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Investigating the metabolic functions of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) has been ex-
tremely rewarding over the past years. Uncovering the biologic roles of PPARγ and its mechanism of action has greatly advanced
our understanding of the transcriptional control of lipid and glucose metabolism, and compounds such as thiazolidinediones
which directly regulate PPARγ have proven to exhibit potent insulin-sensitizer effects in the treatment of diabetes. We review
here recent advances on the emerging role of growth hormone releasing peptides in regulating PPARγ through interaction with
scavenger receptor CD36 and ghrelin GHS-R1a receptor. With the impact that these peptides exert on the metabolic pathways
involved in lipid metabolism and energy homeostasis, it is hoped that the development of novel approaches in the regulation of
PPAR functions will bring additional therapeutic possibilities to face problems related to metabolic diseases.

Copyright © 2008 Annie Demers et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Vascular diseases impose the greatest burden upon health
care systems and are predicted to remain the leading cause
of death and disability in industrialized countries. The iden-
tification of excess body weight as a major risk factor, the
epidemic of obesity and diabetes in Western societies and
their increasing prevalence in children indicate that patholo-
gies associated to the metabolic syndrome will continue to
impact the health of individuals. Insulin resistance is a re-
current trait associated with increased adiposity, and despite
the amplitude of health problems related to metabolic dis-
orders, the mechanisms underlying excessive fat storage by
adipocytes remain largely undefined.

The adipocyte is the major site of fatty acid storage in
the body and plays a critical role in maintaining normal glu-
cose and lipid homeostasis. If the capacity of the adipocyte
to store lipids is exceeded, it can no longer regulate nor-
mally the release of fatty acids into the circulation, which
ultimately leads to the abnormal accumulation of lipids in
fat tissues and nonadipose depots. Such buildup of lipids in
fat, liver, pancreatic islets, and muscle cells is associated to
metabolic dysregulation of these tissues, resulting in many
pathologic states of the metabolic syndrome, such as cen-

tral obesity, atherosclerosis, type 2 diabetes, and insulin resis-
tance [1, 2]. Over the recent years, with the unveiling of their
ability to behave as master regulators of an array of genes that
coordinate numerous pathways in lipid, glucose, and energy
metabolism, the peroxisome proliferator-activated receptors
(PPAR) have been considered important targets in the thera-
peutic management of metabolic disorders.

2. THE PPARs, FATTY ACID SENSORS

The PPARs consist of three isoforms, PPARα (NR1C1),
PPARβ/δ (NR1C2), and PPARγ (NR1C3), all of which are
bona fide members of the nuclear receptor family. Upon lig-
and activation, the PPARs act as transcription factors by di-
rectly binding DNA as obligate heterodimers with retinoid X
receptor RXR (NR2B) to a peroxisome proliferator response
element (PPRE) contained in the promoters of target genes.
With identified ligands such as mono- and polyunsaturated
fatty acids, and derivatives such as eicosanoids, the PPARs
have been recognized as physiologic sensors for fatty acids
that control the transcription of many genes governing lipid
metabolism [3–5].

PPARα is predominantly expressed in the liver, where it
activates a broad range of genes involved in fatty acid uptake,
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glycerol metabolism, β- and ω-oxidation of unsaturated fatty
acids, and their transport into peroxisomes [6]. PPARα de-
ficiency results in hypoglycemia and hypoketonemia, fatty
liver, and elevated plasma fatty acids, revealing its impor-
tance in the hypoglycemic response [7, 8]. When fed a high-
fat diet, PPARα-null mice are unable to catabolize fatty acids
and develop severe hypertriglyceridemias without apparent
obesity [9]. It is therefore predicted that fibrates, which se-
lectively activate PPARα, are effective in treating hyperlipi-
demias [10]. PPARβ/δ is expressed ubiquitously and while
biochemical and genetic evidence has linked PPARβ/δ to as-
pects of the metabolic syndrome [11–13], its emerging role
in lipid metabolism remains to be further ascertained. Al-
though the benefit of targeting PPARα and/or PPARβ/δ in
lipid disorders is not excluded, the current review specifically
emphasizes on PPARγ and its metabolic control by growth
hormone releasing peptides.

