1	Circulating Dickkopf1 parallels metabolic adaptations and predicts disease
2	trajectories in patients with Covid-19
3	
4	Nikolai P. Jaschke ¹ *, Alexander M. Funk ^{2,3} , Sophie Jonas ³ , Romy M. Riffel ¹ , Anupam Sinha ³ ,
5	Andrew Wang ⁴ , Sophie Pählig ¹ , Maura Hofmann ¹ , Heidi Altmann ⁵ , Simone Von Bonin ⁵ , Thea
6	Koch ⁶ , Peter Spieth ⁶ , Kristin Tausche ⁵ , Katja Akgün ⁷ , Martina Rauner ¹ , Romy Kronstein-
7	Wiedemann ^{8,9} , Marcus Odendahl ^{8,9} , Torsten Tonn ^{8,9,10} , Andy Göbel ¹ ,
8	Lorenz C. Hofbauer ¹ , Tilman D. Rachner ¹
9	
10	¹ Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden,
11	Germany
12	² National Center for Tumor Diseases (NCT/UCC), Technische Universität Dresden, Dresden,
13	Germany
14	³ Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden,
15	Germany
16	⁴ Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
17	⁵ Department of Medicine I, Technische Universität Dresden, Dresden, Germany
18	⁶ Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden,
19	Dresden, Germany
20	⁷ Department of Neurology, Technische Universität Dresden, Dresden, Germany
21	⁸ Experimental Transfusion Medicine, Technische Universität Dresden, Dresden, Germany
22	⁹ Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East,
23	Dresden, Germany
24	¹⁰ Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
25	
26	
27	*Correspondence to:
28	Nikolai P. Jaschke MD, PhD
29	nikolaipirmin.jaschke@uniklinikum-dresden.de

30 Division of Endocrinology & Metabolic Bone Diseases

31 Department of Medicine III

© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (<u>https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model</u>) 1

1	Medizinische Fakultät Carl Gustav Carus
2	Technische Universität Dresden
3	Fetscherstrasse 74, 01307 Dresden, Germany
4	
5	ORCID iD: 0000-0002-8517-7299 (Jaschke N.P.)
6	
7	Keywords: Dickkopf1; DKK1; Covid-19, SARS-CoV-2; metabolism; viral immunity;
8	immunometabolism; platelets
9	
10	Disclosure statement:
11	None of the authors has any conflict of interest to declare.
12	
13	Funding information
13 14	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-</u>
13 14 15	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-</u> <u>dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from
13 14 15 16	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-</u> <u>dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146
13 14 15 16 17	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from the DFG priority program μBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel-
13 14 15 16 17 18	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel-Nachwuchszentrum Dresden, while NJ was further funded by the German Academic
13 14 15 16 17 18 19	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel- Nachwuchszentrum Dresden, while NJ was further funded by the German Academic Scholarship Foundation. AW received funding from the NIH (T32 AR07107-39 and
 13 14 15 16 17 18 19 20 	Funding information This work received infrastructure support from the Biobank Dresden Project (<u>https://www.nct-dresden.de/forschung/core-units/biobank-dresden.html</u>) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel-Nachwuchszentrum Dresden, while NJ was further funded by the German Academic Scholarship Foundation. AW received funding from the NIH (T32 AR07107-39 and K08AI128745).
13 14 15 16 17 18 19 20 21	Funding information This work received infrastructure support from the Biobank Dresden Project (https://www.nct- dresden.de/forschung/core-units/biobank-dresden.html) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel- Nachwuchszentrum Dresden, while NJ was further funded by the German Academic Scholarship Foundation. AW received funding from the NIH (T32 AR07107-39 and K08AI128745).
 13 14 15 16 17 18 19 20 21 	Funding information This work received infrastructure support from the Biobank Dresden Project (https://www.nct- dresden.de/forschung/core-units/biobank-dresden.html) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel- Nachwuchszentrum Dresden, while NJ was further funded by the German Academic Scholarship Foundation. AW received funding from the NIH (T32 AR07107-39 and K08AI128745).
 13 14 15 16 17 18 19 20 21 	Funding information This work received infrastructure support from the Biobank Dresden Project (https://www.nct- dresden.de/forschung/core-units/biobank-dresden.html) and was supported by grants from the DFG priority program µBONE 2084 to TDR, AG, MR and LCH as well as DFG FOR 5146 FerrOs to MR and LCH. TDR, AG, SP and NJ received support from Mildred-Scheel- Nachwuchszentrum Dresden, while NJ was further funded by the German Academic Scholarship Foundation. AW received funding from the NIH (T32 AR07107-39 and K08AI128745).

