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Abstract

Little is known about body size over the life-course and non-communicable disease risk in

low- and middle-income country populations. Our study explored the role of body mass

index (BMI) trajectories from infancy through mid-adulthood on cardio-metabolic disease

(CMD) risk factors in a prospective cohort of Guatemalan adults. Study participants were

born in Guatemala from 1962–77 and have been followed prospectively since participating

in a nutrition supplementation trial as children. Sex-specific BMI latent class trajectories

were derived using latent class growth modeling from up to 22 possible BMI values from age

1 month to 42 years measured between 1969 and 2004. CMD risk factors were assessed in

2015–17 (at age 37–54 years) using anthropometry, blood glucose and lipids, and blood

pressure. We used logistic regression to assess the role of BMI trajectory on CMD risk fac-

tors in 510 women and 346 men (N = 856). We identified two BMI latent classes for women

(low [n = 287, 56.3%] and high [n = 223, 43.7%]) and three classes for men (low [n = 141,

40.8%], medium [n = 160, 46.2%], and high [n = 45, 13.0%]). Given the small percentage of

men in the high BMI latent class, we collapsed the medium and high BMI latent classes for

men (n = 205, 59.1%). Among the most prevalent CMD risk factors at ages 37–54 years

were abdominal obesity defined by waist-height ratio (99.6% of women and 87.3% of men),

obesity defined by percent body fat (96.6% of women and 75.9% of men), low HDL-c

(87.5% of women and 74.5% of men), and elevated triglycerides (78.3% of women and

73.6% of men). Except for obesity defined by BMI, we found no associations between BMI

latent class and CMD risk factors in women. Among men, BMI latent class was not associ-

ated with CMD risk factors after controlling for current BMI. For the CMD risk factors we ana-

lyzed, the role of early life BMI on adult CMD appeared to be mediated by adult BMI among

men–highlighting the need to establish and maintain healthy body weight over the life

course.
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Introduction

Obesity-related non-communicable diseases represent a growing proportion of the disease

burden in Latin America [1] and are expected to double in the next 40 years [2]. Guatemala

has a high burden of these conditions; in 2015, 67.2% of adults aged 18 years and older residing

in Metropolitan Guatemala were overweight, 28.8% were obese, 28.4% had impaired fasting

glucose, and 26.7% had elevated blood pressure [3]. According to the Global Burden of Disease

study, high body mass index (BMI), high fasting plasma glucose, and high blood pressure are

among the top contributors to combined death and disability [4].

Despite the rise in obesity prevalence, childhood undernutrition remains a serious problem

in Guatemala. As of 2017, 42.6% of children aged under five years were stunted (height-for-

age Z scores< -2 SD) while only 4.0% had overweight or obesity (BMI> 2 SD) [5]. Early life

undernutrition is thought to increase risk of adult cardio-metabolic disease (CMD) [6]. Birth

size has been consistently associated with adiposity, obesity, type 2 diabetes, lipid profile, and

blood pressure later in childhood, adolescence, or adulthood [7–11]. The Developmental Ori-

gins of Health and Disease Hypothesis posits that structural and functional adaptations to

early life undernutrition might preserve brain and vital organ development in contexts of

nutrient deprivation; however, these adaptations are a “mismatch” for later obesogenic envi-

ronments in countries undergoing nutrition transition [6]. Yet there is little data from low-

and middle-income country (LMIC) populations on the long term consequences of persistent

early life undernutrition in obesogenic environments [12].

Studies of life course growth trajectories and CMD risk factors have focused on high-

income country populations [13–16]; however, growth patterns in LMIC are likely distinct

due to persistent childhood undernutrition and differences in diet and physical activity. Stud-

ies from LMIC populations have explored the role of BMI in smaller segments of the life

course, for example, adolescence, with CMD risk factors [10, 17–21]–the limited focus likely

owing to the relatively young age of most LMIC birth cohorts [22].

Understanding the role of childhood/adolescent body size on adult disease risk is challeng-

ing for several reasons: adult BMI is correlated with both childhood BMI and adult CMD [23];

conventional mediation models do not work well with three or more repeated measures [24];

and growth models using a single curve to describe average growth of a population could

obscure heterogeneity in growth patterns among sub-groups within that population [25]. In

contrast, latent class growth analysis (LCGA) allows us to identify distinct growth patterns in

cohort sub-groups not readily identifiable using other modeling techniques and to minimize

collinearity of repeated measures [26]. If people exposed to low nutrient environments in early

life–especially those later exposed to hyper-caloric environments consistent with developing

economies–have growth patterns that confer distinct risk for CMD, life course growth analysis

could help identify differential risk.

The objective of this research was to examine the role of life course BMI trajectories from

infancy or early childhood through mid-adulthood on CMD risk factors in a prospective

cohort of Guatemalan adults.

Methods

Study population

Study participants were born in four villages in southeastern Guatemala from 1962–77 and

participated in the Institute of Nutrition of Central America and Panama (INCAP) Oriente

Longitudinal Study (1969–77) and its follow-up studies (1989–2017) [27]. The original com-

munity-randomized intervention trial was designed to assess the influence of improved early
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life nutrition on cognitive and physical development (N = 2,392). Two sets of matched villages

were randomized to Atole, a protein-energy nutritional supplement, or Fresco, a low-energy

beverage made from sugar and water. Children could be exposed prenatally through maternal

consumption as well as postnatally through breastmilk or the child’s own supplement intake.

