
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Altered praxis network underlying limb kinetic apraxia in Parkinson's
disease - an fMRI study

Stefanie Kübela,1, Katharina Stegmayerb,1, Tim Vanbellingena,c, Manuela Pastore-Wappf,
Manuel Bertschid, Jean-Marc Burgundere, Eugenio Abelaf,g, Bruno Wederf, Sebastian Waltherb,
Stephan Bohlhaltera,⁎

a Neurocenter, Luzerner Kantonsspital, Spitalstrasse 31, 6000 Luzern 16, Switzerland
b University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern 60, Switzerland
c Gerontechnology and Rehabilitation Group, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland
d Department of Neurology, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
e Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
f Support Center for Advanced Neuroimaging (SCAN), Inselspital, University Hospital, University of Bern, 3012 Bern, Switzerland
g Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, Camberwell, SE5 9RX London, UK

A R T I C L E I N F O

Keywords:
Coin rotation
Dexterity
Executive control
Functional connectivity
Hippocampus

A B S T R A C T

Parkinson's disease (PD) patients frequently suffer from dexterous deficits impeding activities of daily living.
There is controversy whether impaired fine motor skill may stem from limb kinetic apraxia (LKA) rather than
bradykinesia. Based on classical models of limb praxis LKA is thought to result when premotor transmission of
time-space information of skilled movements to primary motor representations is interrupted. Therefore, using
functional magnetic resonance imaging (fMRI) we tested the hypothesis that dexterous deficits in PD are as-
sociated with altered activity and connectivity in left parieto-premotor praxis network. Whole-brain analysis of
fMRI activity during a task for LKA (coin rotation) showed increased activation of superior and inferior parietal
lobule (SPL, IPL) and ventral premotor cortex (vPM) in PD patients compared to controls. For bradykinesia
(assessed by finger tapping) a decreased fMRI activity could be detected in patients. Additionally, psychophy-
sical interaction analysis showed increased functional connectivity between IPL and the posterior hippocampi in
patients with PD. By contrast, functional connectivity to the right dorsolateral prefrontal cortex was decreased in
patients with PD compared to controls.

In conclusion, our data demonstrates that dexterous deficits in PD were associated with enhanced fMRI ac-
tivation of the left praxis network upstream to primary motor areas, mirroring a neural correlate for the be-
havioral dissociation of LKA and bradykinesia. Furthermore, the findings suggest that patients recruit temporal
areas of motor memory as an attempt to compensate for impaired motor skills. Finally, dysexecutive function
may contribute to the deficit.

1. Introduction

Patients with Parkinson's disease (PD) frequently suffer from loss of
fine motor skills. Dexterous difficulties in PD are only partly explained
by elemental motor deficits such as bradykinesia (Gebhardt et al.,
2008). They may develop even at an early stage of the disease (Koop
et al., 2008; Proud and Morris, 2010) and have been linked to poor
outcome (Pohar and Allyson Jones, 2009). Indeed, dexterous difficul-
ties not exclusively explained by bradykinesia significantly impair ac-
tivities of daily living (ADL) (Foki et al., 2016). Therefore, exploring the

neural mechanism of impaired fine motor skills in PD is of clinical in-
terest.

It has been suggested to introduce the notion of limb kinetic apraxia
(LKA) to describe dexterous difficulty in PD (Gebhardt et al., 2008;
Quencer et al., 2007). LKA adopts an intermediate position between
higher-order (i.e. apraxic) and elemental motor disorders. It is char-
acterized by impaired control of selective and coordinated hand and
finger movements, but not explained by weakness or sensory deficits
(Heilman, 2010). LKA can be assessed by the so-called coin rotation
(CR) task. CR is a relatively simple and fast administered task to assess
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manual dexterity in clinical settings (Barkemeyer et al., 1998; Gebhardt
et al., 2008; Hill et al., 2010).

To perform a skilled movement, temporal and spatial information of
the movement must be retrieved and translated into motor output.
According to the movement representation hypothesis (Geschwind,
1975), brain areas forming part of the so-called praxis network (Niessen
et al., 2014) are involved. Specifically, it is assumed that the inferior
parietal lobule (IPL) conveys spatial and temporal content of a move-
ment (Heilman et al., 1982; Rothi et al., 1985) to left premotor cortex
(Barrett et al., 1998; Haaland et al., 2000; Kolb and Milner, 1981) and
probably to the supplementary motor area (SMA) (Watson et al., 1986).
The premotor regions finally program movement execution by trans-
mitting information to motor representations of the primary motor
cortex (M1). In fact, in healthy subjects, the premotor cortex is critical
to perform skilled finger movements as demonstrated by functional MRI
(fMRI) (Nirkko et al., 2001).