- 1 Abstract
- 2

3 Background and aims

Coronavirus disease 19 (Covid-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients, who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in SARS-CoV-2 infected individuals.

9

10 Methods

We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 11 80 individuals, for whom blood samples from two independent time points were available. 12 DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data was 13 extracted from patient charts and correlated with DKK1 levels. Publicly available datasets 14 15 were screened for changes in cellular DKK1 expression upon SARS-CoV-2 infection. Plasma metabolites were profiled by NMR spectroscopy in an unbiased fashion and correlated with 16 DKK1 data. Kaplan Meier and Cox regression analysis were used to investigate the 17 prognostic value of DKK1 levels in the context of Covid-19. 18

19

20 Results

We report that serum levels of DKK1 predict disease outcomes in patients with Covid-19. 21 Circulating DKK1 concentrations are characterized by high interindividual variability and 22 change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. 23 24 We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with 25 low DKK1 levels are twice as likely to die from Covid-19 than those with high levels and 26 DKK1 predicts mortality independent of markers of inflammation, renal function and platelet 27 numbers 28

2 Conclusion

- 3 Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease
- 4 outcomes in patients with Covid-19. These results require validation in additional cohorts.

1 Introduction

2

3 The coronavirus disease 2019 (Covid-19) pandemic emerged in 2019 as a cluster of pneumonia of unknown cause as reported by the Chinese Center for Disease Control and 4 Prevention. Following successful isolation and genome identification, the Covid-19-inducing 5 virus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 6 7 corresponding to its close phylogenetic relationship with other members of the Betacoronavirus genus such as severe acute respiratory syndrome coronavirus (SARS-CoV) 8 or middle east respiratory syndrome coronavirus (MERS-CoV) (1,2). Since its initial 9 discovery, SARS-CoV-2 has spread rapidly across the globe and imposed considerable 10 socioeconomic and medical costs on societies (3). This spreading has been paralleled by the 11 evolution of novel SARS-CoV-2 variants, which differ in their molecular characteristics and 12 virulence (4). Covid-19 is characterized by highly variable clinical manifestations; with 13 symptoms ranging from fully asymptomatic to severe forms that result in multiorgan failure 14 15 and death(2-5). Reliable tools to identify patients at risk of developing severe Covid-19 remains challenging. In this study, we explored if circulating levels of Dickkopf1 (DKK1), a 16 multifunctional protein produced by platelets and the skeleton with immunomodulatory 17 18 properties (6-9), change in response to SARS-CoV-2 infection and if variation in DKK1 serum concentration indicates fatal disease trajectories. 19

20

21 Methods

22

23 Study participants

Hospitalized patients with PCR-confirmed SARS-CoV-2 infection were recruited as part of
BioBank Dresden (BBD) project, which was approved by the Ethics Committee of the TU
Dresden (EK378092017 and EK9012022). Written informed consent was obtained from all
study participants prior to inclusion and blood samples were collected at various time points.
Collection and processing of blood samples was performed according to standard operating

procedures. Serum was obtained by centrifugation of whole blood for 10 min, 2000xG at 1 room temperature. Samples were processed in aliquots, which were immediately cooled 2 3 down, cryopreserved using liquid nitrogen and stored at minus 80 degrees Celsius until 4 further analysis. From this cohort of patients, individuals were included in the current study if serum samples from two independent time points were available, allowing for a paired 5 design. Patients with only one sample available were excluded from the study. No other in-6 7 or exclusion criteria were prespecified. In total, 80 subjects (2 samples/patient) met the 8 criteria and were included in the study. Clinical data and routine laboratory testing data was extracted from patient charts, which were incomplete or unavailable from 4 individuals. 9 Detailed characteristics of the study population are summarized in Table 1. Of note, the 10 relatively long sampling period of the study (April 2020 - June 2021) together with the rapidly 11 evolving treatment recommendations for patients with Covid-19 may have introduced some 12 bias into our study (e.g. glucocorticoids became standard of care during the pandemic but 13 were rarely administered in the beginnings). 14

Following approval by the Ethics Committee of the TU Dresden (EK273062016), serum samples from healthy individuals were obtained at the Department of Transfusion Medicine, Technische Universität Dresden, between June and July 2022. Samples were collected during routine visits for blood donation. All study participants provided written informed consent. Subjects were randomly selected. Chronic illnesses and ongoing pharmacotherapy were considered exclusion criteria as defined by blood donor standards.