3. PPARγ, A METABOLIC REGULATOR OF
INSULIN RESISTANCE

Insulin resistance is marked by hyperinsulinemia, enhanced
hepatic gluconeogenesis, and impaired insulin-stimulated
glucose uptake into skeletal muscle and fat. Elevated levels
of circulating fatty acids, associated with obesity and insulin
resistance, increase fat accumulation in insulin target tissues
and contribute to defective insulin action. In addition, obese
adipose tissue-derived inflammation and altered secretion of
adipocyte proteins, also known as adipokines or adipocy-
tokines, can also impair insulin signals and affect systemic
metabolism [14, 15]. The resulting hyperglycemia, dyslipi-
demia, and hypertension of the metabolic syndrome cause
endothelial dysfunction and hasten vascular diseases.

Over the recent years, a number of adipokines, some
of which being adipocyte-specific while others are not,
have been identified to be produced and secreted by ma-
ture adipocytes. Adipokines, such as adiponectin and leptin
which exhibit insulin-sensitizing effects, or resistin, tumor
necrosis factor α(TNFα), and interleukin-6 (IL-6) which act
as insulin resistance factors, all share autocrine, paracrine, or
endocrine activity that regulates insulin sensitivity, therefore,
establishing a role for the adipose tissue to function as an en-
docrine organ [14, 16, 17].

Remarkably, the thiazolidinediones (TZDs), which have
been described as high-affinity ligands for PPARγ [18, 19],
can modulate in a beneficial manner the expression of many
if not all of these adipokines at the gene level, thereby cor-
relating adipokine production with PPARγ activation. Orig-
inally discovered because of their potent insulin-sensitizing
and glucose-lowering effects, TZDs are being used in clin-
ics to correct abnormalities of lipid and glucose homeostasis,
such as in type 2 diabetes, by reducing tissue insulin resis-
tance [20]. For example, TZDs enhance adiponectin gene ex-
pression and circulating protein levels [21, 22], and decrease
resistin [23, 24], TNFα [25], and IL-6 [26]. This suggests that
the effect by which TZDs enhance insulin sensitivity likely
resides in their ability to promote a beneficial profile of hor-
mones secreted by adipocytes, which can then influence glu-
cose disposal by the liver and muscle.

However, the mechanism by which TZD activation of
adipocyte PPARγ leads to insulin sensitivity is not completely
understood. Adipocyte-derived leptin is a circulating regu-
lator of appetite and energy expenditure, whose increased
levels reduce food intake and minimize ectopic lipid depo-
sition by promoting fatty acid oxidation in peripheral tissues
[27]. These effects contribute to the insulin-sensitizing prop-
erties of leptin, but its expression was found downregulated
by PPARγ ligands [28, 29]. TZDs were also found to stimu-
late adipogenesis by upregulating many PPARγ target genes
involved in fatty acid metabolism and storage [30]. Stud-
ies in rodent models and in humans have shown that TZD
treatment causes weight gain [31, 32], an unwanted side ef-
fect that limits TZD efficacy on insulin sensitivity by increas-
ing adiposity. This paradox remains largely unexplained, and
among the likely hypotheses raised are a selective unequal
accumulation of subcutaneous fat compared to visceral de-
pots, and a possible activation of distinct yet overlapping
adipogenic/antidiabetic gene programs in the adipocyte in-
duced by TZDs [20, 33].

The use of genetic mouse models including tissue-
specific deletion of the Pparg gene has enabled the iden-
tification of fat tissue as the primary target for TZDs but
also revealed that other insulin-sensitive organs, such as liver
and muscle, albeit expressing lower levels of PPARγ com-
pared to fat, were also responsive to some extent to TZDs.
Mice lacking white adipose fat, resulting in a phenotype
similar to that of humans with lipoatrophic diabetes, fatty
liver, hyperglycemia, and insulin resistance [31], or mice
lacking adipose PPARγ, which also exhibit an insulin resis-
tance phenotype [34], were refractory to the antidiabetic,
but not the hypolipidemic effect of TZDs. In addition, these
mice were highly predisposed to hepatic steatosis, an effect
mainly attributed to liver PPARγ [35, 36]. TZDs also re-
tained their glucose-lowering effects in liver- and muscle-
specific PPARγ knockout mice [37, 38], arguying for a pre-
dominant role of adipose PPARγ in the insulin-sensitizing
effects of TZDs, although another study reported that mus-
cle PPARγ contributes to some extent to insulin resistance
which was not improved by TZDs [39]. The kidney also ap-
pears as a target for TZDs in which however, renal PPARγ
activation lead to fluid retention by inducing the Na+ trans-
porter ENaC in the collecting duct [40, 41]. This adverse
effect of TZDs is viewed as a serious complication for pa-
tients with preexisting congestive heart failure [42]. In addi-
tion, the prototype TZD troglitazone was withdrawn from
clinics due to life-threatening hepatic toxicity, whereas the
other two TZDs, rosiglitazone and pioglitazone, are still be-
ing used in large-scale clinical practice. Hence, the crucial
benefit of TZDs to consistently lower fasting and postpran-
dial glucose concentrations as well as free fatty acid concen-
trations in clinical studies is clearly established, but also tem-
pered by other effects, mostly undesired, therefore adding
complexity in our understanding of the systemic response to
PPARγ ligands [43]. It thus becomes essential and of fun-
damental interest that other ways need to be identified in
order to avoid the adverse effects of TZDs while keeping
the benefits of correcting whole body glucose and fatty acid
dysfunctions.