As expected from the neural basis of motor skills, LKA may result
from structural and functional alterations of the praxis network. For
instance, premotor lesions can cause LKA (Freund and Hummelsheim,
1985). Furthermore, premotor white matter density correlates with
limb kinetic deficits in corticobasal syndrome (Borroni et al., 2008). In
addition, detailed clinico-anatomical case studies have demonstrated
that early LKA in corticobasal syndrome is associated with predominant
premotor atrophy (Tsuchiya et al., 1997). Finally, the sensorimotor and
posterior parietal cortices showed reduced cerebral blood flow in cor-
ticobasal syndrome patients with LKA (Okuda et al., 1998).

In PD neuroimaging findings of LKA are sparse. In fact, to the best of
our knowledge, only one group has investigated functional correlates of
LKA (altered CR) in PD (Foki et al., 2010). This study found an in-
creased activation in parietal areas, as well as subcortical, sensory,
premotor, and supplementary motor areas associated with LKA in PD.
However, there was some methodological criticism (Bohlhalter et al.,
2011). For instance, self and fixed paced conditions were different
across tasks (CR and index finger tapping). Furthermore, unspecific
activation cannot be ruled out as the kinematic (finger tapping with one
finger vs. coin rotation with tree fingers) and somatosensory require-
ments (finger tapping without object manipulation vs. coin rotation)
differed for the two fMRI tasks. Moreover, the design lacked a true
baseline.

Therefore, robust imaging data on LKA in PD at the level of praxis
networks is not available. Moreover, previous reports in PD point to-
wards compensatory increased functional connectivity within the
motor network during motor tasks (Wu et al., 2010a, 2010b; Yan et al.,
2015) and decreased functional connectivity of attentional and execu-
tive control areas during higher order control tasks (e.g. working
memory) (de Bondt et al., 2016; Helmich et al., 2009; Trujillo et al.,
2015). However, functional interactions between relevant praxis areas
remain to be explored.

The goal of the present study was to assess the functional brain
activity during skilled fine motor tasks, as measured by the CR, in PD
compared to healthy controls. Furthermore, we investigated for the first
time dynamic functional connectivity within the praxis network during
CR. We hypothesized increased activation and altered functional cou-
pling of areas of the praxis network in PD, in particular, of premotor
areas and the left inferior parietal lobule as well as executive control
and attention areas.

2. Methods

2.1. Subjects

In total, 22 PD patients and 13 age and handedness-matched healthy
controls participated in this study. Patients were recruited at the
Department of Neurology, Inselspital, University Hospital of Bern.
Controls were recruited from the local community. The study was
performed according to the Declaration of Helsinki and was approved

by the local Ethics Committee. All participants provided written in-
formed consent.

Patients were included if they had an established diagnosis of PD, as
determined by the UK Brain Bank diagnostic criteria (Hughes et al.,
1992). Exclusion criteria for all participants were sedating medication,
severe medical or psychiatric conditions, as well as general exclusion
criteria for magnetic resonance imaging (i.e. claustrophobia or metal
implants). Further exclusion criteria for healthy controls were any
neurological disorder in general, and for patients any neurological
disorder other than PD. In both groups we assessed hand dominance
with the Edinburgh Handedness Inventory (Oldfield, 1971) and cogni-
tive impairment with the Mini–mental status examination (MMSE)
(Folstein et al., 1975). Additionally, the forward and backward digit
span (Wechsler, 1997) test was performed for specific neuropsycholo-
gical testing of short-term verbal memory. In patients, disease stage was
determined according to the Hoehn & Yahr criteria (Goetz et al., 2004).
In addition, we measured bradykinesia-rigidity using the modified
Unified Parkinson's Disease Rating Scale (UPDRS) (Goetz et al., 2008).
Twelve patients received dopaminergic medication and ten patients
were drug-naïve.

2.2. Experimental design

All participants underwent the same acquisition of clinical and be-
havioral data. Prior to imaging data acquisition, we provided detailed
task instructions and training to ensure understanding of task proce-
dures and accurate execution. If patients received antiparkinsonian
medication, PD patients were tested in their best ON state (60 to 90 min
after their last dose of dopaminergic medication). In general, all pa-
tients used their clinically less affected hand (right hand performance:
n = 12/60%) to minimize confounding effects of bradykinesia.
Controls performed the task with the same hand as patients (right hand
performance n = 9/75%). Therefore, four participants performed with
the left hand.

We employed an fMRI block design. Each of the eight blocks con-
sisted of one of two movement tasks (Fig. 1). The order of the two
movement task blocks was pseudo-randomized to control for sequence
effects. Each block consisted of 3 trials.