21 Enzyme linked sorbent assay (ELISA)

Circulating DKK1 levels were measured in serum samples using a commercially available
 ELISA kit (Biomedica, Vienna, Austria, cat# BI-20413, RRID: AB_2922680) according to the
 manufacturer's instructions. The sensitivity of the assay was 1.7 pmol/l and intra-assay
 precision was <3% CV. Samples were processed in a blinded fashion and measurements
 were performed on a conventional plate-reader (Omega, BMG Labtech, Vienna, Austria).
 Data were analyzed using 4-parameter logistic regression and expressed as pmol/l.

2 NMR spectroscopy and bioinformatics

3 ¹H-nuclear magnetic resonance (NMR) spectroscopy measurements were performed according to established protocols(10). The frozen serum samples were thawed at room 4 temperature for 30 minutes before being mixed with phosphate buffer (1:1) to a volume of 5 600µl. The phosphate buffer also contained the internal reference TMSP. The resulting 6 7 suspension was pipetted into the NMR sample tube and immediately prepared for measurement. All NMR measurements were run on a Bruker 600 Mhz Avance III Neo 8 equipped with a BBI Probe and a Bruker SampleJet robot with a cooling system for sample 9 storage at 4°C. The samples were measured at 310 K and a full quantitative calibration was 10 completed before the measurement. All measurements followed the Bruker in-vitro 11 diagnostics (IVDr) standard operating procedures and methods. All data was processed in 12 automation using Bruker TopSpin 4.1.1 and ICON NMR. Automatic metabolite and lipoprotein 13 reports were obtained using Bruker IVDr B.I Methods Plasma (B.I.Quant-PS, v2.0.0) and 14 15 Bruker IVDr Lipoprotein Sublcass Analysis (B.I.LISA, v1.0.0). The analysis was performed on a 1D Nuclear Overhauser Spectroscopy experiment. Metabolites that were undetectable in 16 serum samples were excluded from statistical analysis. All other metabolites were ranked 17 18 according to their median fold-change over time (sample2/sample1) and clustered via the HMDB KEGG database. 19

20

21 Publicly available datasets

Changes in DKK1 transcript expression in human lung epithelial cells as well as human lung
tissue in response to SARS-CoV-2 and influenza infection were evaluated using publicly
available datasets (<u>https://www.immgen.org/Databrowser19/COVID19Databrowser.html</u>).
Lung specimens were obtained post-mortem from two Covid-19-positive males (age>60),
while uninfected lung control tissues were collected post-surgery at Icahn School of Medicine

27 (11). Raw data were downloaded, visualized and analyzed using Prism (Graphpad, LaJolla,

28 CA).

2 Statistics

3 No sample size calculations were performed prior to conducting the study. Data were collected and analyzed using IBM SPSS version 28 (SPSS Inc., Chicago, IL). Additional 4 statistical analysis as well as graphical illustration were performed using Prism (Graphpad 5 Inc., LaJolla, CA). All P-values shown were calculated using two-tailed tests and significance 6 7 was assumed at *P*≤0.05. Paired groups were analyzed by Wilcoxon rank sum test, while two 8 independent groups were compared by Mann-Whitney-U test. Parametrically distributed data from lung epithelial cells was analyzed by student's t-test. Frequencies between categorical 9 variables were compared by chi-square test. Associations between different variables were 10 explored using Spearman's correlation and/or linear regression analysis. If dependent 11 variables were dichotomous, binary logistic regression was applied. For survival analysis, 12 Kaplan Meier plots and log-rank testing were used. Multivariate analysis was performed by 13 Cox regression (backward selection method). 14

15

16 Results

17

18 Circulating DKK1 levels change as a function of interindividual variability and time during
19 SARS-CoV-2 infection

20

We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection between April 21 2020 and June 2021 as part of the Biobank Dresden Project (BBD) and included individuals, 22 23 for whom 2 independent blood samples across the course of the disease were available. In 24 total, 80 patients met the selection criteria and were included in the study. Blood samples 25 were obtained approximately one week (sample 1, median=6 days, IQR=9) and two weeks (sample 2, median=15 days, IQR=15) following hospitalization (Figure 1 A). Clinical data was 26 unavailable or incomplete from four individuals, who were excluded from survival analysis. 27 Patient characteristics, comorbidities, therapeutic interventions and disease characteristics 28

are summarized in **Table 1**. None of the patients were vaccinated and the majority (68%) received glucocorticoids during hospitalization. In contrast, few patients were treated with remdesivir (16%), IL6 blocking agents (4%) or convalescent plasma (20%). Of note, many patients were admitted at an early time-point of the pandemic, where these agents were not yet standard of care. Patients were hospitalized for a median of 24 days. In hospital death occurred in 23 cases. Diabetes was common among study participants but did not confer elevated mortality (*B*=0.065, *P*=0.902, binary logistic regression analysis).

