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Abstract

In this paper the problem of determining the functional relationship between time and the 

concentration of a chemical substance is studied. An intervention drug is administered on the 

experimental unit from which the chemical substance (specimen) is measured. This drug is 

hypothesized to cause a change in the concentration level of the chemical substance a certain 

lag-time after the intervention. However, the concentration value could not be directly measured, 

but rather a surrogate response can be measured. In the time-course study, this surrogate response 

is measured using different electrodes which possess varied behaviors. To utilize these surrogate 

measurements arising from the different electrodes (sensors), a calibration study is undertaken 

which measures the surrogate response for the different electrodes at known concentration levels. 

Based on the time-course and calibration data sets, a statistical procedure to estimate the signal 

function and the lag-time is proposed. Simulation studies indicate that the proposed procedure is 

able to reasonably recover the signal function and the lag-time. The procedure is then applied to 

the real data sets obtained during an analytical chemistry experiment.
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Introduction

The general problem tackled in this paper is determining the time-behavior of the 

concentration of a chemical obtained from an experimental unit (e.u.) subjected to an 

intervention. Specifically, of interest is to study if a specific drug intervention causes a 

change in concentration. Concentration levels, however, are difficult to measure directly, 

especially when the e.u. could not be sacrificed, such as during a time-course study. Thus, 

the concentration levels are to be inferred indirectly through electric charge measurements 

which are stochastically related to the concentration levels. The measurement of the charge 
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is reliant on the use of an electrode. But different electrodes possess different behaviors 

when measuring the charge. Thus, to be able to use different electrodes to infer the 

concentration levels, a calibration study using these electrodes is performed to determine 

the relationship between concentration and charge for each of the electrodes.

The specific study that motivated the problem considered in this paper was performed in 

the laboratory of one of the authors (Dr. P. Hashemi) at the Department of Chemistry 

and Biochemistry, University of South Carolina. The chemical concentration of interest is 

that of serotonin, a substance that that has been implicated in affective disorders such as 

depression, and the e.u.’s are mice (in vivo). The intervention performed on the mice is the 

administration of a pharmacological agent or drug. The type of data sets obtained from the 

study are shown in Figures 1 & 2. Figure 1 shows charge measurements over time for five 

different electrodes, with panels 1 and 2 showing results for the two intervention agents 

or drugs: pargyline and GBR 12909, respectively. Pargyline inhibits serotonin metabolism 

while GBR 12909 is a dopamine reuptake inhibitor. These drugs or agents inhibit serotonin 

metabolism and dopamine reuptake. Figure 2 presents the calibration data for ten electrodes, 

together with fitted mean response curves. The five electrodes used in the time-course study 

for each of the two drugs came from these 10 electrodes utilized in the calibration study. 

For instance, the electrodes used in the time-course experiment with pargyline were the 

electrodes labeled 2, 3, 4, 5, and 10; whereas, for GBR 12909 the electrodes were those 

labeled 1, 6, 7, 8, and 9.

The goal in this study is to estimate the mean concentration response function over time 

based on the time course study and the calibration study. Another aspect in the time-course 

study is that the drug intervention was administered after an initial no-drug period. Thus, 

another important goal is to determine the lag-time post administering the drug after which 

the drug takes effect, if indeed the drug has an effect. Discipline-specific details of this 

motivating and focused application has been previously published [1]. We point out the 

statistical methodology developed in this paper and the ideas contained herein have the 

potential of being useful in other situations where calibrated measurements are obtained [2].

Mathematical setting

In this section we describe the postulated models for both the time-course study and the 

calibration study. For this purpose, let us suppose that we have a specimen from the e.u. We 

denote by Xt the concentration level of the chemical at time t for this specimen. We denote 

by T the time at which the intervention is performed, that is, the time of administering the 

drug intervention. We shall postulate the stochastic model

Xt = γ0 + γ1t + g t − T + Δ + εt, t ≥ 0, (1)

where ∆ is a lag-time and g(·) is a continuous function with g(t) = 0 for t ≤ 0. If smoothness 

is desired, we may impose the condition that g(·) is differentiable for t > 0. The time of 

intervention T is known, while the lag-time ∆, together with the regression coefficients γ0 

and γ1, and the function g(·)are unknown. The error is assumed to be white noise, with 

εt having a normal distribution with mean zero and variance τ2, with τ also unknown. 
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As discussed in section 1, the Xt could not be directly measured. If it could be directly 

measured and we possess the values of Xt′s, then we could estimate the model parameters, 

and also infer the change point T + ∆, or the lag-time ∆.