Exposure to Atole before age 3 years was positively with weight and linear growth and nega-

tively associated with fat-folds, suggesting that increases in weight were largely due to fat-free

mass [28]. The original trial provided the anthropometric measures in childhood and four fol-

low-up waves (1988–89, 1997–99, 2002–04) provided measures in adolescence/adulthood for

derivation of life course BMI trajectories. The 2015–17 follow-up (henceforth referred to as

2016) study provided anthropometric, biochemical, clinical, and sociodemographic informa-

tion. Full details of the original trial and its follow-up studies are published elsewhere [29].

All data collection followed protocols that were approved by the institutional review boards

of INCAP (Guatemala City, Guatemala) and Emory University (Atlanta, Georgia, United

States of America). Caregivers consented on behalf of their children in the original trial (1969–

77) and in the first follow-up wave (1988–89) if the participants were minors. For all other fol-

low-up waves, participants gave written informed consent.

Anthropometric, biochemical, and clinical measures

In the original trial and the four subsequent follow-up study waves, trained personnel collected

length/height and weight data using standard procedures [30]. BMI was calculated as weight

(kg) divided by height squared (m2).

For CMD risk profiles in 2016, we assessed two measures of overall adiposity–BMI category

and percent body fat–and two measures of central adiposity–abdominal obesity defined by

waist circumference and by waist-height ratio (WHtR). We additionally evaluated blood lipids,

fasting blood glucose, 2-hour post-challenge glucose, blood pressure, and metabolic syndrome.

Metabolic syndrome (MetS) is a group of interrelated metabolic risk factors that increases risk

of conditions such as cardiovascular disease, stroke, and diabetes [31].

In 2016, height and waist circumference were measured to the nearest 0.1 cm and weight to

the nearest 0.01 kg. All measurements were taken in duplicate; if the difference exceeded 0.5

cm for height, 1.0 cm for waist circumference, or 0.5 kg for weight, a third measurement was

taken and the average of the two closest measurements was used. To obtain percent body fat,

we calculated total body water using the deuterium oxide dilution technique [32]. We esti-

mated fat-free mass from total body water assuming that fat-free mass has a hydration constant

of 0.732 and then subtracted fat-free mass from body mass to estimate fat mass. BMI was clas-

sified as: underweight/normal (<25.0 kg/m2), overweight (25.0–29.9 kg/m2), and obesity

(�30.0 kg/m2) [33]. Obesity by percent body fat was defined as body fat�32% for women and

�25% for men [34]. Abdominal obesity was defined as waist circumference >88 cm for

women and>102 cm for men [33]. Waist-height ratio (WHtR) was calculated as waist circum-

ference (cm) divided by height (cm). Abdominal obesity by WHtR was defined as WHtR

>0.50 [35].

Trained phlebotomists drew venous blood samples in the fasted state (>8 hours) and 120

minutes after a prandial challenge. Lipids (total cholesterol, HDL-c, and triglycerides) and glu-

cose concentrations were measured by enzymatic colorimetric methods (Cobas C111 analyzer,

ROCHE, Indiana, United States of America). Elevated triglycerides were defined as triglycer-

ides�150 mg/dL [36]. Low HDL-c was defined as<50 mg/dL for women and<40 mg/dL for

men [36]. Prediabetes was classified as fasting plasma glucose 100–125 mg/dL or post-chal-

lenge glucose 140–199 mg/dL, and diabetes was classified as fasting plasma glucose�126 mg/

dL, post-challenge glucose�200 mg/dL, or use of diabetes medication [37].
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Seated blood pressure was measured three times at three-minute intervals on the left arm

resting on a table at heart level using a digital blood pressure monitor (Omron, Schaumburg,

Illinois, United States of America) after a five minute rest [38]. If systolic or diastolic blood

pressure measurements differed by>10 mmHg, then a fourth measure was taken and the aver-

age of the two closest measurement was used; otherwise, the average of the second and third

measurements was used. Pre-hypertension was defined as systolic blood pressure 120–129

mmHg and diastolic blood pressure <80 mmHg among participants without anti-hyperten-

sive medication use [35]. Hypertension was defined as systolic blood pressure�130 mmHg

and/or diastolic blood pressure�80 mmHg and/or anti-hypertensive medication use [39].

We defined MetS based on presence of�3 of the following: abdominal obesity (waist cir-

cumference >88 cm for women; >102 cm for men); fasting glucose�100 mg/dL or diabetes

medication use; triglycerides�150 mg/dL or statin use; HDL-c<40 mg/dL in men or <50

mg/dL in women; and blood pressure�130 mmHg systolic,�85 mmHg diastolic, and/or

hypertension medication use [31].