Pulmonary embolism was more frequent among patients who died than those who did not 8 (60 vs. 30%) and this was associated with lower platelet counts in the later (sample 2) but 9 not early phase (sample 1) of hospitalization (Fig. S1 A)(12). Most patients suffered from 10 severe disease manifestations as reflected by the high proportion of individuals requiring 11 intubation and extra-corporal membrane oxygenation (ECMO) (27.3 and 31.2%) (Figure 1 B). 12 To study DKK1 biology in the context of SARS-CoV-2 infection, we measured DKK1 serum 13 levels in the two samples available from the respective patients (= paired design) (Figure 1 14 15 A). We found that DKK1 serum concentration increased across the disease trajectory (31.04 vs. 35.87 pmol/L, P=0.06). Further data analysis revealed that DKK1 levels showed high 16 interindividual (absolute differences between patients) and modest intraindividual variability 17 (differences between the two samples from the same patient), i.e. the trajectory of DKK1 18 19 concentration occurred within an individual spectrum (Figure 1 C). Consistently, DKK1 levels during follow-up (sample 2) could be predicted by the baseline measure (sample 1) of the 20 individual as demonstrated in linear regression analysis (Fig. S1 B)(12). Neither inflammatory 21 markers (c-reactive protein, IL6, leukocyte counts, ferritin, procalcitonin, soluble IL2 22 23 receptor), nor surrogates for kidney function (creatinine), cell damage (LDH) and coagulation activity (D-Dimer), glucose, age or sex were correlated with circulating DKK1 abundance 24 (Figure S1 C,D)(12). In contrast, DKK1 levels at both time points as well as their changes 25 over time could be predicted by platelet counts (Fig. 1 D,E). Of note, platelets are known as 26 rich sources for DKK1 (9). 27

As samples from hospitalized, SARS-CoV-2-negative patients were not collected during the 1 recruiting phase of our study, we were unable to compare DKK1 levels between our cohort 2 3 and a matched control group. Instead, we obtained blood samples from healthy blood donors (n=71, median age: 40 years, IQR=24; 45% females, 55% males), none of whom received 4 ongoing pharmacotherapy. Interindividual variability in DKK1 serum concentration was less 5 pronounced in healthy controls than in Covid-19 patients. Yet, DKK1 levels did not differ 6 7 significantly between the two groups at either time point investigated (sample 1 and 2, 8 respectively) (Fig. S1 E, F)(12). DKK1 levels in healthy controls were neither correlated with age (Spearman's r=0.068, p=0.573), nor shaped by sex (p=0.93, Mann-Whitney-U-test). We 9 conclude that DKK1 serum abundance is a variable trait, which is only mildly responsive to 10 viral infection. 11

Finally, because SARS-CoV-2 first infects the lungs, we screened publicly available experimental datasets and found that DKK1 expression was suppressed in three human lung epithelial cell lines by SARS-CoV-2 but not influenza infection (Fig. 1 F-G). Likewise, DKK1 expression was reduced in lung tissue from patients with Covid-19 compared to non-infected controls (Fig. S1 G)(12).

Taken together, these data suggest that circulating DKK1 levels are variable in humans and
 change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts.

The metabolic signature associated with SARS-CoV-2 infection resembles fasting

Metabolic adaptations are a hallmark of infection and DKK1 has been linked to lipid homeostasis(13-16). Thus, we next profiled the plasma metabolome of patients in an unbiased fashion using nuclear magnetic resonance (NMR) spectroscopy. We first ranked and filtered signals according to their fold change (sample 2 vs. sample 1). Subsequent clustering showed that metabolites annotated to lipid metabolism and specifically ketones, were most differentially regulated in abundance over time (Fig. 2 A), reminiscent of fasting metabolism. In response to fasting, organismal insulin secretion is suppressed, and