To enable the determination of the chemical concentration levels Xt′s, there are K possible 

electrodes that could be used for measuring the charge. At time t, nt charge measurements 

using different electrodes will be taken. Thus, denoting by Y the charge and by E the 

electrode type, at time t, nt pairs (Ytj, Etj), j = 1, 2, …, nt, are obtained. The measured charge 

is affected by the chemical concentration level and the electrode type. The relationship 

between the charge and the concentration and electrode type is given by

Y = β0 + ∑
k = 2

K
ξkI E = k + β1 + ∑

k = 2

K
ηkI E = k X + ∈ (2)

where β0, β1,ξ2,…ξk,η2,…ηk are unknown, and ∈ has a normal distribution with mean 

zero and variance σ2, with σ unknown. The function I(·) is the indicator function, taking 

a 1(0)-value depending on whether the argument is true(false). This is a linear model that 

incorporates an interaction between the concentration and the electrode type [3,4].

In order to estimate the model parameters in model (2), a calibration study is performed. 

See [5] for some review of calibration methods. In this study, we followed the classic 

inverse regression approach. First, we regress the response variable, Y, on predictor X, 

and estimate linear regression coefficients using least-squares method; thereafter, the value 

of an unknown X, is to be estimated given an observation of Y, by subtracting the 

estimated intercept and dividing by the estimated slope [6–9]. Inference for the calibration 

parameters, is not trivial because of the presence of a normally distributed estimated slope 

in the denominator, which causes the inverse estimator to have infinite variance [10]. In 

this paper, we use Delta method to construct approximate confidence intervals for the 

calibration parameters. A more conservative confidence interval approach based on inverting 

simultaneous tolerance intervals was proposed by Scheffe [9] in literature. An alternative 

approach to the problem is referred to as reverse regression, when X’s are treated as 

the response and formally regressed on Y’s (even though the X’s are measured with 

negligible error). Krutchkoff [4] compared inverse and reverse regression using Monte Carlo 

simulations. Properties and limitations of the reverse estimators were studied by Williams 

[10] and Halperin [3].

In this calibration study, known levels of concentration are used, and the different electrodes 

are used to measure the charge. We denote by L the number of concentration levels, and 

these levels will be denoted by x01 < x02 < … < x0L. At concentration level x0l, all K 
electrode types are utilized, and for each electrode type, there are m charge measurements. 

Thus, for the lth concentration level, there are Km observations, and for the L concentration 

levels, there are N = LKm charge measurements. The data could be summarized as in Table 

1 and pictorially depicted as in Figure 2.

With ξ1 = η1 = 0, the linear models governing these charge measurements are given by
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Y ijl = β0 + ξj + β1 + nj x0i + ∈ijl (3)

for i = 1,…, L; j = 1,…, K; l = 1,…, m, and with the ∈ijl′ s being independent and identically 

distributed (IID) and having a normal distribution with mean zero and variance σ2. These 

linear models could be fitted using object functions in a variety of statistical packages, such 

as the function lm or glm in the R statistical package [8].

Estimating parameters

Instead of using the calibration data representation presented in Table 1, for purposes of 

describing more concisely the estimators of parameters, we denote by Y = (Y1,Y2,…,YN)T 

the N × 1 vector of charge values. The design matrix is W, which is an N × 2K matrix whose 

ith row is

W i = 1, xi, v2i, …, vKi, v2ixi, …, vKixi

with xi the concentration level, and vji = I Ei = j , j = 2,…K, indicates whether the 

electrode type is j. With ∈ = ∈1 , ∈2 , …, ∈N
T  denoting the error vector, the linear model 

could be written via

Y = W θ + ∈ (4)

where the 2K × 1 regression coefficient vector θ is

θ = β0, β1, η2, …, ηK, ξ2, …, ξK
T . (5)

In this model, ∈ NN 0, σ2IN  where IN is the N × N identity matrix.