Lifestyle and socioeconomic characteristics

We identified the following potential covariates based on their theoretical relationship with

CMD risk factors including, socioeconomic status (SES), current residence, parity, smoking

status, current vitamin intake, current alcohol consumption, and physical activity level. Data

on lifestyle and socioeconomic factors in 2016 were collected by interview. Socioeconomic sta-

tus in 2016 was a cumulative score developed from principal components analysis of house-

hold characteristics and consumer durable goods for participant households [40]. Current

residence was classified as Guatemala City vs. other (rural and semi-rural). Parity was included

as a continuous variable. Smoking status was classified as ever vs. never smoker. Current mul-

tivitamin and alcohol use were classified as yes or no. Physical activity level was ascertained

using the International Physical Activity Questionnaire short form which has been validated

for use in Guatemala [41]. We calculated participant physical activity level using the scoring

protocol; participants who did not meet the criteria for moderate (any one of the following cri-

teria:�3 days of vigorous activity of�20 min/day; or�5 days of moderate-intensity activity

or walking of�30 min/day; or�5 days of any combination of walking, moderate-intensity or

vigorous intensity activities achieving�600 MET-min/week) or high (any of the following cri-

teria: vigorous-intensity activity on�3 days and accumulating�1,500 MET-minutes/week; or

�7 days of any combination of walking, moderate-intensity or vigorous intensity activities

achieving�3,000 MET-minutes/week) physical activity were classified as physically inactive

[42].

BMI trajectories

In previously published analyses [43], we derived BMI latent class trajectories from participant

length/height and weight data in 1969–77, 1988–89, 1997–99, and 2002–04. Using LCGA, sex-

specific BMI latent class trajectories were derived from up to 22 possible measures of height

and weight: five from 1–12 months; three from 13–23 months; five from 24–50 months; three

from 51–84 months; two from 10–20 years; and four from 21–42 years. Because a minimum of

three BMI values improve model stability in LCGA [44], trajectories were derived for partici-

pants with�2 BMI values in childhood (0–84 months) from 1969–77 and�1 non-pregnant

BMI value in adolescence/adulthood (10–42 years) from 1988–2004. Among those included,

5% had 3 measurements, 39% had 4–9 measurements, 34% had 10–14 measurements, and

23% had�15 measurements. Models were developed using all available data and robust maxi-

mum likelihood estimation, assessing overall model fit using the Bayesian Information
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Criterion (BIC), the Bootstrap Likelihood Ratio (BLR) Test, and the Lo–Mendell–Rubin Like-

lihood Ratio (LMR) Test. The quality of classification was based on the entropy statistic and

posterior probabilities [25, 44]. We examined 2-, 3-, and 4-class models for men and women.

Two BMI latent classes were identified for women: low (n = 287, 56.3%) and high (n = 223,

43.7%); and three classes for men low (n = 141, 40.8%), medium (n = 160, 46.2%), and high

(n = 45, 13.0%) (Fig 1). The 2-class model for women had the highest entropy (0.76) and had

significant LMR and BLR tests (P = 0.008 and P<0.001, respectively). Among men, the 3-class

model had the lowest BIC and the highest entropy (0.77) and had significant LMR and BLR

tests (P<0.001 for both). Given the small percentage of men in the high BMI latent class lead-

ing to non-converging models in the multivariable analyses, we collapsed the medium and

high BMI latent classes for men (n = 205, 59.1%).

Statistical analyses

Of the 2,392 participants in the original study, 369 (15.4%) of the participants in the original

trial had died (the majority in early childhood), 249 (10.4%) had migrated outside of Guate-

mala, and 113 (4.7%) were untraceable, and 1,661 (69.4%) were presumed alive and living in

Guatemala as of 2015 (Fig 2). Of the 1,661 participants eligible for enrollment, 1,161 (69.9%)

provided informed consent. Of these, we excluded those who were pregnant/lactating in 2016

(n = 6), who did not attend the clinical examination (n = 16), who were missing BMI latent

class trajectory due to insufficient number BMI values (n = 281). We also excluded two partici-

pants who were missing covariates. Those excluded were on average older, had higher parity

(women), and were more likely to reside in Guatemala City (men) (data not presented). At

least one outcome measure was obtained from 510 women and 346 men, ages 37–54 years.

To assess differences in sociodemographic and health characteristics across BMI latent class

trajectories, we used chi-square tests for categorical variables and t tests for continuous vari-

ables. Among the potential covariates, we selected the final covariates by assessing bivariate

relationships between the potential covariates and the outcomes. Parity, multivitamin intake,

and alcohol consumption were not included in the final adjusted models. To characterize the

relationship between BMI latent class trajectory and each CMD risk factor in 2016, we used

sex-stratified logistic regression models to regress dichotomous CMD risk factor outcomes

(obesity defined by BMI, obesity defined by percent body fat, abdominal obesity defined by

waist circumference, abdominal obesity defined by WHtR, elevated triglycerides, low HDL-c,

diabetes, hypertension, and MetS) on BMI latent class trajectory. Model 1 included BMI latent

class trajectory, age at the time of clinical assessment, and birth village. Model 2 additionally

controlled for current residence, SES, and lifestyle covariates (low physical activity level and

smoking status) in 2016. To evaluate the mediating role of current BMI on CMD risk factors,

Model 3 additionally controlled for BMI in 2016 in all models except where obesity defined by

BMI was the outcome. Because many participants had at least one sibling in the study, we used

generalized estimating equations to account for clustering at the mother level.