triacylglycerides (TAGs) are hydrolyzed by lipases (e.g. hormone sensitive lipase, HSL) to 1 release free fatty acids (FFAs), which are then converted to ketone bodies by hepatocytes as 2 3 a fuel for energy production(17,18). In addition, ketone bodies elicit signaling events, modulate the immune response and exert tissue protective effects(19). The same metabolic 4 adaptations are engaged in response to infection and infection-induced anorexia (14) (Figure 5 2 B). Consistent with a fasting metabolism signature, levels of ketone bodies such as 3-6 7 hydroxybutyrate (=beta hydroxybutyrate), acetoacetate and acetone were high, whereas triglycerides were low during the early phase of the disease (sample 1). Later, triglyceride 8 levels recovered, while the abundance of ketone bodies dropped to barely detectable limits 9 (Fig. 2 C-E and Fig. S2 A)(12). These changes were mirrored by circulating DKK1 (Fig. 2 F). 10 Concentrations of certain amino acids (isoleucine, leucine, valine, threonine) and associated 11 breakdown products (2-hydroxybutyrate) followed a similar pattern (Fig. S2 B)(12), 12 suggestive of concomitant protein catabolism. Of note, oxidation of isoleucine, leucine or 13 threonine yields acetyl CoA, which can be fed into ketogenesis ("ketogenic" amino 14 acids)(20). The presence of diabetes did not significantly affect any of these changes 15 (P>0.05 for all metabolite comparisons; Mann-Whitney-U test) 16

Because fasting metabolism is considered as an adaptive response during infection(14), we 17 next stratified patients into those who maintained lower triglyceride levels throughout the 18 disease (TAG levels below median in sample 2) and those who did not (above median). We 19 observed that the loss of a fasting metabolism signature (as reflected by high TAG levels) 20 was associated with higher markers of inflammation, coagulation activity and cell damage 21 (Fig. S2 C, D)(12). Moreover, these patients tended to be more likely affected by pulmonary 22 23 artery embolism (41% vs. 21%, P=0.059, chi-square test). Vice versa, higher DKK1 levels 24 during the same phase of the disease were linked to reduced signs of inflammation (CRP, IL6, ferritin), cell damage (LDH) and protein turnover (creatine, ornithine, phenylalanine) (Fig. 25 2G). Moreover, DKK1 was positively associated with markers of cholesterol shuttling (LDL, 26 HDL, Apo A1), while correlations with ketone levels were modest (Fig. 2 G). 27

As most individuals received glucocorticoids during hospitalization and cortisol triggers lipolysis and proteolysis (21), we asked whether the fasting metabolism signature (beta hydroxybutyrate, acetoacetate, TAG) is affected by glucocorticoid treatment. However, we did not find evidence for this notion (*P*>0.6, two-tailed student's t-test for the three metabolite comparisons between groups). Of note, we cannot rule out that lipids (and other metabolites) were affected by parenteral nutrition and/or lipid-rich drugs (e.g. propofol), both of which are preferentially administered to critically-ill individuals.

8 We conclude that SARS-CoV-2 infection promotes metabolic adaptations resembling fasting,

9 which are mirrored by circulating DKK1 levels.

10

11 DKK1 predicts disease trajectories in patients with Covid-19

12

Our results prompted us to explore if circulating DKK1 levels predict disease outcomes in 13 SARS-CoV-2-infected individuals. We found no association between basal DKK1 serum 14 15 concentration and the use of glucocorticoids during hospitalization, nor did DKK1 levels differ between patients who required intubation or ECMO and those who did not (Fig. 3 A, B). We 16 then stratified individuals as DKK1 high or DKK1 low according to their respective serum levels at 17 18 baseline (sample 1) relative to the median of the study population (Fig. 3 C). DKK1_{low} 19 patients were twice as likely to die from Covid-19 than DKK1_{high} patients (HR=2.28, 95%CI 0.99-5.3; p=0.05) (Fig 3 D). Accordingly, DKK1 levels in quartiles 1 and 2 (Q1, Q2) 20 associated with worse outcomes than those in quartiles 3 and 4 (Q3, Q4) (Fig. S3 A)(12). We 21 found somewhat similar trends using our DKK1 measurements from sample 2 (Fig. S3 22 B)(12), although these results were less prominent. Neither relative changes in DKK1 levels, 23 24 nor platelet counts over time (Δ DKK1 and Δ platelets, respectively) predicted mortality in our cohort (Fig. 3 E, F). 25

To further explore this finding, we used Cox regression analysis. Applying the backward selection method (likelihood ratio), we computed a model using DKK1 (sample 1), IL6, CRP and creatinine levels as well as age, leukocyte and platelet counts as covariates and identified DKK1 and age as the only significant, independent predictors of Covid-19-related
mortality (Fig. 3 G). In this model, the regression coefficient *B* for DKK1 serum levels was 0.027, corresponding to a 2.7% decrease in risk for death for every 1 pmol/l increase in
DKK1 serum levels.