The least-squares (LS) estimator of θ, which is also the maximum likelihood (ML) 

estimator, is given by (see, for instance, any linear theory book such as [6])

θ = W TW −1 W TY . (6)

This is an unbiased estimator of θ. The error variance σ2is unbiasedly estimated by

σ2 = 1
N − 2K Y − W θ 2 = 1

N − 2K Y T IN − H Y (7)

where H = W W TW −1W T . An unbiased estimator of the covariance matrix of θ  is

Cov θ ≡∧ ≡ σ2 W TW −1 . (8)
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The validation of the assumptions underlying this linear model could be performed 

graphically or via the global method in [7].

Calibrated concentration estimators

The calibration problem will now be described. Suppose that, at a given time, we are given 

a charge measurement for a specific electrode: say, (y0, e0), where e0 is the electrode type 

and y0 is the charge on that specific electrode. More generally, suppose that M pairs of 

charge and electrode type are available at a given time: (y01, e01), (y02, e02),…, (y0M, e0M). 

Based on these observations, what is an estimate of the concentration level, and what is an 

approximate 100(1−α)% confidence interval for the concentration level?

Calibration based on one pair (y0, e0)

Consider first just having one pair (y0, e0) of charge and electrode type observations. Denote 

by x0 ≡ y0, e0  the concentration level that led to this charge value of y0 for electrode type 

e0. Based on the linear model relationship, y0 is a realization of the random variable

y0 = β0 + ξe0 + β1 + ηe0 x0 + ∈0

with the convention that ξ1 = η1 = 0 and ∈0 N 0, σ2 . Solving for x0, we obtain

X0 y0, e0, ∈0 ; θ = y0 − β0 + ξe0 − ∈0
β1 + ηe0

. (9)

Of course, the error term ∈0 is not observable, but it has mean 0 and variance σ2. The 

expected value of X0 y0, e0, ∈0 ; θ , given (y0, e0), is

X0 y0, e0, ∈0 ; θ = E X0 y0, e0, ∈0 ; θ y0, e0 =
y0 − β0 + ξe0

β1 + ηe0

and its conditional variance is

V ar X0 X0 y0, e0, ∈0 ; θ y0, e0 = σ2

β1 + ηe0
2 .

Consequently, a plausible estimator of x0(y0, e0) is

x0 y0, e0; θ = ge0 y0; θ ≡
y0 − β0 + ξ e0

β1 + ηe0
. (10)

This is the calibrated estimate of the concentration when given a charge value of y0 obtained 

using the electrode type e0. By the Delta-Method [2], this will be approximately unbiased 
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for the expectation of x0(y0, e0). We seek an approximation of its variance by using the delta 

method. For j = 1, 2,…, K, define the gradients

bj y0; θ = ∂
∂θ

y0 − β0 + ξj
β1 + ηj

.

By the Delta-Method, an estimate of the variance of x0 y0, e0  is

V ar x y0, e0; θ ≡ V 0
2 y0, e0 =

σ2 be0 y0, θ T W TW −1be0 y0, θ + 1
β1 + ηe0

2 .
(11)

An approximate 100(1−α)% confidence interval for the concentration level, having observed 

a charge value of y0 using electrode type e0, is given by

x0 y0, e0; θ ± tN − 2K; α/2 V 0 y0, e0 , (12)

Where tN − 2K; α/2 is the (1− α/2)th quantile of a t-distribution with degrees-of-freedom N − 

2K.

Calibration based on many pairs (y0, e0)

Next we consider the situation where several charge measurements are taken using possibly 

different electrode types. Let

y0, e0 = y0m, e0m :m = 1, 2, …, M .

Here y0m is the mth charge measurement which is obtained using electrode type e0m. From 

the preceding subsection, based on this particular measurement we obtain an estimate of the 

concentration level, given by

x0 y0, e0; θ

which has an approximate estimated variance of V 0m
2 y0m, e0m  whose expression is obtained 

via (11). The M estimates of the concentration level obtained for each of the elements in 

(y0, e0) will not be independent of each other, owing to the fact that they will all depend on 

θ . In fact, through the Delta-Method, we could obtain their approximate covariance matrix. 