Annie Demers et al. 3

4. THE GHRP-PPARγ PATHWAY IN MACROPHAGES

One critical step initiating fatty streak formation in athero-
sclerosis consists in the accumulation of oxidized lipopro-
tein particles, mainly oxLDL, into the intima and their sub-
sequent uptake by monocyte-derived macrophages, leading
to the formation of cholesterol-loaded foam cells. Many
lines of evidence suggest that the endocytosis of oxLDL by
macrophages is mainly dependent upon their interaction
with CD36, a member of the class B scavenger receptor family
[44–47]. Studies in macrophages have shown that oxLDL up-
take through CD36 provides a source of oxidized fatty acids
and oxysterols that activate, respectively, PPAR and LXR
(liver X receptor; NR1H3), thereby inducing a metabolic cas-
cade resulting in enhanced expression of downstream genes,
such as apolipoprotein E and ABC sterol transporters, and
ultimately in cholesterol efflux to high density lipoproteins
(HDL) [48]. However, these apparent beneficial effects are
opposed by a positive feedback loop in which PPARγ acti-
vation by internalized fatty acids enhances the expression of
CD36, a process shown to mediate foam cell formation [49–
53].

CD36 is an 88 kDa glycoprotein originally identified as
a platelet receptor and also known as fatty acid translo-
case, which is expressed in numerous cell types includ-
ing monocytes/macrophages, platelets, endothelial cells, and
adipocytes [53–55]. CD36 is a multiligand receptor that is
recognized by fatty acids, anionic phospholipids, throm-
bospondin, and oxidized lipoproteins. It is this latter prop-
erty of scavenging (e.g., clearing) oxLDL which implicates
CD36 in the initial steps of atherogenesis, as evidenced with
studies in mice [53, 56] and humans [57].

The findings that growth hormone releasing peptides
(GHRPs) serve as ligands for CD36 [58, 59] led to the
evaluation of their potential role in regulating cholesterol
metabolism in macrophages. The GHRPs belong to a class
of small synthetic peptides known to stimulate growth hor-
mone release through binding to the GH secretagogue-
receptor 1a (GHS-R1a), a G-protein-coupled receptor origi-
nally identified in hypothalamus and pituitary [60] and later
recognized as the receptor for ghrelin [61]. The peripheral
distribution of the ghrelin GHS-R1a receptor in tissues, such
as heart, adrenals, fat, prostate, and bone, has supported
physiological roles of ghrelin and GHRPs not exclusively
linked to GH release. For example, GH-independent effects
on orexigenic properties, fat metabolism, bone cell differen-
tiation, and hemodynamic control have been reported for
ghrelin and GHRPs [62, 63]. Also, in conditions in which
GH release was not promoted or in GH-deficient animals,
the GHRP hexarelin was shown to feature cardioprotective
effects by preventing ventricular dysfunction [64, 65], and by
protecting the heart from damages induced by postischemic
reperfusion [66]. These studies suggest that part of the bene-
ficial effects of hexarelin may not involve GH release.

To evaluate the potential of hexarelin to regulate choles-
terol metabolism in vivo, apolipoprotein E (apoE)-null mice
maintained on a long-term high-fat and high-cholesterol
diet, a condition known to promote atherosclerosis, showed
a significant regression in plaque formation when treated

with hexarelin compared to saline-treated controls [67].
These beneficial effects were observed in conditions in which
GH was not upregulated by hexarelin [67], and also using
EP80317, an hexarelin derivative with no GH release activity
[68], supporting a GH-independent role for GHRPs.