5

6 Discussion

7

Our observations that a.) DKK1 expression is suppressed in epithelial cell lines as well as 8 human lung tissue in response to SARS-CoV-2 infection and b.) low DKK1 serum levels 9 predict mortality in individuals suffering from Covid-19 raise the question if reduced DKK1 10 levels indicate excessive viral replication and/or inflammatory sequalae. Vice versa, genetic 11 variation in DKK1 expression could actively impinge on disease trajectories in the context of 12 SARS-CoV-2 infection. As individual DKK1 levels only changed modestly over time in our 13 study cohort (intraindividual variability), irrespective of whether patients recovered or not, but 14 15 absolute DKK1 abundance markedly differed between subjects (high interindividual variability), we suggest that genetic variation in DKK1 expression, rather than differences in 16 the "DKK1 response" upon viral infection, accounts for the association between low DKK1 17 18 levels and mortality. This notion is supported by our finding that relative changes in 19 circulating DKK1 (ADKK1) do not predict disease trajectories, whereas absolute levels do as well as our observations in healthy individuals. 20

Our correlation analysis showed that platelet numbers were the only significant predictors of 21 DKK1 levels. Experimental studies have already demonstrated important contributions of 22 platelet-derived DKK1 to pulmonary inflammation in response to influenza infection and 23 24 platelet numbers show considerable changes upon microbial inflammation (e.g. resulting from activation of the coagulation cascade)(22,23). Yet, we found no association between 25 platelet counts and disease outcomes in our patients. As such, platelets may explain a 26 considerable proportion of variation in DKK1 serum levels but potential contributions of DKK1 27 to SARS-CoV-2 pathology may at least in part be platelet-independent. Alternatively, 28

circulating DKK1 abundance could reflect platelet activity more accurately than circulating
 platelet themselves, particularly in the context of diseases associated with thromboembolic
 events such as Covid-19.

Given the reciprocal regulation of circulating DKK1 and metabolic adaptations of the host (TAG hydrolysis, ketogenesis, protein catabolism), experimental studies investigating immunometabolic functions of DKK1 in viral infection are warranted. Moreover, our results raise the question if a ketogenic state (either induced endo- or exogenously) is beneficial in patients suffering from Covid-19, which is supported by experimental studies in mice (24).

9 In summary, our results suggest a potential clinical use of measuring circulating DKK1 as an

10 indicator of disease severity in Covid-19. These results require validation in a larger cohort of

11 patients.

12

13 Data availability statement

14

15 All datasets included in this study are available from the corresponding author (NPJ) upon

16 reasonable request.