In sensitivity analyses, we evaluated the association between CMD risk factors in 2016 with:

(1) a single measure of adiposity in childhood (weight-for-height Z score [WHZ] at age 18–42

months); and (2) a measure of adiposity in adolescence/young adulthood (BMI in 1988–89 at

age 10–27 years) using the same modeling strategy described above for the primary analyses.

Analyses included all non-pregnant/lactating participants for whom complete CMD risk factor

information in 2016 and each respective adiposity value were available (n = 668 for WHZ anal-

yses and n = 752 for 1988–89 BMI). We used the 2006 World Health Organization Multicentre

Growth Reference child growth standards to calculate each child’s WHZ, standardized to the

reference population for the child’s age and sex [45].

PLOS ONE Body mass index trajectories and cardiometabolic disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0240904 October 22, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0240904


PLOS ONE Body mass index trajectories and cardiometabolic disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0240904 October 22, 2020 6 / 17

https://doi.org/10.1371/journal.pone.0240904


Statistical significance was set a priori at P<0.05. All P-values were two-sided. All analyses

were performed using SAS v.9.4 (SAS Institute, Cary, North Carolina, United States of Amer-

ica). SAS code is available online via OSF at: https://osf.io/5cvw8/.

Results

The study sample was 59.6% female (Table 1). Fifty-six percent of women and 40.8% of men

were in the low BMI latent class trajectory. In 2016, the difference in median BMI between the

low and high/medium BMI latent class trajectories was 2.0 kg/m2 for women and 1.8 kg/m2

for men. Higher BMI latent class trajectories were more likely to be comprised of individuals

in the more recent birth cohorts (P<0.0001 for both sexes), suggesting a secular trend of ear-

lier onset of high BMI among younger cohort members.

Among the most prevalent risk factors were abdominal obesity defined by WHtR (99.6% of

women and 87.3% of men), obesity defined by percent body fat (96.6% of women and 75.9%

of men), low HDL-c (87.5% of women and 74.5% of men), elevated triglycerides (78.3% of

women and 73.6% of men), and MetS (81.3% of women and 46.5% of men). In bivariate analy-

ses, current BMI was highly associated with CMD risk factors (P< 0.001 for all comparisons;

data not presented).

Relative to the low BMI latent class, high (women) and high/medium (men) BMI latent

classes had higher unadjusted median BMI, WHtR, and unadjusted prevalence of obesity

defined by BMI (P< 0.05 for all comparisons). Relative to men in the low BMI latent class,

men in the high/medium BMI latent class also had higher unadjusted median waist circumfer-

ence, percent body fat and number of MetS components, and higher unadjusted prevalence of

abdominal obesity defined by waist circumference and by WHtR, obesity defined by percent

body fat, elevated triglycerides, and low HDL-c (P< 0.05 for all comparisons).

Among women, high BMI latent class was positively associated with obesity defined by

BMI (adjusted Odds Ratio [aOR] 2.39, 95% CI 1.58, 3.60) relative to low BMI latent class in

models controlling for age, birth village, residence, SES, and lifestyle factors (Table 2). Among

men, high/medium BMI latent class was positively associated with obesity defined by BMI

(aOR 2.35, 95% CI 1.21, 4.55), abdominal obesity (aOR 2.35, 95% CI 1.25, 4.42), obesity

defined by percent body fat (aOR 2.04, 95% CI 1.15, 3.62), elevated triglycerides (aOR 1.81,

95% CI 1.06, 3.06), and low HDL-c (aOR 1.93, 95% CI 1.09, 3.40) relative to the low BMI latent

class in fully adjusted models without BMI in 2016 (Model 2); however, these associations

were not significant after adjusting for current BMI (Model 3).

In the mediation analyses, BMI in 2016 was strongly associated with all CMD risk factor

outcomes in both sexes except for diabetes (S1 Table).

In sensitivity analyses, findings for models using WHZ at age 18–42 months as the exposure

and models using BMI in 1988–89 at age 10–27 years as the exposure were consistent with

those in the primary analyses (S2 and S3 Tables). Higher WHZ and 1988–89 BMI were gener-

ally associated with increased odds of CMD risk factors; however, apart from diabetes, these

associations were not significant after adjusting for current BMI.

Discussion

Using data from a longitudinal cohort with>40 years of follow-up, we examined the role of

BMI latent class trajectories from infancy through mid-adulthood on CMD risk factors in

Fig 1. Mean body mass index (BMI) by BMI latent class trajectory group in females (A) and males (B) in the INCAP Nutrition Supplementation Trial

Longitudinal Cohort. Sex-specific BMI latent class trajectories were derived from 22 possible measures of height and weight from 1969–2004 using

latent class growth modeling.

https://doi.org/10.1371/journal.pone.0240904.g001
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Guatemalan adults. Our work previously identified two BMI latent classes for women (low

and high) and three classes for men, which we have collapsed into two (low and medium/high)