In detail, each experimental trial (Fig. 1) started with a brief written
instruction (4 s) indicating the upcoming movement task followed by
an active movement phase of 26 s, followed by a 16 s rest phase. A
green cross in the middle of the screen signaled the start of the active
movement phase. During the resting phase a white fixation cross was
presented and participants were asked to relax and not to move.

During the active movement phase, participants were instructed to
perform one of two movement tasks: the CR (Barkemeyer et al., 1998;
Hill et al., 2010) or a modified finger tapping (FT) task (Goetz and
Stebbins, 2004; Reitan, 1969). Briefly, during CR, subjects were asked
to rotate a Swiss 50-Rappen coin (18 mm in diameter) through 180°-
turns between thumb, index, and middle finger. During the modified FT
task subjects were asked to simply tap their fingers following an al-
ternating sequence. The sequence was as follows: 1-2-1-3-1-2-1-3-1-2-1-
3, in which 1, 2 and 3 refer to thumb, index and middle finger, re-
spectively. Participants executed tapping on an MRI compatible re-
sponse box. We used a repetitive finger tapping sequence, as it is sen-
sitive to test bradykinesia. Furthermore, the finger sequence allowed
minimizing unspecific activation based on differences in sensory-motor
processing. Thus, the modified FT is closer to the kinematic and sensory
demands of the CR task (i.e. same fingers involved as in the coin ro-
tation task and some sensory component by the tapping on the box). CR
and FT were performed self-paced (i.e. as fast as possible).

Performance of motor tasks was video recorded and evaluated by an
independent rater blinded for diagnosis and clinical status. CR perfor-
mance scores reflect mean numbers of half-turns adjusted for coin drops
(Barkemeyer et al., 1998). FT performance scores reflect the number of
alternating sequences (Goetz and Stebbins, 2004; Reitan, 1969). Thus
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high numbers represent a good performance in both tasks (Barkemeyer
et al., 1998; Hill et al., 2010).

2.3. Structural and functional MRI acquisition

High-resolution T1-structural and T2*-weighted functional images
were obtained using a whole-body 3 T scanner (Siemens Trio, Erlangen,
Germany) with a 12-channel head matrix coil. T1-weighted structural
images were acquired using the Modified Driven Equilibrium Fourier
Transform sequence [TE = 2.48 ms, TR = 7.92 ms, flip angle 16°,
FOV = 256 × 256 mm2, matrix size 256 × 256 mm2 yielding a nom-
inal isotropic resolution of 1 mm3)]. T2*-weighted gradient-echo echo
planar imaging sequence was used to obtain functional images sensitive
to BOLD signal [TE = 30 ms, TR = 2000 ms, flip angle 90°,
FOV = 230 × 230 mm2, voxel dimension: 3.6 mm× 3.6 mm× 3 mm,
matrix size 64 × 64 mm2 and slice thickness = 3 mm].

2.4. Structural and functional MRI acquisition and data processing

Image data was analyzed using SPM (Version 8; Wellcome Trust
Centre for Neuroimaging, London). Preprocessing encompassed slice
time correction, spatial realignment, co-registration, normalization to
the Montreal Neurological Institute T1 template and spatial smoothing
with an isotropic Gaussian kernel of 8 mm full-width at half maximum
(Ashburner and Friston, 2005).

2.5. Data and MRI analysis

Behavioral data analysis was performed using IBM SPSS (Version
22). The Shapiro-Wilk test was used to test for normality. Two-sample t-
test and chi-square (χ2) tests were used to compare categorical and
continuous variables between patients and controls, respectively. Level
of significance was set at P < 0.05, two tailed.

Our main interest was to assess brain activation specific for a LKA
task in PD. We therefore set one general linear model to analyze brain
activity during both motor tasks for each subject using the canonical
hemodynamic response function available in SPM. Realignment para-
meters were included in the general linear model as regressors of no
interest in order to correct for residual motion. Next, statistical para-
metric maps from each individual were entered into a second-level

random effects analysis. To investigate brain activation associated with
the motor tasks, both conditions were contrasted with the instruction
condition (CR vs instruction and FT vs instruction). The instruction
condition served as control condition because longer resting conditions
may be confounded by mental activity due to unconstrained thoughts
(Stark and Squire, 2001). Furthermore, reading the instruction con-
trolled for unspecific attention and visual processing but lacked any
specific demands in motor execution. To control for differences in
motor performance, we included the parameters of motor output as
regressors of no interest. In addition, the levodopa equivalent was in-
cluded as regressor of no interest to control for unspecific effects due to
medication. We computed a factorial design with the factors group and
task execution to reveal the interaction of group and task (F-test: task-
by-group; group = patients and healthy controls; task = FT and CR).