1 References

- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P,
 Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, Team CNClaR. A Novel
 Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med.
 2020;382(8):727-733.
- Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-154.
- 9 3. Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published 10 research data on COVID-19 infection fatality rates. *Int J Infect Dis*. 2020;101:138-148.
- Merad M, Blish CA, Sallusto F, Iwasaki A. The immunology and immunopathology of COVID-19. *Science*. 2022;375(6585):1122-1127.
- Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism
 risk of COVID-19 is high and associated with a higher risk of mortality: A systematic
 review and meta-analysis. *EClinicalMedicine*. 2020;29:100639.
- Ueland T, Otterdal K, Lekva T, Halvorsen B, Gabrielsen A, Sandberg WJ, Paulsson Berne G, Pedersen TM, Folkersen L, Gullestad L, Oie E, Hansson GK, Aukrust P.
 Dickkopf-1 enhances inflammatory interaction between platelets and endothelial
 cells and shows increased expression in atherosclerosis. *Arterioscler Thromb Vasc Biol.* 2009;29(8):1228-1234.
- Colditz J, Thiele S, Baschant U, Niehrs C, Bonewald LF, Hofbauer LC, Rauner M.
 Postnatal Skeletal Deletion of Dickkopf-1 Increases Bone Formation and Bone
 Volume in Male and Female Mice, Despite Increased Sclerostin Expression. J Bone
 Miner Res. 2018;33(9):1698-1707.
- Park MH, Shin JH, Bothwell ALM, Chae WJ. Dickkopf proteins in pathological
 inflammatory diseases. *J Leukoc Biol*. 2021.
- Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L, Shin JH, Park JH, Tang
 WH, Kim ST, Maher SE, Goldsmith-Pestana K, Shan P, Hwa J, Lee PJ, Krause DS,
 Rothlin CV, McMahon-Pratt D, Bothwell AL. The Wnt Antagonist Dickkopf-1 Promotes
 Pathological Type 2 Cell-Mediated Inflammation. *Immunity*. 2016;44(2):246-258.
- Dona AC, Jiménez B, Schäfer H, Humpfer E, Spraul M, Lewis MR, Pearce JT, Holmes E,
 Lindon JC, Nicholson JK. Precision high-throughput proton NMR spectroscopy of
 human urine, serum, and plasma for large-scale metabolic phenotyping. *Anal Chem.* 2014;86(19):9887-9894.
- Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX,
 Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR.
 Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. *Cell*.
 2020;181(5):1036-1045.e1039.
- Jaschke NP. Data from: Circulating Dickkopf1 parallels metabolic adaptations and
 predicts disease trajectories in patients with Covid-19. Mendeley Repository.
 Deposited 27 July 2022. http://doi.org/10.17632/53jkkpyf5k.2.
- 42 13. Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism.
 43 Science. 2019;363(6423).
- Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ, Medzhitov R.
 Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral
 Inflammation. *Cell*. 2016;166(6):1512-1525.e1512.
- 47 15. Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, Larsen R, Rebelo S,
 48 Schäuble S, Del Barrio L, Mithieux G, Rajas F, Lindig S, Bauer M, Soares MP. Metabolic

1		Adaptation Establishes Disease Tolerance to Sepsis. Cell. 2017;169(7):1263-
2		1275.e1214.
3	16.	Zhang Y, Ge C, Wang L, Liu X, Chen Y, Li M, Zhang M. Induction of DKK1 by ox-LDL
4		negatively regulates intracellular lipid accumulation in macrophages. FEBS Lett.
5	. –	2015;589(1):52-58.
6	17.	Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of
7	4.0	monitoring to diabetes. <i>Diabetes Metab Res Rev</i> . 1999;15(6):412-426.
8	18.	Balasse EO. Kinetics of ketone body metabolism in fasting humans. Metabolism.
9 10	10	1979;28(1):41-50.
10	19.	Huen SC. Metabolism as Disease Tolerance: Implications for Sepsis-Associated Acute
11 12	20	Schauder B. Herbertz I. Langenbeck II. Serum branched chain amine and keto acid
12	20.	response to facting in humans. Metabolism 1985:34(1):58-61
13 1/	21	Kadmiel M. Cidlowski IA. Glucocorticoid recentor signaling in health and disease
15	21.	Trends Pharmacol Sci 2013:34(9):518-530
16	22.	Guo Y. Mishra A. Howland F. Zhao C. Shukla D. Weng T. Liu L. Platelet-derived Wht
17		antagonist Dickkopf-1 is implicated in ICAM-1/VCAM-1-mediated neutrophilic acute
18		lung inflammation. <i>Blood</i> . 2015;126(19):2220-2229.
19	23.	Li C, Li J, Ni H. Crosstalk Between Platelets and Microbial Pathogens. Front Immunol.
20		2020;11:1962.
21	24.	Ryu S, Shchukina I, Youm YH, Qing H, Hilliard B, Dlugos T, Zhang X, Yasumoto Y, Booth
22		CJ, Fernández-Hernando C, Suárez Y, Khanna K, Horvath TL, Dietrich MO, Artyomov
23		M, Wang A, Dixit VD. Ketogenic diet restrains aging-induced exacerbation of
24		coronavirus infection in mice. <i>Elife</i> . 2021;10.
25		
26 27		
27		
28 29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40 41		
4⊥ ∕\2		
42		
43		

1 Figure Legends

2

3 Figure 1. Circulating DKK1 levels change as a function of interindividual variability and time during SARS-CoV-2 infection. (A) Study design. Days shown correspond to the median of 4 the study population. (B) Maximum therapy expressed as proportion of total. (C) Circulating 5 DKK1 levels in samples 1 and 2 from study participants (paired) measured by ELISA 6 7 (n=80/time point). Data were analyzed by Wilcoxon rank sum test. (D) Association between platelet counts and circulating DKK1 levels at the two time points analyzed. Results were 8 calculated by linear regression analysis (least square fit). (E) Association between change in 9 platelet count (Δplatelets) and circulating DKK1 (ΔDKK1) over time. Data were analyzed by 10 linear regression analysis (F) DKK1 transcript expression in human lung epithelial cell lines 11 (A549-ACE2, Calu3 and NHBE) 24h following infection with SARS-CoV-2 or mock treatment. 12 Data were extracted from publicly available platforms and visualized by Prism. Data is 13 expressed as mean± s.e.m. ***<0.001 according to two-tailed, student's t-test (G) DKK1 14 mRNA expression in NHBE cells in response to Influenza A infection. 15