To address the mechanism by which hexarelin exerts
these beneficial effects, treatment of differentiated THP-1
macrophages or mouse peritoneal macrophages with hexare-
lin resulted in an increase in cholesterol efflux, which corre-
lates with an enhanced expression of LXRα, apoE, and sterol
transporters ABCA1 and ABCG1, all involved in promoting
the high density lipoprotein (HDL) pathway (see Figure 1).
In addition, these effects were severely impaired in treated
peritoneal macrophages isolated from PPARγ heterozygote
mice, implying an essential role for PPARγ in mediating the
response to hexarelin [67]. We further showed using cell re-
porter assays that the interaction of hexarelin with CD36
or with ghrelin receptor resulted in an enhanced transcrip-
tional activation of PPARγ, suggesting that both receptors
signal to PPARγ [67]. These studies have helped to define
that the beneficial effects of hexarelin involved the activa-
tion of the PPARγ-LXRα-ABC metabolic cascade, thereby
causing macrophages to mobilize excess cholesterol into the
HDL cholesterol reverse pathway [67]. These findings there-
fore support a novel regulatory pathway by which CD36 and
possibly ghrelin receptor may impact PPARγ-regulated func-
tions. Consequently, a detailed knowledge of the concerted
modulation of CD36 and ghrelin receptor signaling pathways
may help to provide additional strategies in pathologic con-
ditions such as atherosclerosis.

5. A GHRP-PPARγ PATHWAY IN ADIPOCYTES

Based on our observations that hexarelin promotes
PPARγ activation through CD36 and ghrelin receptors in
macrophages [67], we wanted to address whether hexarelin
could exert activation of PPARγ and subsequent downstream
effects in adipocytes. PPARγ is considered a master regulator
of fatty acid metabolism in fat through its direct role in
regulating the expression of a broad range of genes involved
in fatty acid and glucose metabolism. Among the genes
upregulated by PPARγ are found genes related to fatty acid
uptake (fatty acid transport protein FATP, CD36), glucose
uptake (GLUT4), β-oxidation (acyl-CoA dehydrogenase,
carnitine palmitoyltransferase CPT-1, acyl CoA oxidase),
gluconeogenesis (phosphoenolpyruvate carboxykinase
PEPCK), and lipid storage (adipophilin) ([69, 70], and
references therein). Increased expression of many of these
genes might result in a net influx and trapping of fatty acids
into adipocytes, which is considered a mechanism by which
TZDs consistently reduce circulating free fatty acids.

Mature adipocytes are known to express CD36 but not
the other hexarelin receptor GHS-R1a ([71, 72], and data
not shown). Whereas the role of CD36 in mediating oxLDL-
derived cholesterol and fatty acid uptake by macrophages
is recognized, the mechanisms by which CD36 may im-
pact the overall metabolic activity of fat storage and mobi-
lization by adipocytes is not completely understood. With
these considerations and the central role of PPARγ in
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Figure 1: A GHRP-PPARγ pathway in macrophages. Overview of the effects of hexarelin which by interacting with scavenger receptor CD36
and GHS-R1a ghrelin receptor promotes the transcriptional activation of PPARγ. LXRα which is a target of PPARγ is then upregulated
with the subsequent increase in apolipoprotein E (apoE) and sterol transporters ABCA1 and ABCG1 expression. Activation of the PPARγ-
LXRα-ABC metabolic pathway in response to hexarelin favors cholesterol efflux by macrophages through high density lipoproteins (HDLs).
Adapted from [52].

regulating many aspects of fatty acid metabolism, it was ex-
pected that hexarelin may impact PPARγ-regulated events in
adipocytes.

As such, we recently reported the ability of hexarelin to
regulate PPARγ-dependent downstream events in cultured
adipocytes and in fat tissues from treated mice [73], thereby
providing evidence that hexarelin may target different PPARγ
expressing tissues. In these studies, we observed that treat-
ment of differentiated 3T3-L1 adipocytes with hexarelin re-
sulted in a depletion in triglyceride cellular content, accom-
panied by profound changes in the gene expression pro-
file of key markers of fatty acid metabolism [73]. Interest-
ingly, many of these genes were shared with TZD troglita-
zone treatment, indicating that PPARγ may be considered
as a common regulator in both responses. Consistent with
this, among the genes upregulated by hexarelin, we found
many established PPARγ targets, such as nuclear receptor
LXRα, FATP1 (fatty acid transport protein), and F1-ATP
synthase (see Figure 2). Other genes involved in various as-
pects of entry, transport, synthesis, and mobilization of fatty
acids, such as hormone-sensitive lipase (HSL), fatty acid syn-
thase (FAS), and acetyl-CoA synthase (ACS) among others,
were also upregulated, whereas glycerol-3-phosphate acyl-
transferase (GPAT), which catalyzes the initial and commit-
ting step in glycerolipid biosynthesis, was downregulated by
hexarelin [73]. All together, this type of profile is strongly
suggestive of an increase in the cellular mobilization of free
fatty acids in response to hexarelin.