However, for the sake of simplicity and practicality, we ignore the dependence among these 

M estimates. Under this simplified assumption, whose appropriateness will be examined 

later through simulation studies, we could then combine the M estimates by simply taking 

into account the possibly varying estimates of their variances. We recall the following 
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well-known distribution theory result, which is easily proved using a Lagrange multiplier 

minimization approach.

Theorem 1

Let W1,W2,…,Wm be independent random variables with common mean μ and respective 

variances τ1
2, τ2

2, …, τm2 . Among all linear combinations ∑l = 1
m clW l with ∑l = 1

m cl = 1, so that 

the mean of the linear combination is still μ, the one with the smallest variance coincides 

with the choice of coefficients given by

cl
∗ =

1/τ1
2

∑l = 1
m 1/τ1

2 , l = 1, 2, …, m .

The variance of this optimal linear combination is

V = ∑
l = 1

m
cl
∗W l = 1

m ∑
l = 1

m
1
τ1
2

−1
.

Using this result, we obtain our combined estimate of the concentration level from the M 
estimates via

x0 y0, e0; θ = ∑
m = 1

m
cmx0 y0m, e0m; θ , (13)

where the weights are given by

cm =
1/V 0m

2 y0m, e0m

∑q = 1
M 1/V 0q

2 y0q, e0q
, m = 1, 2, …M . (14)

The approximate variance of x0 y0, e0; θ  is given by

V 0
2 y0, e0 = 1

M ∑
m = 1

M
1

V 0
2 y0m, e0m

−1

, (15)

As a consequence, an approximate 100(1− α)% confidence interval for the concentration 

level, having observed (y0, e0), is given by

x0 y0, e0; θ ± tN − 2K; α/2 V 0 y0, e0 . (16)
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Time-course study

As mentioned in section, 1 the main goal of the study is to determine the behavior of the 

concentration of the chemical over a period of time, where at some point T during the 

monitoring period, a drug intervention is performed. We suppose that over the period [0,T*] 

charge measurements using possibly different electrode types are performed at specified 

times 0 ≤ t1 < t2, < t3 <…< tL ≤T*. The charge and electrode observations at time t1 

are given by (y0l, e0l). Based on these observation vectors, we find an estimate of the 

concentration level at time t1 to be

x0l y0l, e0l ,

together with its estimate of its variance V 0l
2 y0l, e0l; θ . For each time tl, we could also 

construct the approximate 100(1− α)% confidence interval for the concentration value given 

by

x0l y0l, e0l; θ ± tN − 2K; α/2 V 0l y0l, e0l .

Note, however, that these confidence intervals are not adjusted for multiplicity. On the other 

hand, based on the time course data and the resulting concentration estimates at each of the 

times of observations, given by

tl, x0l y0l, e0l; θ , V 0l y0l, e0l : l = 1, 2, …, L ,

we could fit an appropriate regression curve that takes into account the possibly differing 

variability of the x0l y0l, e0l; θ ′s. One of the simplest models that could be fitted to this 

data, under the hypothesis that upon the drug intervention at time T the concentration curve 

should change after a lag-time of ∆, specifies that

x0l = ω0 + ω1tl + k1Ul + k2Ul
2 + V 0lεl, (17)

and

Ul = max 0, t1 − T + Δ , l = 1, 2, …, L,

and εl has mean zero and variance τ2. Note that the τ2 in this model is not the same as the 

τ2 in the time-course model in (1). Here, the time of intervention T is known, whereas the 

lag-time ∆ is not known. For a specified ∆, this model is easily fitted using the lm command 

in R with the weights option enabled, which performs a weighted linear regression fit [8]. 

The coefficient of determination could be obtained and denoted by R2(∆). The coefficient 

of determination could be plotted with respect to possible values of ∆. The value of ∆ that 

maximizes this coefficient of determination R2(∆) is a plausible estimate for the lag-time ∆. 

Thus, a possible estimator of the lag-time is
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Δ = argmax
Δ

R2 Δ . (18)

This could be computed by fitting the model over a sequence of values of ∆ and searching 

for the value of ∆ that maximizes R2(∆). This computational method is the approach we 

implemented in this paper. The confidence interval described above at a given time point is 

appropriate if we only have data at one time point. However, in the time-course study, we 

actually obtain a series of concentration estimates for each of the time points considered. 

