phenotype(s)

(associated figure and source)

NCBI SRA Study ID(s)

N.

gonorrhoeae
Survey from nationwide (US) clinics from 2000 to 2013; male

patients only; enriched for ESC and AZM resistance

CIP (Fig 1A and 1B), PEN (Fig 1G and 1H) [8] ERP008891, ERP001405,

ERP000144

A.

baumannii
Survey from clinics and hospitals within the US military

healthcare system from 2000 to 2012

CIP (Fig 1C and 1D), IPM (Fig 1I and 1J) (NCBI

BioSample database, BioProject PRJNA300270)

SRP065910

K.

pneumoniae
Survey from the Houston Methodist hospital system from 2011

to 2017; enriched for β-lactam resistance

CIP (Fig 1E and 1F) [7] SRP102664, SRP110988,

SRP116139

Abbreviations: AZM, azithromycin; CIP, ciprofloxacin; ESC, extended spectrum cephalosporin; ID, identifier; IPM, imipenem; NCBI SRA, National Center for

Biotechnology Information Sequence Read Archive; NS, nonsusceptible; PEN, penicillin

https://doi.org/10.1371/journal.pbio.3000547.t001

Surveillance for genotype-based AMR diagnostics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000547 November 12, 2019 8 / 10

https://doi.org/10.1136/bmjopen-2016-015447
http://www.ncbi.nlm.nih.gov/pubmed/28615273
https://doi.org/10.1371/journal.pbio.3000547.t001
https://doi.org/10.1371/journal.pbio.3000547


2. McAdams D, Waldetoft KW, Tedijanto C, Lipsitch M, Brown SP. Resistance diagnostics as a public

health tool to combat antibiotic resistance: A model-based evaluation. PLoS Biol. 2019; 17(5):

e3000250. https://doi.org/10.1371/journal.pbio.3000250 PMID: 31095567

3. Lo SW, Kumar N, Wheeler NE. Breaking the code of antibiotic resistance. Nat Rev Microbiol. 2018; 16

(5):262. https://doi.org/10.1038/nrmicro.2018.33 PMID: 29576619.

4. Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, et al. Using machine learning to

predict antimicrobial minimum inhibitory concentrations and associated genomic features for nontyphoi-

dal Salmonella. J Clin Microbiol. 2018. https://doi.org/10.1101/380782

5. Zumla A, Al-Tawfiq JA, Enne VI, Kidd M, Drosten C, Breuer J, et al. Rapid point of care diagnostic tests

for viral and bacterial respiratory tract infections—needs, advances, and future prospects. Lancet Infect

Dis. 2014; 14(11):1123–35. https://doi.org/10.1016/S1473-3099(14)70827-8 PMID: 25189349.

6. Andre E, Goeminne L, Colmant A, Beckert P, Niemann S, Delmee M. Novel rapid PCR for the detection

of Ile491Phe rpoB mutation of Mycobacterium tuberculosis, a rifampicin-resistance-conferring mutation

undetected by commercial assays. Clin Microbiol Infect. 2017; 23(4):267.e5–e7. https://doi.org/10.

1016/j.cmi.2016.12.009 PMID: 27998822.

7. Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, et al. Developing an in silico minimum

inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep. 2018; 8(1):421. https://doi.org/

10.1038/s41598-017-18972-w PMID: 29323230; PubMed Central PMCID: PMC5765115.

8. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic Epidemiology of

Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in

the United States, 2000–2013. J Infect Dis. 2016; 214(10):1579–87. https://doi.org/10.1093/infdis/

jiw420 PMID: 27638945; PubMed Central PMCID: PMC5091375.

9. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2017. Atlanta,

GA: Centers for Disease Control and Prevention; 2017 [cited 2019 Apr 20]. Available from: https://

www.cdc.gov/std/gisp/gisp-protocol-feb-2015_v3.pdf.

10. Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic fac-

tors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet

Planet Health. 2018; 2(9):e398–e405. https://doi.org/10.1016/S2542-5196(18)30186-4 PMID:

30177008.

11. Centers for Disease Control and Prevention. Gonococcal Isolate Surveillance Project (GISP) protocol

2016. Atlanta, GA: Centers for Disease Control and Prevention; 2016 [cited 2019 May 15]. Available

from: https://www.cdc.gov/std/gisp/gisp-protocol-feb-2015_v3.pdf.

12. Herrmann B, Torner A, Low N, Klint M, Nilsson A, Velicko I, et al. Emergence and spread of Chlamydia

trachomatis variant, Sweden. Emerg Infect Dis. 2008; 14(9):1462–5. https://doi.org/10.3201/eid1409.

080153 PMID: 18760021; PubMed Central PMCID: PMC2603114.

13. Smid J, Althaus CL, Low N, Unemo M, Herrmann B. The rise and fall of the new variant of Chlamydia

trachomatis in Sweden: mathematical modelling study. bioRxiv [Preprint]. 2019. Available from: https://

doi.org/10.1101/572107.

14. Berhane A, Anderson K, Mihreteab S, Gresty K, Rogier E, Mohamed S, et al. Major Threat to Malaria

Control Programs by Plasmodium falciparum Lacking Histidine-Rich Protein 2, Eritrea. Emerg Infect

Dis. 2018; 24(3):462–70. https://doi.org/10.3201/eid2403.171723 PMID: 29460730; PubMed Central

PMCID: PMC5823352.