We extracted mean beta estimates of significant clusters of the
whole brain interaction analysis using the MarsBaR toolbox for SPM
(Brett et al., 2002). In detail, mean beta estimate values in regions of
interest (ROIs) were extracted from the modulated, normalized and
smoothed fMRI images of the flexible factorial designs for each subject
and each task and were compared between patients and controls using
multivariate analysis corrected for multiple testing (Sidak correction for
familywise error rate).

In a next step, we examined task specific functional connectivity
applying the psychophysiological interactions (PPI) approach and the
PPI toolbox integrated in SPM (Friston et al., 1997). Briefly, PPI ana-
lyses allow the examination of process-specific functional interaction
between brain regions. We entered three factors in the design matrix:
one factor, termed the physiological factor, represents the average time
series of activity of all voxels in the seed region i.e. the left IPL, the
second factor reflects the task context termed psychological factor (CR
task versus cue) and the third factor, termed PPI factor, is the product of
the two factors. To test for significant whole brain correlations with the
left IPL during the CR task, PPI single subject data was then entered into
a random effects analysis model. We then calculated significant func-
tional correlations within and between groups within one factorial
design (t-tests: controls; patients; controls > patients and patients >
controls).

Further, in an exploratory analysis, we examined whether func-
tional connectivity of brain networks correlate with CR performance.
We performed individual Pearson correlations between the mean of the

Fig 1. Limb kinetic and bradykinesia fMRI task.
General block design and a single trial of the limb
kinetic apraxia task. FT = finger tapping (bra-
dykinesia task); CR = coin rotation (limb kinetic
apraxia task).

S. Kübel et al. NeuroImage: Clinical 16 (2017) 88–97

90



PPI regressor and CR performance for each of the 8 target regions (see
Supplementary material analysis A). The PPI regressor was derived
from individual time series for each target region for each subject and
was further mean-corrected.

To examine the role of possible grey matter density differences
between healthy controls and patients on brain activity, we performed
an additional whole-brain voxel based morphometry (VBM) analysis.
We used total brain volume and the same regressors as in the main
analysis (see Supplementary material analysis B).

For all contrasts we used a uniform voxel-level threshold of
P < 0.005 (uncorrected); minimum cluster size 17 voxels (tables and
figures). This threshold is equivalent to a map-wise false positive rate of
alpha< 0.005 using a Monte Carlo procedure as implemented in the
AlphaSim program in the Analysis of Functional Neuroimages software
package (Stepens et al., 2010). All reported significant clusters were
anatomically labeled using the Jülich atlas included in the SPM
Anatomy Toolbox Version 1.8 (Eickhoff et al., 2005). Images were
produced using SPM8 and MRIcron (Rorden et al., 2007).

3. Results

3.1. Behavioral and clinical data

Demographic and clinical data are given in Table 1. Two patients
had to be excluded as MRI acquisition had to be stopped prematurely
due to intolerance of the supine position in the scanner. One participant
was excluded due to a coin rotation deficit to rule out any confounding
effects based on musculoskeletal impairments. Thus, the data of 20 PD
patients and 12 healthy controls remained for final analysis. As ex-
pected, patients performed worse than controls in the CR task. Twelve
patients showed CR deficits according to Hill and colleagues (Hill et al.,
2010) (deficit = mean in 10 s < 13 rotations adjusted for coin drop).
However, five patients and no healthy control participant were classi-
fied as showing clear-cut LKA (LKA =mean in 10 s < 10 rotations

adjusted for coin drop) (Barkemeyer et al., 1998). In contrast, although
FT was slightly diminished in patients, the difference was not statisti-
cally significant. Furthermore, no task-by-group interaction was de-
tected.

3.2. Differential fMRI activation of the left IPL, SPL, SFG and vPM in
Parkinson's disease

We found a significant task-by-group interaction effect in brain
areas forming part of the praxis network (Figs. 2, 3): left IPL (F(1,
56) = 14.17), left superior parietal lobule (SPL) (F(1, 56) = 13.58), left
superior frontal gyrus (DMPFC; F(1, 56) = 11.6), and left ventral pre-
motor area (vPM) (F(1, 56) = 11.54). Post-hoc t-tests (Fig. 3) of ex-
tracted fMRI activity values in these areas indicated increased activity
in patients compared to controls during CR (IPL, T(30) = 2,77,
P = 0.009; SPL, T(30) = 2.61, P = 0.014; vPM, T(30) = 3,33,
P = 0.002). In contrast, for the FT task fMRI, activity in patients was
decreased significantly in IPL (T(30) = 2,38, P = 0.024), SPL
(T(30) = 2,35, P = 0.026), and in SFG (T(30) = 3,2, P= 0.003). In vPM
fMRI activation of FT was not different (T(30) = 1.15, P = 0.258).
These results show that the increased activation during CR in left praxis
areas is not a general group effect, but specifically modulated by the
task. Furthermore, the CR task differentially activates the left praxis
network in patients regardless of the hand involved.