[43]. Except for obesity defined by BMI, we found no associations between BMI latent class

and CMD risk factors among women in 2016 –possibly due to high levels of adiposity in both

trajectory classes. Among men, high/medium BMI latent class was positively associated with

obesity (defined by BMI, waist circumference, and percent body fat), elevated triglycerides,

and low HDL-c; however, associations appeared to be mediated by current BMI. In sensitivity

Fig 2. Tracking of the analytic sample. In 2015, of the original 2,392 individuals in the 1969–77 INCAP Nutrition

Supplementation Trial, 15.4% (n = 369) had died, 10.4% (n = 249) had migrated from Guatemala, and 4.7% (n = 113)

of the original cohort members were untraceable. Of the 1,661 original cohort members eligible for the 2015–17

follow-up study, 1,161 provided informed consent.

https://doi.org/10.1371/journal.pone.0240904.g002

Table 1. Select sociodemographic and health characteristics in 2015–17 after 40 years of follow up at age 37–54 years by BMI latent class trajectory and sex, INCAP

nutrition supplementation trial longitudinal cohort (n = 510 women, n = 346 men).

Women Men

Characteristics Low Class (n = 287) High Class (n = 223) Low Class (n = 141) Medium/High Class

(n = 205)

n n (%) or Median

(Q1, Q3)

n n (%) or Median

(Q1, Q3)

P-valuea n n (%) or Median

(Q1, Q3)

n n (%) or Median

(Q1, Q3)

P-valuea

Age, years 287 46.0 (42.0,49.0) 223 42.0 (40.0,44.0) <0.0001 141 45.0 (43.0,48.0) 205 42.0 (40.0,46.0) <0.0001

Reside in Guatemala City, % 287 42 (14.6%) 223 49 (22.0%) 0.03 141 21 (14.9%) 205 35 (17.1) 0.6

SES tertile, % 287 223 0.4 141 205 0.7

Poorest 91 (31.7%) 77 (34.5%) 50 (35.5%) 65 (31.7%)

Middle 107 (37.3%) 71 (31.8%) 44 (31.2%) 63 (30.7%)

Wealthiest 89 (31.0%) 75 (33.6%) 47 (33.3%) 77 (37.6%)

Parity, n 287 3.0 (2.0,4.0) 223 3.0 (2.0,5.0) 0.5 - - - - -

Alcohol use, % 287 13 (4.5%) 223 10 (4.5%) 0.9 141 61 (43.3%) 205 71 (34.6%) 0.1

Ever smoker, % 287 11 (3.8%) 223 9 (4.0%) 0.9 141 89 (63.1%) 205 130 (63.4%) 0.9

Low physical activityb, % 287 149 (51.9%) 223 127 (57.0%) 0.2 141 66 (46.8%) 205 92 (44.9%) 0.7

Multivitamin use, % 287 38 (13.2%) 223 24 (10.8%) 0.4 141 26 (18.4%) 205 18 (8.8%) 0.008

BMI, kg/m2 287 28.0 (25.5,31.3) 223 30.0 (26.4,33.4) 0.0002 141 25.3 (22.8,28.1) 205 27.1 (25.1,29.8) <0.0001

Obesity defined by BMIc, % 287 94 (32.8%) 223 112 (50.2%) <0.0001 141 17 (12.1%) 205 47 (22.9%) 0.01

Waist circumference, cm 287 99.2 (93.0,107.7) 223 102.5 (95.0,110.1) 0.06 141 92.5 (85.1,98.6) 205 95.0 (89.7,102.2) 0.0008

Abdominal obesity defined by waist

circumferenced, %

287 257 (89.5%) 223 203 (91.0%) 0.6 141 20 (14.2%) 205 52 (25.4%) 0.01

Waist-height ratio 287 0.65 (0.61,0.71) 223 0.68 (0.62,0.73) 0.03 141 0.56 (0.52,0.59) 205 0.59 (0.55,0.62) <0.0001

Abdominal obesity defined by waist-

height ratioe, %

287 286 (99.7%) 223 222 (99.6%) 0.8f 141 113 (80.1%) 205 189 (92.2%) 0.0009

Body fat, % 279 42.4 (37.9,45.7) 218 42.8 (39.4,46.5) 0.3 133 28.5 (23.9,33.2) 199 29.6 (25.8,34.3) 0.04

Obesity defined by % body fatg, % 279 268 (96.1%) 218 212 (97.2%) 0.5 133 93 (69.9%) 199 159 (79.9%) 0.02

Elevated triglyceridesh, % 284 219 (77.1%) 219 175 (79.9%) 0.4 136 91 (66.9%) 197 154 (78.2%) 0.02

Low HDL-ci, % 284 243 (85.6%) 219 197 (90.0%) 0.1 136 93 (68.4%) 197 155 (78.7%) 0.03

Blood pressure 287 223 0.2 141 205 0.5

Pre-hypertensionj, % 47 (16.4%) 39 (17.5%) 41 (29.1%) 41 (20.0%)

Hypertensionk, % 122 (42.5%) 81 (36.3%) 45 (31.9%) 76 (37.1%)

Dysglycemia 285 219 0.01 136 197 0.4

Prediabetesl, % 112 (39.3%) 64 (29.2%) 51 (37.5%) 57 (28.9%)