However, the response to hexarelin was not totally mim-
icked by troglitazone as other described PPARγ targets, such
as adipocyte fatty acid binding protein FABP4 (also referred
to as aP2) and lipid droplet-associated protein adipophilin
remained mostly unchanged upon treatment with hexarelin
[73]. It is also important to note that gene expression and
protein levels of CD36, a well-known target of PPARγ [49,
50], were not changed by hexarelin, as opposed to troglita-
zone which significantly induced both in treated adipocytes.
Similar results were also found in macrophages, indicating
that this regulation is not cell-specific [67], and may pre-
vent any undesired increase in macrophage CD36, a situa-
tion that correlates with proatherosclerotic events [55, 74].
Also, as opposed to troglitazone which decreased PPARγ ex-
pression, hexarelin contributed to maintain expression and
steady-state levels of PPARγ in adipocytes and macrophages
[67, 73]. The exact mechanism(s) by which hexarelin ex-
erts such gene-specific regulation compared to TZDs are not
clearly understood, but differences in PPARγ occupancy of
targeted promoters and/or posttranslational modifications of
PPARγ are certainly among the likely possibilities to consider
in the response of PPARγ to hexarelin ([67], see below).

6. HEXARELIN PROMOTES MITOCHONDRIAL
ACTIVITY AND BIOGENESIS

Uptake of fatty acids and glucose by muscle and fat tissues
is an important component regulating energy expenditure
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Figure 2: Hexarelin promotes mitochondrial activity in adipocytes. Scheme of gene expression analysis of fatty acid metabolic regulators in
3T3-L1 adipocytes. Shown are a subset of genes identified as upregulated (red) or downregulated (green) by hexarelin compared to untreated
cells. These effects of hexarelin require CD36 which is expressed in adipocytes as opposed to GHS-R1a receptor; FAO, fatty acid oxidation;
FABP, fatty acid binding protein; FAS, fatty acid synthase; HSL, hormone-sensitive lipase; ACO, acyl CoA oxidase; ACS, and acyl CoA
synthase. Other abbreviations appear in text.

and defects in CD36 have been associated with impaired
fatty acid and glucose homeostasis in humans [75, 76]. How-
ever, the role of CD36 in regulating energy metabolism in
adipocytes remains an unresolved issue.

By transposing the ability of hexarelin to promote PPARγ
activation to adipocytes, it was interesting to observe that
many genes upregulated by hexarelin were characteristic of
an enhanced profile of fatty acid oxidation and mitochondria
morphology [73]. More specifically, among the genes upreg-
ulated were found acetyl CoA acyl transferase, CPT-1, and
several subunits of the ATP synthase and of the cytochrome c
oxidase complexes, all suggesting an increased fatty acid mo-
bilization towards the mitochondrial oxidative phosphoryla-
tion pathway [73].

Enhanced mitochondrial oxidative potential is required
to supply adequate ATP production in high energy-
demanding processes, such as adaptation to cold in brown
fat, heart and skeletal muscle contraction, and liver glu-
coneogenesis in response to fasting. Such mitochondrial
energy-producing capacity correlates with active β-oxidation
of fatty acids and increased expression of PPARγ coactivator-
1 (PGC-1) in these tissues [77–82]. PGC-1α is a coactivator
of most nuclear receptors that was discovered as a molecular
switch that turns on several key components of the adaptive
thermogenic program in brown fat, including the stimula-
tion of fuel intake, mitochondrial fatty-acid oxidation, and