3.3. Increased functional coupling of the left IPL with posterior hippocampi

We detected an increased functional connectivity in patients of the
left IPL bilaterally to posterior hippocampus, extending from precuneus
on the right. Furthermore, stronger connectivity of left IPL was found
with lateral temporal areas including left middle and right superior
temporal gyrus, as well as the left cuneus (Fig. 4; Table 2). In addition,
patients showed a disturbed connectivity with the frontal lobe. We
detected a decreased connectivity of the left IPL and the dorsolateral
prefrontal cortex (DLPFC: right middle frontal gyrus) in patients com-
pared to controls (Fig. 4; Table 2).

Correlation analysis revealed that functional connectivity of the left
IPL with the left middle temporal gyrus (MTG) was associated with
better CR performance in patients (see Supplementary material analysis
A).

3.4. Grey matter volume decrease in bilaterally frontal brain areas

VBM analysis revealed a slight decrease of grey matter volume in
widespread brain areas including the left inferior frontal gyrus and
bilaterally the primary motor cortices in patients compared to controls
(see Supplementary material analysis B, Table SI).

4. Discussion

Patients with PD frequently suffer from loss of fine motor skills.
Clinical studies (Foki et al., 2016; Gebhardt et al., 2008; Quencer et al.,
2007; Vanbellingen et al., 2011) suggested that LKA, apart from bra-
dykinesia, is implicated. However, whether dexterous impairment in
PD is explained by apraxia is still a matter of debate (Foki et al., 2015,
2016; Gebhardt et al., 2008; Landau and Mink, 2007; Quencer et al.,
2007; Swash et al., 2007; Vanbellingen et al., 2011).

Therefore, the goal of the present study was to assess the functional
brain activity during skilled fine motor tasks, as measured by the coin
rotation (LKA) task in PD compared to matched healthy controls.
Furthermore, we investigated for the first time dynamic functional
connectivity within the praxis network during CR. We hypothesized to
detect increased activation in areas of the praxis network in PD patients
during the CR task, which is the neural correlate of LKA. Furthermore,
we expected an altered functional connectivity of the praxis network
during a limb kinetic task.

Table 1
Clinical characteristics and demographic data of Parkinson's disease patients and healthy
controls.

Controls
(n = 12)

Patients (n = 20) Between group tests

Gender (n) Men/women Men/women df χ2 P
5/8 4/16 1 1.742 0.187

Handedness Right/left Right/left df χ2 P
11/1 19/1 1 0.142 0.706
M D M SD f T P

Age (y) 63
[34,75]

10 62
[37,75]

10 30 0.263 0.794

Coin rotation
(CR/10s)

17.08
[13,21]

2.7 12.6
[6,21]

3.2 30 4.03 < 0.001

Finger tapping
(FT/10s)

32.7
[20,46]

8.3 28.3
[14,49]

10.9 30 1.152 0.259

MMSE 28.9
[26,30]

1.3 28.2
[25,30]

1.6 30 1.161 0.255

Forward digit
span

7.08 2.0 7.15 1.8 30 0.096 0.924
[5,11] [4,11]

Backward digit
span

5.17 1.9 5.5 1.9 30 0.484 0.630
[3,9] [3,10]

Levodopa
equivalent
(mg/day)

− − 438.3
[0,1600]

532.2 − − −

Disease duration
(y)

− − 2.9
[0,8]

3.1 − − −

Hoehn & Yahr
stage (ON)

− − 1.9
[1,2]

0.4 − − −

MDS-UPDRS III − − 22.4
[7,34]