Diabetesm, % 47 (16.5%) 34 (15.5%) 11 (8.1%) 24 (12.2%)

Metabolic syndrome risk factors 284 3.0 (3.0,4.0) 219 3.0 (3.0,4.0) 0.4 136 2.0 (1.0,3.0) 197 2.0 (2.0,4.0) 0.01
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Table 1. (Continued)

Women Men

Characteristics Low Class (n = 287) High Class (n = 223) Low Class (n = 141) Medium/High Class

(n = 205)

Metabolic syndromen, % 284 232 (81.7%) 219 177 (80.8%) 0.8 136 58 (42.6%) 197 97 (49.2%) 0.2

Values presented are median (Q1, Q3) or percentages. Sex-specific BMI latent class trajectories were derived using latent class growth modeling from up to 22 BMI

values from age 1 month to 42y measured between 1969 and 2004.

a. P was calculated using t tests (continuous) and chi-square tests (categorical variables).

b. Low physical activity in 2015–17 defined as participants who do not meet the International Physical Activity Questionnaire (IPAQ) scoring criteria for moderate or

high physical activity.

c. Obesity by BMI defined as BMI�30 kg/m2.

d. Abdominal obesity defined as waist circumference >88 cm for women and >102 cm for men.

e. Abdominal obesity by waist-height ratio defined as waist-height ratio >0.50.

f. Estimate unstable due to small cell sizes.

g. Obesity by percent body fat defined as body fat�32% for women and�25% for men.

h. Elevated triglycerides defined as �150 mg/dL or medication.

i. Low HDL-c defined as HDL-c <50 mg/dL for women and <40 mg/dL for men.

j. Pre-hypertension defined according to the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection,

Evaluation, and Management of High Blood Pressure in Adults: systolic blood pressure 120–129 mmHg and/or diastolic blood pressure <80 mmHg among participants

without self-reported hypertension and/or anti-hypertensive medication use.

k. Hypertension defined according to the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection,

Evaluation, and Management of High Blood Pressure in Adults: systolic blood pressure�130 mmHg and/or diastolic blood pressure�90 mmHg and/or anti-

hypertensive medication use.

l. Prediabetes defined according to the American Diabetes Association diagnostic criteria: impaired fasting glucose (fasting plasma glucose 100–125 mg/dL) and/or

impaired glucose tolerance (post challenge glucose 140–199 mg/dL).

m. Diabetes defined according to the American Diabetes Association diagnostic criteria: fasting plasma glucose�126 mg/dL, and/or post-challenge glucose�200 mg/

dL, and/or diabetes medication use.

n. Metabolic syndrome defined according to the American Heart Association/National Heart, Lung, and Blood Institute scientific statement diagnostic criteria based on

presence�3 of the following: abdominal obesity (waist circumference >88 cm for women and >102 cm for men); fasting plasma glucose�100 mg/dL or medication;

triglycerides�150 mg/dL or medication; HDL-c <50 mg/dL for women and <40 mg/dL for men; and blood pressure�130 mmHg systolic,�85 mmHg diastolic and/

or medication use.

Abbreviations: BMI, body mass index; HDL-c, high density lipoprotein cholesterol; INCAP, Institute of Nutrition for Central America and Panama.

https://doi.org/10.1371/journal.pone.0240904.t001

Table 2. Multivariable logistic regression models to predict cardio-metabolic disease risk factors in 2015–17 after 40 years of follow up at age 37–54 years based on

body mass index latent class trajectory from infancy through mid-adulthood (high vs. low in women and high/medium vs. low in men) in the INCAP nutrition sup-

plementation trial longitudinal cohort (n = 510 women, n = 346 men).

Women High vs. low Men High/medium vs. low

Cardio-metabolic risk factor Adjusted Odds Ratio (95% CI) P Adjusted Odds Ratio (95% CI) P
Obesity defined by BMIa

Model 1 2.24 (1.50, 3.38) <0.0001 2.53 (1.32, 4.83) 0.005

Model 2 2.39 (1.58, 3.60) <0.0001 2.35 (1.21, 4.55) 0.01

Model 3 - - - -

Abdominal obesity defined by waist circumferenceb

Model 1 1.15 (0.56, 2.34) 0.7 2.44 (1.31, 4.53) 0.005

Model 2 1.24 (0.59, 2.58) c 0.6 2.35 (1.25, 4.42) 0.008

Model 3 0.73 (0.25, 2.08) c 0.5 1.15 (0.33, 3.97) 0.8

Obesity defined by percent body fatd

Model 1 1.06 (0.29, 3.78) 0.9 2.04 (1.18, 3.53) 0.01

Model 2 1.17 (0.29, 4.66) c 0.8 2.04 (1.15, 3.62) 0.01

(Continued)
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Table 2. (Continued)

Women High vs. low Men High/medium vs. low

Cardio-metabolic risk factor Adjusted Odds Ratio (95% CI) P Adjusted Odds Ratio (95% CI) P
Model 3 0.83 (0.21, 3.29) c 0.8 0.96 (0.48, 1.92) 0.9