These pairs of time and concentration estimates are then used to estimate the time course 

model parameters. In the process of fitting the linear-parabolic curve, we could then also 

obtain pointwise confidence intervals for the concentration value at each of the time points, 

where we utilize the estimate of the error standard deviation. We surmise that the resulting 

point-wise confidence intervals is a better indicator of where the concentration values are. 

In the real-data application of the procedure in section 6, this point-wise confidence interval 

approach will be presented.

A real-data illustration

This section provides a more detailed description of the statistical methods performed in the 

data analysis in some portions of paper [1]. The data sets were obtained in the Hashemi 

laboratory at University of South Carolina. We limit our consideration to the intervention 

drug pargyline, which was hypothesized to have an impact on the concentration level of 

serotonin, in contrast to the intervention drug GBR 12909. Figures 1–2 present the time-

course data and the fitted linear models. These figures are adapted with permission from [1] 

and are copyrighted from American Chemical Society. In the next section, we then present 

simulation studies to provide us some ideas on the properties of this procedure.

A time-course study was performed leading to the data set with charge measurements 

over time (from 0 minutes to 121 minutes), with the intervention drug pargyline (10 

mg/kg) administered at 60 minutes, via interperitoneal injection. The time-course data 

with pargyline as the intervention drug is depicted in the first panel of Figure 1. The 

different symbols correspond to the 5 different electrodes (out of 10 possible electrodes) 

used in measuring the charges. A calibration study was also performed where, for known 

concentration levels, charge measurements were obtained for each of 10 possible electrodes. 

The charges of each electrode are measured under three concentration values (25, 50, and 

100 nM) each with 4 replicates. The data set obtained from this calibration study are the 

solid points in Figure 2.

A linear model, as described in (2), was fitted using the calibration data. The fitted linear 

models, using the calibration data, for each electrode type are depicted as the lines in Figure 

2 for each of the 10 electrodes. A summary of the estimated model parameters are in 

Table 2. These linear models with interaction terms provide excellent fits to the observed 

calibration data with coefficient of determinations all above 99%. The interaction effects are 

all significant.
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Using these fitted linear models, given the charge measurements at each time point from the 

time course study, estimates of the concentration levels at each time point were obtained. 

This procedure yielded pairs of values of time and concentration estimates which are the 

solid points in Figure 3. A functional continuous model, as described in Section 5, was 

fitted to these pairs of time and concentration values using weighted regression via the lm 

command in the R environment. The estimate of the time-lag ∆ after which the drug takes 

effect is Δ = 3.32minutes. As mentioned earlier, this estimate was obtained by maximizing the 

coefficient of determination with respect to the possible values of ∆ [see discussion prior to 

(18)]. The resulting fitted linear-parabolic model whose equation is given in (18) is shown in 

Figure 3.

C t = 64.584 + 0.0063t + 0.5163U t − 0.0044U t 2 (19)

where U (t) = max (0, 63.32 – t). This plot is depicted together with the concentration 

estimates at each time point, which are the open circles in the plot. Point-wise confidence 

interval at each time point is also included in the plot. These 95% point-wise confidence 

intervals were constructed when the functional model was fitted to the pairs of time and 

concentration values using the predict. lm command in R. Details pertaining to the fitted 

functional relationship between time and concentration are summarized in Table 3. Observe 

that the coefficient for the time effect is not significantly different from (p = .429) which is 

to be expected since without drug intervention the serotonin concentration is not expected to 

change. We also mention that the final fitted model has an R2 equal to 95.59%, indicating an 

excellent fit of the linear-parabolic model for relating concentration to time for this study.

Simulation studies

In order to study the properties of the procedure described above for estimating the lag-time 

parameter ∆, we performed a computer simulation study. All simulation programs were 

coded in R and function objects in R such as lm, rnorm, etc. were utilized. The main 

purpose of this study was to determine if we are able to effectively estimate the lag-time 

parameter ∆ using a time-course data and a calibration data. In the simulation, we generate 

the time-course data using the model

xt = γ0 + γ1t + k1max 0, t − T + Δ + k2 max 0, t − T + Δ 2 + τZt
1

(20)

where γ0 = 20, γ1 = .25, k1 = 10, k2 = −.12, T = 60, τ = 10 and with Zt
1 ′s variables. 