8.2 − − −

M = mean; y = years; MMSE = mini-mental state examination; MDS-UPDRS
III = Movement Disorders Society-Unified Parkinson disease rating scale motor part; the
values in the brackets represent the minimum and maximum value.
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Fig. 2. Brain areas with significant task-by-group interaction.
Effect in patients with Parkinson's disease and healthy controls
during a bradykinesia (finger tapping) and a limb kinetic apraxia
task (coin rotation). Significant whole brain task-by-group in-
teraction was detected within the left inferior parietal lobule,
superior parietal lobule, superior frontal gyrus and ventral pre-
motor area. The color bars show F statistic. L = left; R = Right.
(For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 3. Between group differences of brain activity within significant clusters of the interaction analysis.
Brain activity in the left inferior parietal lobule (IPL), superior parietal lobule (SPL) and superior frontal gyrus (SFG) was enhanced in patients compared to controls during the limb
kinetic apraxia task (CR) and decreased in the IPL, SPL and vPM during the bradykinesia task (FT). Significant differences of post-hoc pairwise group comparisons are indicated with
asterisks (P < 0.05). Note: CR = coin rotation in green; FT = finger tapping in blue, error bars:± 1 standard error.(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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As predicted, and in line with current models of apraxia, we de-
tected differential activation in key areas of the left praxis network (i.e.
left IPL, SPL and vPM) and additionally the DMPFC, regardless of the
hand involved. These results fit nicely with the literature that shows the
association of apraxic deficits with left parietal and premotor regions
and thus support the notion that indeed dexterous deficits in PD stem
from LKA. We confirmed our hypothesis of altered functional coupling
within the praxis network associated with the LKA task. In particular,
we detected increased functional connectivity of the IPL in patients
with several brain areas including an area involved in visual-spatial
memory (posterior hippocampus). Furthermore, unlike controls, pa-
tients failed to functionally connect the IPL with regions of executive

control during the LKA task.

4.1. Differential neuronal activation of limb kinetic apraxia and
bradykinesia

Altered activation of IPL is frequently found in PD (Herz et al., 2014;
Samuel et al., 1997; Wu and Hallett, 2005). Moreover, the IPL is re-
levant for skilled fine movements (Buxbaum et al., 2007; Pause et al.,
1989) and is a key region in apraxia (Buxbaum et al., 2007; Goldenberg,
2009; Heilman, 2010). In particular, time and spatial content of a
movement is hypothesized to be stored in the IPL (Buxbaum et al.,
2014; Heilman et al., 1982; Rothi et al., 1985). In addition, the

Fig. 4. Between group results of functional connectivity
during limb kinetic apraxia task performance.
A. Significant enhanced functional connectivity be-
tween the inferior parietal lobule and the posterior
body of the hippocampus on both sides and B. sig-
nificant decreased connectivity between the inferior
parietal lobule and the middle frontal gyrus (DLPFC) in
patients compared to healthy controls. The color bars
show T values. L = left; R = right;
DLPFC = dorsolateral prefrontal cortex.(For inter-
pretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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premotor areas and supplementary motor area via primary motor
cortex are hypothesized to transmit time and spatial information to
motor representation for final motor execution (Babiloni et al., 2003;
Penfield and Penfield and Welch, 1951). In general, functional imaging
studies highlight the involvement of left lateralized premotor-posterior
parietal areas in praxis related tasks such as pantomiming (Bohlhalter,
2009; Choi et al., 2001; Fridman et al., 2006; Króliczak and Frey, 2009;
Mäki-Marttunen et al., 2014; Ohgami et al., 2004; Vingerhoets et al.,
2011; Vry et al., 2015) or real tool use (Brandi et al., 2014; Imazu et al.,
2007). In PD the hyper-activation of inferior frontal and inferior par-
ietal areas is associated with diminishing pantomime skills (Matt et al.,
2016). Furthermore, several studies showed increased fMRI activation
reflecting a compensatory (although dysfunctional) mechanism for di-
minished task performance (e.g. diminished working memory)
(Rottschy et al., 2013; Trujillo et al., 2015). However, so far only one
group investigated functional correlates of LKA in PD (Foki et al., 2010,
2015). This study showed bilateral hyper-activity in widespread areas
of the frontal and the parietal cortex (Foki et al., 2010). Hence, except
for weak hypo-activity in somatosensory cortex, the findings largely
lacked specificity, which may be explained by methodological issues
(Bohlhalter et al., 2011).

Strikingly, we revealed differential neuronal activation of LKA
within the IPL, SPL and premotor areas. Therefore, our findings fit well
with the left-predominant posterior-anterior control of praxis function,
in which limb kinetic deficits result if the neuronal transmission to final
motor output is impaired. The dysfunction upstream to primary motor
representations is further corroborated as the interaction effect of fMRI
activity was controlled for performance and therefore cannot be ex-
plained by differences in motor output per se. The VBM analysis showed
diminished grey matter volume in various inferior frontal and temporo-
parietal brain regions as known from the literature (Borghammer et al.,
2010; Postuma and Dagher, 2006; Potgieser et al., 2014). No dimin-
ished grey matter volume was found in the praxis relevant areas asso-
ciated with the CR task. Therefore, the VBM findings cannot account for
LKA-related fMRI alterations in PD.