Elevated triglyceridese

Model 1 1.30 (0.81, 2.07) 0.3 1.92 (1.15, 3.21) 0.01

Model 2 1.36 (0.84, 2.21) 0.2 1.81 (1.06, 3.06) 0.03

Model 3 1.21 (0.74, 1.98) 0.4 1.25 (0.71, 2.21) 0.4

Low HDL-cf

Model 1 1.33 (0.74, 2.37) 0.3 1.93 (1.13, 3.32) 0.02

Model 2 1.61 (0.88, 2.94) c 0.1 1.93 (1.09, 3.40) 0.02

Model 3 1.33 (0.71, 2.47) c 0.4 1.27 (0.70, 2.32) 0.4

Diabetesg

Model 1 1.49 (0.83, 2.66) 0.2 2.20 (0.92, 5.26) 0.08

Model 2 1.50 (0.84, 2.73) 0.2 2.10 (0.88, 5.03) 0.1

Model 3 1.50 (0.83, 2.73) 0.2 2.09 (0.83, 5.25) 0.1

Hypertensionh

Model 1 0.86 (0.57, 1.29) 0.5 1.43 (0.88, 2.32) 0.1

Model 2 0.83 (0.54, 1.25) 0.4 1.41 (0.86, 2.30) 0.2

Model 3 0.66 (0.43, 1.03) 0.07 1.06 (0.63, 1.77) 0.8

Metabolic syndromei

Model 1 1.15 (0.72, 1.84) 0.5 1.55 (0.96, 2.52) 0.07

Model 2 1.24 (0.77, 1.99) 0.4 1.53 (0.94, 2.50) 0.09

Model 3 0.92 (0.56, 1.51) 0.7 0.79 (0.44, 1.42) 0.4

Sample sizes were 510 and 346 (obesity defined by BMI, abdominal obesity defined by waist circumference, hypertension), 504 and 333 (elevated triglycerides, low

HDL-c, metabolic syndrome), 504 and 333 (diabetes), and 497 and 332 (obesity defined by percent body fat) for women and men, respectively. Values are odds ratios

and 95% confidence intervals for BMI latent class trajectory from infancy through mid-adulthood (high vs. low in women and high/medium vs. low in men) controlling

for: age and birth village (Model 1); current residence, SES, low physical activity, and smoking status in 2015–17 (Model 2); and BMI in 2015–17 (Model 3). Confidence

intervals account for clustering at the mother level. Sex-specific BMI latent class trajectories were derived using latent class growth modeling from up to 22 BMI values

from age 1 month to 42y measured between 1969 and 2004.

a. Obesity by BMI defined as BMI�30 kg/m2.

b. Abdominal obesity defined as waist circumference >88 for women and >102 cm for men.

c. Modeled without smoking status due to non-convergence.

d. Obesity by percent body fat defined as body fat �32% for women and�25% for men.

e. Elevated triglycerides defined as�150 mg/dL or statin use.

f. Low HDL-c defined as HDL-c <50 mg/dL for women and <40 mg/dL for men.

g. Diabetes defined according to the American Diabetes Association diagnostic criteria: fasting plasma glucose�126 mg/dL, and/or post-challenge glucose�200 mg/dL,

and/or diabetes medication use.

h. Hypertension defined according to the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection,

Evaluation, and Management of High Blood Pressure in Adults: systolic blood pressure�130 mmHg and/or diastolic blood pressure�90 mmHg and/or anti-

hypertensive medication use.

i. Metabolic syndrome defined according to the American Heart Association/National Heart, Lung, and Blood Institute scientific statement diagnostic criteria based on

presence�3 of the following: abdominal obesity (waist circumference >88 cm for women and >102 cm for men); fasting plasma glucose�100 mg/dL or medication;

triglycerides�150 mg/dL or medication; HDL-c <50 mg/dL for women and <40 mg/dL for men; and blood pressure�130 mmHg systolic,�85 mmHg diastolic and/

or medication use.

Abbreviations: BMI, body mass index; HDL-c, high density lipoprotein cholesterol; INCAP, Institute of Nutrition for Central America and Panama; SES, socioeconomic

status.

https://doi.org/10.1371/journal.pone.0240904.t002
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analyses, WHZ at age 18–42 months and BMI at age 10–27 years were both generally associ-

ated with increased odds of CMD risk factors. Because BMI tracked from early childhood into

adulthood and current BMI was strongly associated with CMD risk factors, our findings high-

light the importance of keeping a healthy BMI throughout life.

In this Guatemalan cohort, adult BMI was strongly correlated with childhood BMI and was

highly associated with all CMD risk factors in bivariate analyses. Trajectory differences were

established in early infancy and maintained throughout the life course, suggesting that pre-

conceptual or early life factors may influence BMI trajectory. Nutrition supplementation from

conception to age 2 years was not associated with BMI latent class membership; however,

higher childhood socioeconomic status was associated with increased odds of high BMI latent

class membership in both men and women [43]. Data from children in the United States has

also shown that BMI tracks from childhood into adulthood [46], and tracking begins as early

as six months of age [47, 48]. Some study participants were exposed to a nutrition supplement

that improved child growth; however, 86% of the cohort was stunted at age 2 years (HAZ <-2

SD), suggesting severe early life undernutrition even with the intervention. Despite low levels

of childhood overweight, none of the BMI latent class trajectory classes had a median BMI in

the normal range in 2016.