The time index took values in {0,1, 2,…,120}. Thus, for each t ∈{1, 2,…,120} an xt was 

generated according to this model.

At time t and for the generated xt – value, a charge measurement was undertaken using three 

electrode types: m = 1, 2, 3. The charge value was generated according to the model

Y m = β0 + ξm + β1 + ηm xt + Ztm
2

(21)
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Where Ztm
2 ′s are IID random variables. The parameter values were set to β0 = 1, β1 = 1.5, ξ 

= (0,1,2), η = (0,.5,1.5). Thus, this leads to the ‘observed time-course data’ given by

t, ytm , m = 1, 2, 3; t = 0, 1, 2, …120 .

A calibration experiment was also simulated. In this calibration experiment, five specific 

concentration values x ∈ {0,10, 25, 50,100} were utilized. At each of these concentration 

values, five charge values were generated for each of the three electrode types according to 

the model

Y jmk = β0 + ξm + β1 + ηm xj + Zjmk
3 , k = 1, 2, …, 5,

where the parameter values are the same as in the preceding model, and x1 = 0, x1 = 10, x3 = 

25, x4 = 50, x5 = 100 and Zjmk
3 ′ s are IID N (0,1) random variables.

On the basis of the time-course data

t, ytm , m = 1, 2, 3; t = 0, 1, 2, …, 120

and the calibration data

xj, yjmk , j = 1, 2, …, 5; m = 1, 2, 3; k = 1, 2, …, 5 ,

the goal is to see if we could reasonably recover the signal function given by

g t = E Xt = γ0 + γ1t + k1max 0, t − T + Δ + k2 max 0, t − T + Δ 2 (22)

and obtain good estimates of the model parameters using the procedure described in the 

preceding sections, in particular to obtain a reasonable estimate of ∆.

We performed the above-described simulation experiment using 5000 replications. The 

estimates of ∆ are provided in the frequency histogram in Figure 4. In searching for the 

optimizing ∆, we used increments of 0:1, so that the possible values of Δ contains only one 

decimal digit. The mean of these Δ′s is 5:03828 with a standard error of 0:4990. Thus, this 

mean is quite close to the true value of ∆ which is 5.0. Regarding the other model parameters 

pertaining to the time-course portion, we summarize the results in Table 4. Histograms of 

these 5000 estimates for the four model parameters are depicted in Figure 5. Observe that 

the means of these estimates for each of the regression parameters are close to their true 

values.

Another parameter in the time-course model is τ, which is the standard deviation of the error 

component. When we fit the linear-parabolic model on the time-course and calibration data, 

an estimate of the error standard deviation is also obtained. However, this is not an estimate 

of τ since this estimates a larger value than τ owing to the additional error contamination 
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arising from the calibration study and the charge measurements at each time and for each 

electrode type. For instance, in the simulation study, the histogram of the 5000 estimates of 

the standard deviation of the error term provided in Figure 6 all exceed the true value of τ = 

10. The mean of these standard deviation estimates is 23.56979 with a standard deviation of 

2.723542. On the basis of this modest simulation study, the statistical procedure developed 

in earlier sections using the calibration and time-course data sets appears successful in 

recovering the functional relationship between time and concentration and is also able to 

infer properly about the lag-time at which the drug starts to become effective.

In order to further study the properties of the statistical procedure on the real data, we 

performed another simulation study using the estimated model parameters based on the data 

from the Hashemi laboratory. The time course data was generated using model (20), with T 

= 60, ∆ = 3.3, τ = 0.3, and with Zt
t ′s IID N(0,1) variables. The values of other parameters 

were set to be the same as the estimated ones in Table 3. The time index took values in 

{0,1,2,…121}. Charge measurements were obtained using five electrodes m = 2, 3, 4, 5,10. 

The charge values were generated according to the model (21) with parameter values

β0 = 0.6950, β1 = 0.0116;

ξ = 2.1707, 2.6107, 2.4622, 1.42622, 1.4289, 1.3953 ;

η = 0.0270, − 0.0054, 0.0152, 0.0082, 0.0024 ,

and

Ztm
2 and IID N 0, 0.0952 .