For the bradykinesia task, we detected decreased activity in the left
SPL, IPL and SFG in patients compared to controls. Several factors may
account for this observation. Hypo-activity in cortical structures such as
the primary motor cortex (Rascol et al., 1992), SPL (Haslinger et al.,
2001), SMA (Rascol et al., 1992) and DLPFC (Playford et al., 1992) has
been reported as a general feature of PD and has also been linked to
bradykinesia (Rascol et al., 1992). Furthermore, basal ganglia and
cortical activation likely depend on the medication status, as most
functional imaging studies in PD demonstrated hypo-activation in OFF
state and hyper-activation in ON (Buhmann et al., 2003; Kraft et al.,
2009; Leenders et al., 1985; Lewis et al., 2007). Therefore, we may

speculate that cortical hypo-activity associated with bradykinesia ob-
served herein may be explained by the fact that almost half of the pa-
tients were drug naïve. Finally, the patients reached normal perfor-
mance in the modified finger tapping task despite hypo-activation. This
constellation may reflect the earlier disease stage of our cohort, when
compensatory cortical hyper-activity is only necessary with higher and
specific task demands such as for digital dexterity associated with the
CR task.

4.2. Altered functional coupling with visual-spatial and executive brain
areas

Previous task-based network investigations of motor performance
(fMRI) detected mostly increased connectivity in PD patients in the
motor network compared to healthy controls e.g. during action plan-
ning (i.e. skilled finger movements) (Wu et al., 2010b; Yan et al., 2015)
and motor learning (Wu et al., 2010a). These increased connectivity
patterns in patients were interpreted as compensatory mechanisms
during motor control in PD (Eckert et al., 2006; Katschnig et al., 2011;
Mallol et al., 2007; Yu et al., 2007). Likewise, altered functional con-
nectivity during general higher-level planning, such as task-shifting (de
Bondt et al., 2016; Helmich et al., 2009) and working memory (Trujillo
et al., 2015; Weder et al., 1999), have repeatedly been demonstrated in
PD. In detail, De Bondt and colleagues found a hyper-activation to-
gether with decreased connectivity between key areas of task-shifting,
such as the DLPFC, superior frontal gyrus and posterior parietal cortex.
Participants performing a visual-spatial working memory task showed
decreased functional coupling with the DLPFC but an increased con-
nectivity of the fronto-parietal network, including the IPL (Trujillo
et al., 2015). Thus, previous studies mostly suggest increased con-
nectivity within brain areas of the motor networks during motor per-
formance together with decreased connectivity within attentional and
executive brain areas during cognitive tasks. In contrast, studies in-
vestigating functional connectivity in PD during a LKA task are missing.

Here we reported increased connectivity of the IPL in patients with
the temporal lobe, the cuneus, the precuneus, and the calcerine gyrus.
In addition, increased connectivity of the IPL with the posterior hip-
pocampi on both sides was shown. Thus, we failed to detect increased
connectivity with brain areas of cortical motor networks previously
reported for motor performance tasks. Instead, we detected increased
connectivity with the posterior hippocampus and the left MTG. The
hippocampus is hypothesized to integrate object-related information
and to store and retrieve time and spatial information of a movement
(Behrendt, 2013). In healthy controls, the hippocampus was detected as
important also for encoding and retrieval of event related memories
(Eldridge et al., 2000) and context coding (Kalisch et al., 2006).

Table 2
Altered functional connectivity of the left inferior parietal lobule linked to limb kinetic apraxia in patients and controls: between-group analysis (Parkinson's disease patients > healthy
controls; healthy controls > Parkinson's disease patients.

Whole brain functional connectivity of the inferior parietal lobule during coin rotation

Patients > controls Controls > patients

Cluster Peak MNI coordinates Cluster Peak MNI Coordinates

Brain region p(FWE-corr) k p(FWE-corr) T(31) x y z p(FWE-corr) k p(FWE-corr) T(31) x y z
L Middle temporal gyrus 0.996 40 0.572 4.331 −52 −54 8 n.s.
L Cuneus 0.979 59 0.996 3.420 −12 −74 20 n.s.
L Hippocampus 1.000 19 0.999 3.230 −22 −36 −2 n.s.
L Parahippal gyrus extending to hippocampus 1.000 23 0.999 3.070 −12 −36 0
L Calcerin gyrus 0.798 115 0.647 4.220 −10 −54 4 n.s.
R Middle frontal gyrus n.s. 1.000 23 0.971 3.650 46 40 18
R Superior temporal gyrus 0.995 42 0.989 3.580 62 −12 0 n.s.

1.000 25 0.993 3.920 46 −24 8 n.s.
R Precuneus extending to hippocampus 0.643 146 0.938 3.760 18 −46 4 n.s.