heat production [83, 84]. These metabolic changes are sup-
ported by the ability of PGC-1 to upregulate the expression
of UCP-1, a biological uncoupler of mitochondrial oxidative
phosphorylation, and of genes of gluconeogenesis, such as
PEPCK and glucose-6-phosphatase (reviewed in [84, 85]).
Thus, modulating the relative activity of PGC-1 within a
particular tissue may lead to a fine tuning of mitochondrial
function in fatty acid oxidation and energy balance. Interest-
ingly, hexarelin induced an increase in PGC-1α and UCP-1
in 3T3-L1 adipocytes as well as in epididymal fat of treated
mice, indicating a potential fat burning phenotype taking
place in white fat in response to hexarelin [73]. Consistent
with these changes, electron microscopy of hexarelin-treated
3T3-L1 adipocytes showed an intense and highly organized
cristae formation that spans the entire width of mitochon-
dria compared to untreated cells, accompanied with an in-
crease in cytochrome c oxidase activity, two features char-
acteristic of highly oxidative tissues [73]. A similar mito-
chondrial phenotype and gene expression profile was de-
tected in epididymal white fat of mice treated with hexare-
lin, and shown to be dependent on CD36, indicating that the
ability of hexarelin to promote a fat burning-like phenotype
was maintained in vivo [73]. These studies therefore support
a functional GHRP-PPARγ signaling cascade in adipocytes,
which provides a potential role for CD36 to impact the over-
all metabolic activity of fatty acid usage and mitochondrial
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biogenesis in fat. These aspects are particularly relevant to
the emerging association of mitochondrial dysfunction with
insulin resistance and type 2 diabetes [86].

7. HEXARELIN INCREASES PPARγ
PHOSPHORYLATION

The exact mechanism(s) by which PPARγ activity is mod-
ulated in response to hexarelin remains to be clearly de-
fined. In an attempt to partly characterize such a re-
sponse, we found that PPARγ was highly phosphorylated in
macrophages treated with hexarelin, therefore providing a
basis on how PPARγ can respond to hexarelin signaling [67].
Although macrophages do express both receptors recognized
by hexarelin, our observation that GHS-R1a activation by
hexarelin enhanced PPARγ activity in transfected heterol-
ogous cells may therefore suggest that GHS-R1a signals to
activate PPARγ [67]. Consistent with this, the activation of
GHS-R1a receptor by hexarelin or its natural ligand ghre-
lin leads to the phosphorylation of PPARγ in macrophages,
while a GHRP selective for CD36 did not ([67] and unpub-
lished observations). These findings rather implicate GHS-
R1a signaling in the phosphorylation of PPARγ, at least in
macrophages.

The effects of phosphorylation on PPARγ activity have
been reported to vary, often in opposite directions, depend-
ing on the cellular and promoter context [87]. In that re-
spect, it is interesting to note that while PPARγ ligands of the
TZD family are recognized to upregulate CD36 gene expres-
sion [49, 50], no significant changes in CD36 expression were
measured in response to GHRPs despite PPARγ activation
[67, 68, 73]. In order to further investigate the mechanism
by which this unexpected regulation of CD36 by hexarelin
may result, chromatin immunoprecipitation assay has re-
vealed that the relative occupancy of the CD36 promoter re-
gion by PPARγ remained mostly unchanged, whereas that of
nuclear receptor LXRα, also a known target of PPARγ [88],
was occupied by PPARγ in a greater extent in macrophages
treated with hexarelin, indicating that LXRα upregulation by
hexarelin may result from a preferred recruitment of PPARγ
to the LXRα promoter, as opposed to CD36 [67]. Whether
PPARγ phosphorylation may discriminate for promoter us-
age is not yet known but interestingly, it was reported that
PPARγ phosphorylation could decrease CD36 transcription
in macrophages [53]. Given the ability by which posttransla-
tional modifications such as phosphorylation could regulate
PPARγ transcriptional activity and that ligand-independent
recruitment of transcriptional coregulators is favored by nu-
clear receptor phosphorylation [87, 89–91], it is predicted
that such mechanism may contribute in the cellular response
to hexarelin by selectively regulating PPARγ-targeted genes.
These aspects need to be further investigated in order to as-
certain such selectivity.

8. CONCLUDING REMARKS

Although the exact mechanisms by which GHRPs promote
their metabolic response are not fully understood, it be-
comes clear that interacting with CD36 and/or GHS-R1a re-

ceptors induces profound changes in metabolic activities of
target tissues, especially regarding PPARγ-regulated events.
However, it is important to note that the sole activation
of PPARγ may not be exclusive in translating the signal by
hexarelin or other GHRPs. Indeed, in view that hexarelin
can also promote PPARα and PPARβ/δ activation [67], and
with the propensity of PGC-1α to coactivate other nuclear
receptors besides PPARγ, such as thyroid hormone recep-
tor TRα, retinoic acid receptor RARα, estrogen-related re-
ceptor ERRs, and PPARα [83], it is expected that these path-
ways may also be affected by hexarelin. So clearly, the mech-
anism(s) by which hexarelin exerts its metabolic effects rep-
resents a promising avenue which deserves further investiga-
tion to face problems related to multipathological states as-
sociated with metabolic syndrome.
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