These correspond to the estimates of the model parameters in section 6. To simulate the 

calibration data, we generated charge values with concentration taking values x ∈{25, 

50,100} for 10 electrodes, i.e. m = 1, 2,…,10, according to

Y jmk = β0 + ξm + β1 + ηm xj + Zjmk
3 , k = 1, 2, 3, 4,

where the parameter values were set identical to the estimated values in Table 2, and with 

x1 = 25, x2 = 50, x = 100, and Zjmk
3 ′ s being IID from a N(0, 0.0952) distribution. Using 

the time-course data and the calibration data, it is of interest to see if we could reasonably 

recover the signal function in (22) and also obtain good estimates of the model parameters.

The resulting 5000 estimates of ∆ are provided in the frequency histogram in Figure 7. 

The mean of these 5000 Δ′s is 3:3008 with a standard error of 1:9341. The mean is indeed 

very close to the true value which is ∆ = 3.3, indicating the possible unbiasedness of the 
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estimator, though of course a simulation study could not establish this theoretical property. 

Note, however, that there were some negative estimates that arose and this could be a 

consequence of a wrong (we hypothesize larger values) specification of the error variances 

in the models. Details of the estimates for the other parameters are summarized in Table 5. 

Histograms of the estimates for these four model parameters are depicted in Figure 8.

Concluding Remarks

Motivated by a study in an analytical chemistry laboratory dealing with the concentration 

of the chemical substance serotonin, we developed in this paper a statistical procedure for 

estimating the functional relationship between time and concentration level of a substance, 

together with the change point, based on a time-course study that measures a concentration-

surrogate variable (the charge in this application) and data from a calibration study. The 

novel aspect of this procedure is the presence of several measuring electrodes which 

have their unique behaviors when utilized to measure the surrogate variable (the charge 

in application). Simulation studies were performed to examine the properties of the proposed 

procedures, and the simulation results indicate that the procedure is able to reasonably 

recover the signal function and also the change-point in the signal function.

The procedure is also applied to the time-course data and the calibration data from the 

focus application obtained in the analytical chemistry experiment. Further theoretical studies 

and simulations will be desired to examine more carefully the procedure especially when 

applied to more complex settings such as when the g (·) portion in the signal function 

in equation (1) is not parabolic or when it is non-parametrically specified. Of interest for 

further research are situations where the error distributions in the regression models are 

not normally-distributed, which may entail the use of non-parametric regression estimation 

methods.
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Figure 1: 
Charge measurements (in pC) on the specimens obtained in the time-course study associated 

with 5 electrodes over time (in minute) for each of the two drug interventions. Plot panel 

1 is for the drug pargyline, while plot panel 2 is for the drug GBR 12909. Different symbols/

numbers and colors correspond to different measuring electrodes. Adapted with permission 

from [1]. Copyright 2017 American Chemical Society.
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Figure 2: 
Concentration (in nM ) and charge (in pC ) measurements obtained in the calibration study 

for the 10 electrodes used in the time-course studies together with the fitted values based 

on a linear model with interaction. Different symbols and colors correspond to different 

electrodes. Adapted with permission from [1]. Copyright 2017 American Chemical Society.
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Figure 3: 
Plot of the concentration over time with the fitted linear-parabolic model and point-wise 

confidence intervals for the intervention drug pargyline.
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Figure 4: 
Frequency histogram of the estimates of from the simulation study. The true value was and 

there were 5000 replications.
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Figure 5: 
Frequency histograms of the 5000 estimates of the model parameters obtained from the 

simulation study. The true values of the parameters are γ0 = 20.0, γ1 = 0.25, k1 = 10.0, k2 = 

−0.12.
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Figure 6: 
Histogram of the 5000 estimates of the standard deviation of the error term of the time-

concentration linear-parabolic regression model.
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Figure 7: 
Frequency histogram of the estimates of from the simulation study with 5000 replications. 

The true value was ∆ = 3.3.
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Figure 8: 
Frequency histograms of the 5000 estimates of the model parameters obtained from the 

simulation study. The true values of the parameters are γ0 = 64.5839, γ1 = 0.006311, k1 = 

0.5163, k2 = −0.004390.
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