L = left; MNI = Montreal Neurological Institute; n.s. = not significant: R = right.
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Moreover, the hippocampus as well as the MTG seem to play important
roles in retrieval of semantic knowledge about the use of a tool
(Goldenberg and Randerath, 2015). Thus, corresponding lesions can
cause pantomime impairments and lead to ideo-motor apraxia (Speach
et al., 1998). In addition, the hippocampus plays a role in movement
planning (Dagher et al., 2001), motor learning (Schendan et al., 2003)
and in retaining motor knowledge (Albouy et al., 2008). Therefore, the
increased connectivity in patients may be a dysfunctional compensatory
mechanism during the LKA task. Specifically, increased coupling of the
IPL with the posterior hippocampus may reflect the attempt to retrieve
temporo-spatial information from the hippocampus for movement
planning, which is normally done in the IPL. Similarly, the association
between CR performance and the connectivity of IPL to MTG in PD
patients may point to a compensatory recall of motor engrams. In ad-
dition, one PET study showed the recruitment of the hippocampus to
overcome the striatal deficits during planning of movement sequence in
PD (Dagher et al., 2001). In addition, it was generally hypothesized that
cortical reorganization in PD patients involves the modification of the
type and strength of connectivity to maintain a normal performance
(Husárová et al., 2013). However, whether increased connectivity with
the IPL is the cause or the consequence of possible altered IPL function
in PD needs to be further evaluated.

Furthermore, unlike controls, patients failed to connect the IPL
functionally with the DLPFC during the LKA task. Decreased functional
connectivity with the DLPFC during the LKA task is in line with studies
examining general higher-level planning (de Bondt et al., 2016; Rowe
et al., 2002). Moreover, the decreased coupling of the IPL with the
DLPFC fits to one previous task-based fMRI study investigating novel
and automatic finger sequences using a psycho-physiological interac-
tion approach in PD (Wu et al., 2010a). The authors detected stronger
functional connectivity of motor areas with the DLPFC during novel
sequences in healthy subjects, showing that execution of more complex
motor tasks, in contrast to automatic movements, shifted brain con-
nectivity from more subcortical to more executive control areas com-
pared to PD (Wu et al., 2010a). Accordingly, decreased IPL and DLPFC
coupling in our patients may reflect impairments in executive functions
(Trujillo et al., 2015) during the limb apraxia task, thereby adding to
dexterous impairment.

Finally, the altered pattern of functional brain connectivity may be
interpreted together with the differential neuronal activation of LKA
and bradykinesia. PD patients often suffer from cognitive impairments
in the course of the disease, specifically in memory and visual-spatial
domains (Aarsland et al., 2010). Therefore, one may speculate that
altered functional coupling together with the increased neural activa-
tion of brain areas of the praxis network reflects additional recruitment
of regions to overcome general cognitive impairments in PD. Yet, it is
unlikely that the detected altered pattern of activity and connectivity
simply stem from cognitive performance deficits, particularly as cog-
nitive performance (MMSE, digit span test) did not differ between pa-
tients and controls.

4.3. Limitations

There are several limitations of our study. Patients with PD received
medical treatment which may affect brain activation. In fact, if patients
received medical treatment, they performed the fMRI task in best ON
medication. The focus of our study, however, was on LKA underlying
PD independent of confounding effects due to bradykinesia. Therefore,
to minimize unspecific effects due to medication we controlled for the
levodopa equivalent. Furthermore, studies on the effect of PD medica-
tion on brain activity are inconclusive (Cools et al., 2002; Fera et al.,
2007; Haslinger et al., 2001; Jubault et al., 2009; Martinu et al., 2012;
Rascol et al., 1994) and pinpoint to a normalizing effect of Levodopa on
fMRI activation of PD patients (Haslinger et al., 2001; Ng et al., 2010).
In addition, a general limitation of functional connectivity analysis with
the PPI approach is that direction of connectivity between brain regions

cannot be detected (Friston et al., 1997) and may not follow structural
routes. Further studies e.g. with diffusion tensor imaging need to ex-
plore structural connectivity alterations associated with LKA in PD.
Finally, the adaption of the finger tapping task (involving three fingers)
introduced elements of selective finger innervation that is a hallmark of
Liepmann's LKA concept. Therefore, the modified paradigm for brady-
kinesia may have reduced the power of detecting specific differential
activation with LKA as measured by the CR task.

5. Conclusion

Our data demonstrates differentially altered activations within the
praxis network of left hemisphere associated with LKA in PD. Moreover,
for the first time, we provide evidence of decreased functional con-
nectivity of the IPL with the DLPFC and increased connectivity of the
IPL with the hippocampi, which may reflect an attempt to compensate
for dexterous deficits. These results strongly support the notion that
LKA, apart from bradykinesia, is implicated in dexterous deficits in PD.
In addition, our findings demonstrate that CR is a valid clinical test for
LKA in PD.
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