15. Břinda K, Callendrello A, Cowley L, Charalampous T, Lee RS, MacFadden DR, et al. Lineage calling

can identify antibiotic resistant clones within minutes. bioRxiv [Preprint]. 2018. Available from: https://

doi.org/10.1101/403204.

16. Chesson HW, Collins D, Koski K. Formulas for estimating the costs averted by sexually transmitted

infection (STI) prevention programs in the United States. Cost Eff Resour Alloc. 2008; 6:10. https://doi.

org/10.1186/1478-7547-6-10 PMID: 18500996; PubMed Central PMCID: PMC2426671.

17. Loveday M, Wallengren K, Reddy T, Besada D, Brust JCM, Voce A, et al. MDR-TB patients in Kwa-

Zulu-Natal, South Africa: Cost-effectiveness of 5 models of care. PLoS ONE. 2018; 13(4):e0196003.

https://doi.org/10.1371/journal.pone.0196003 PMID: 29668748; PubMed Central PMCID:

PMC5906004.

18. Berenger BM, Demczuk W, Gratrix J, Pabbaraju K, Smyczek P, Martin I. Genetic Characterization and

Enhanced Surveillance of Ceftriaxone-Resistant Neisseria gonorrhoeae Strain, Alberta, Canada, 2018.

Emerg Infect Dis. 2019; 25(9):1660–7. https://doi.org/10.3201/eid2509.190407 PMID: 31407661;

PubMed Central PMCID: PMC6711210.

19. Eyre DW, Town K, Street T, Barker L, Sanderson N, Cole MJ, et al. Detection in the United Kingdom of

the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azi-

thromycin, October to December 2018. Euro Surveill. 2019; 24(10). https://doi.org/10.2807/1560-7917.

ES.2019.24.10.1900147 PMID: 30862336; PubMed Central PMCID: PMC6415501.

Surveillance for genotype-based AMR diagnostics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000547 November 12, 2019 9 / 10

https://doi.org/10.1371/journal.pbio.3000250
http://www.ncbi.nlm.nih.gov/pubmed/31095567
https://doi.org/10.1038/nrmicro.2018.33
http://www.ncbi.nlm.nih.gov/pubmed/29576619
https://doi.org/10.1101/380782
https://doi.org/10.1016/S1473-3099(14)70827-8
http://www.ncbi.nlm.nih.gov/pubmed/25189349
https://doi.org/10.1016/j.cmi.2016.12.009
https://doi.org/10.1016/j.cmi.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/27998822
https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1038/s41598-017-18972-w
http://www.ncbi.nlm.nih.gov/pubmed/29323230
https://doi.org/10.1093/infdis/jiw420
https://doi.org/10.1093/infdis/jiw420
http://www.ncbi.nlm.nih.gov/pubmed/27638945
https://www.cdc.gov/std/gisp/gisp-protocol-feb-2015_v3.pdf
https://www.cdc.gov/std/gisp/gisp-protocol-feb-2015_v3.pdf
https://doi.org/10.1016/S2542-5196(18)30186-4
http://www.ncbi.nlm.nih.gov/pubmed/30177008
https://www.cdc.gov/std/gisp/gisp-protocol-feb-2015_v3.pdf
https://doi.org/10.3201/eid1409.080153
https://doi.org/10.3201/eid1409.080153
http://www.ncbi.nlm.nih.gov/pubmed/18760021
https://doi.org/10.1101/572107
https://doi.org/10.1101/572107
https://doi.org/10.3201/eid2403.171723
http://www.ncbi.nlm.nih.gov/pubmed/29460730
https://doi.org/10.1101/403204
https://doi.org/10.1101/403204
https://doi.org/10.1186/1478-7547-6-10
https://doi.org/10.1186/1478-7547-6-10
http://www.ncbi.nlm.nih.gov/pubmed/18500996
https://doi.org/10.1371/journal.pone.0196003
http://www.ncbi.nlm.nih.gov/pubmed/29668748
https://doi.org/10.3201/eid2509.190407
http://www.ncbi.nlm.nih.gov/pubmed/31407661
https://doi.org/10.2807/1560-7917.ES.2019.24.10.1900147
https://doi.org/10.2807/1560-7917.ES.2019.24.10.1900147
http://www.ncbi.nlm.nih.gov/pubmed/30862336
https://doi.org/10.1371/journal.pbio.3000547


20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome

assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–77.

https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599; PubMed Central PMCID: PMC3342519.

21. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies.

Bioinformatics. 2013; 29(8):1072–5. https://doi.org/10.1093/bioinformatics/btt086 PMID: 23422339;

PubMed Central PMCID: PMC3624806.

22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.

1990; 215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712.

23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic

Acids Res. 2004; 32(5):1792–7. https://doi.org/10.1093/nar/gkh340 PMID: 15034147; PubMed Central

PMCID: PMC390337.

Surveillance for genotype-based AMR diagnostics

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000547 November 12, 2019 10 / 10

https://doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
https://doi.org/10.1093/bioinformatics/btt086
http://www.ncbi.nlm.nih.gov/pubmed/23422339
https://doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1371/journal.pbio.3000547