Even though the BMI latent classes were not clinically distinct with respect to CMD risk

factors after adjusting for current BMI, our study has potentially important implications for

prevention of chronic disease risk in contexts with early life undernutrition and later life calo-

ric excess. Irrespective of BMI from childhood through mid-adulthood, current BMI was

strongly associated CMD risk factor odds in this population, except for diabetes. Thus, main-

taining healthy weight throughout the life course, including averting weight gain in mid-life,

could be important in mitigating adult CMD risk. Weight gain in early and mid-adulthood

has been associated with increased risk of many chronic diseases, including diabetes, cardio-

vascular disease, and certain cancers [49]. In a prospective cohort in the United States, partici-

pants who maintained a stably lean body shape over the life course (age 5–50 years) had the

lowest risk of mortality while people who were lean in early life but had marked increase in

body weight in middle age had mortality risk similar to participants who had been heavy

throughout life [50]. Among men in our study, the apparent benefit of lower BMI from child-

hood to early adulthood with respect to lipid profile was negated by weight gain between 2004

and 2016.

High levels of adiposity in adulthood might explain the lack of association between BMI

latent class and CMD risk factors in women in this study. In 2016, 32.8% of women in the low

BMI latent class and 50.2% of women in the high BMI latent class had obesity defined by BMI,

and>89% of women in both BMI latent classes had obesity defined by percent body fat and

had abdominal obesity. Further, median unadjusted percent body fat and waist circumference

and the prevalence of abdominal obesity defined by waist circumference and by WHtR and

obesity defined by body fat percentage were not statistically different across BMI latent classes,

meaning women in the low BMI latent class trajectory group still largely had obesity despite

having a lower BMI latent class trajectory and lower median BMI in 2016. Considering

BMI> 23 kg/m2 increases risk of CMD [51] and neither of the women’s BMI latent classes

had a median BMI in the normal range, high levels of and lack of variation in adiposity in

women could explain our inability to detect associations between BMI latent class trajectory

and CMD risk factors. However, to our knowledge, the INCAP longitudinal cohort is the only

study population available to answer our research question, owing to the relatively young age

of the study participants in other LMIC cohorts.

It is also possible that BMI may not capture the type of adiposity that is important for adult

CMD risk factors in this cohort–especially considering weight varies in its type (i.e. organs,
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adipose tissue, lean mass, etc.) and location on the body. The risk of developing diabetes rises

with increases in BMI; however, within a narrow range of BMI levels, there is high inter-indi-

vidual variation in systemic inflammation and insulin resistance, possibly attributable to dif-

ferences in the distribution and type of body fat which are thought to have varied local and/or

systemic effects on metabolic dysfunction [52]. A systematic review using data including Cen-

tral American participants found that current WHtR independently and more strongly pre-

dicted diabetes than did BMI [35]. A meta-analysis of WHtR, BMI, and chronic disease had

similar findings with respect to MetS [53]. In our study, among participants with BMI <30 kg/

m2, 94.2% of women and 71.5% of men had obesity defined by body fat percentage, 83.5% of

women and 5.0% of men were considered to have obesity by waist circumference, and 99.3%

of women and 84.4% of men were considered to have obesity by WHtR (S4 Table). The dispa-

rate classification of obesity by different methods (BMI vs. waist-based measures vs. directly

assessed body fat), lifecourse trajectories of waist circumference or body fat might better char-

acterize later life CMD risk factors above current BMI in this stunted population.

The INCAP cohort is distinctive in that its participants have been followed for >40 years

and have serial, clinically-measured anthropometry and CMD risk factors. To our knowledge,

we are the first study to explore the role of BMI trajectories from infancy through mid-adult-

hood and CMD risk factors in a LMIC population. The 12-year lag between when the final

weight/height in the BMI latent class trajectory and the CMD risk factors attempted to control

the influence of potential reverse causation between adult BMI and CMD risk. Our findings

were robust in models using WHZ from 18–42 months and BMI in 1988–89 as the primary

exposures in sensitivity analyses, likely because BMI tracked over time.

Life course analyses are threatened by bias owing to missing data; however, those excluded

from analyses for missing data were not substantially different from those included in this

study. Sensitivity analyses using a single measure of adiposity in childhood and in adoles-

cence/young adulthood were consistent with the findings of the primary analyses. Prior work

has indicated that attrition has not biased estimates of early life exposures and later-life out-

comes [54]. While LCGA helps identify heterogeneity in body size over life course, the classes

are not “real” but instead reflecting a continuum of growth in the population and should be

considered a tool to help visualize variability within the global distribution of BMI gain [55].

The generalizability of our findings may be limited to contexts of high childhood undernutri-

tion with subsequent exposure to obesogenic adult environments.

Conclusions

There was a high burden of CMD risk factors in this cohort–particularly among women.

There is a strong need for chronic disease risk factor prevention and management in this pop-

ulation. Because BMI latent class trajectory was not associated CMD risk factors after control-

ling for current BMI and given that early life BMI tracked into adulthood, our findings

highlight the importance of healthy growth early in life and preventing weight gain in

adulthood.
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