16

Figure 2. The metabolic signature associated with SARS-CoV-2 infection resembles fasting. 17 (A) Heatmap visualization of changes in metabolite signatures over time (median sample 2 18 vs. 1). AA= amino acid metabolism, Glc=glucose metabolism, lip= lipid metabolism, ket= 19 ketone bodies (B) Schematic illustration of host metabolic adaptations in response to fasting, 20 infection and infection-induced anorexia (FFAs= free fatty acids, TG=triglycerides, HSL= 21 22 hormone-sensitive lipase). (C-E) Absolute change in circulating beta hydroxybutyrate, acetoacetate and triacylglyceride (TAG) levels over time (samples 1 vs 2) assessed by 23 Wilcoxon rank sum test (n=80/time point). (F) Relative change in DKK1 and beta 24 hydroxybutyrate serum abundance over time (n=80/time point) (G) Heatmap visualization of 25 26 correlations between DKK1 serum concentration in sample 2 (S2) and different variables. 27 The color mapping corresponds to the respective Spearman correlation coefficient.

Figure 3. DKK1 predicts disease trajectories in patients with Covid-19. (A) DKK1 serum 1 levels (sample 1) in patients treated with (+) or without (-) glucocorticoids (GC) during 2 3 hospitalization. Data were analyzed by Mann-Whitney-U test (B) as in (A) but stratified according to the initiation of intubation (+intub) vs. less invasive ventilation procedures (-4 intub) (also see Table 1). (C) Stratification scheme of patients according to their basal DKK1 5 levels (sample 1) relative to the median DKK1 serum concentration of the study population 6 (DKK1_{high} and DKK1_{low}, respectively). (D) Probability of survival in DKK1_{high} and DKK1_{low} 7 patients (n=76) analyzed by log-rank test. Censored cases (= no event during follow-up) are 8 visualized by black ticks. (E, F) Survival according to changes in DKK1 (ADKK1) and 9 platelets (Aplatelets) over time. (G) Cox regression analysis. The first and last step of the 10 analysis are shown, the former including all covariates analyzed, the latter only comprising 11 variables selected by the backward selection method (likelihood ratio) as independent 12 predictors of Covid-19-related survival. 13

18

- 14
- 15
- 16 17
- 18

Table 1: Characteristics of the study population			
	Number/total (frequency)		
Sex			
Male	46/77 (59%)		
Female	32/77 (41%)		
Comorbidities			
Coronary artery disease	13/77 (16.9%)		
Malignant disease	10/77 (13%)		
Diabetes	26/77 (33.8%)		
Vaccination status			
Vaccinated	0 (0%)		
Disease characteristics			
Pulmonary embolism	24/77 (31.2%)		
Deaths	23/78 (29.5%)		
Covid-19 directed therapy			
Glucocorticoids	52/76 (68.4%)		
(Dexamethason/Prednisolone)			
Remdesivir	12/76 (15.8%)		
IL6 neutralization	3/76 (3.9%)		
Convalescent plasma	15/76 (19.7%)		
Maximum therapy			
No oxygen	3/77 (3.9%)		
Oxygen mask	13/77 (16.9%)		
High flow oxygen	13/77 (16.9%)		
Non-invasive ventilation	3/77 (3.9%)		
Intubation	21/77 (27.3%)		
ECMO (Extracorporeal membrane	24/77 (31.2%)		
oxygenation)			
	mean ± SD (median; IQR)		
Metrics			
Age	64.95 ± 13.12 (65; 21)		
Days of hospitalization	23.68 ± 14.22 (21; 15.5)		
Days from hospitalization to collection of	7.32 ± 8.22 (6; 8.75)		
sample 1			
Days from hospitalization to collection of	19.38 ± 24.49 (15; 14.75)		
sample 2			
Days between sample 1 and 2	$12.06 \pm 22.47 (7, 8)$		

Table 1: Summary of patient characteristics. (SD= standard deviation, IQR= interquartile

³ range)

