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Portals to frailty? Data-driven analyses
detect early frailty profiles
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Abstract

Background: Frailty is an aging condition that reflects multisystem decline and an increased risk for adverse
outcomes, including differential cognitive decline and impairment. Two prominent approaches for measuring frailty
are the frailty phenotype and the frailty index. We explored a complementary data-driven approach for frailty
assessment that could detect early frailty profiles (or subtypes) in relatively healthy older adults. Specifically, we
tested whether (1) modalities of early frailty profiles could be empirically determined, (2) the extracted profiles were
differentially related to longitudinal cognitive decline, and (3) the profile and prediction patterns were robust for
males and females.

Methods: Participants (n = 649; M age = 70.61, range 53–95) were community-dwelling older adults from the
Victoria Longitudinal Study who contributed data for baseline multi-morbidity assessment and longitudinal
cognitive trajectory analyses. An exploratory factor analysis on 50 multi-morbidity items produced 7 separable
health domains. The proportion of deficits in each domain was calculated and used as continuous indicators in a
data-driven latent profile analysis (LPA). We subsequently examined how frailty profiles related to the level and rate
of change in a latent neurocognitive speed variable.

Results: LPA results distinguished three profiles: not-clinically-frail (NCF; characterized by limited impairment across
indicators; 84%), mobility-type frailty (MTF; characterized by impaired mobility function; 9%), and respiratory-type frailty
(RTF; characterized by impaired respiratory function; 7%). These profiles showed differential neurocognitive slowing,
such that MTF was associated with the steepest decline, followed by RTF, and then NCF. The baseline frailty index
scores were the highest for MTF and RTF and increased over time. All observations were robust across sex.

Conclusions: A data-driven approach to early frailty assessment detected differentiable profiles that may be
characterized as morbidity-intensive portals into broader and chronic frailty. Early inventions targeting mobility or
respiratory deficits may have positive downstream effects on frailty progression and cognitive decline.
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Background
Frailty is a heterogeneous condition that reflects accumu-
lated age-related multi-morbidity, leading to diminished
physical function and reduced physiological reserve [1].
Progression along the fitness-frailty continuum is associ-
ated with an increased risk for numerous adverse aging

outcomes [2], including differential cognitive decline, im-
pairment, and dementia [3–5]. Against this backdrop,
frailty is characterized as the most problematic expression
of population aging [6] and has been established as a pri-
ority area in clinical and research settings [7]. Yet, consid-
erable debate continues regarding the measurement and
conceptualization of frailty. At present, two productive ap-
proaches dominate the literature: the physical frailty
phenotype [8] and the frailty index [9]. We explored a
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third approach which could be applicable to early detec-
tion of elevated frailty risk: data-driven frailty assessment.
The physical phenotype approach defines frailty using

the following cluster of variables: unintentional weight
loss, self-reported exhaustion, weak grip strength, slow
gait, and low physical activity. Notably, the phenotypes
are ordered on the basis of the number of deficits, such
that an individual with no deficits is classified as robust,
one to two deficits is pre-frail, and three or more deficits
is frail [6]. Because this approach incorporates a re-
stricted number of physical characteristics, it may be
limited in early detection of frailty risk. In contrast, the
frailty index embraces heterogeneity in that responses
across multiple indicators of aging systems are summed
to create a single score that represents the ratio of defi-
cits present in an individual relative to the total number
of deficits considered. However, values on the index re-
flect the number of deficits that an individual has accu-
mulated—and in pre-clinical aging, the global frailty
index may be relatively low while specific morbidity
sources or domains of impairment are emerging. New
data-driven analytic technologies may be useful in early
detection of frailty profiles that serve as portals to the
emergence of global frailty in aging—and as harbingers
of a host of adverse aging outcomes.
Accordingly, we applied latent profile analysis (LPA)

to a database of multi-morbidity indicators in order to
detect underlying clusters or profiles of early frailty. LPA
is a data-driven, person-centered statistical approach
that can identify homogenous subgroups of individuals
based on a set of observed indicators [10]. This statistical
approach is analogous to latent class analysis (LCA)—
with the exception that the indicators are continuous.
LPA is a sensitive analytical technique for studying het-
erogeneous clinical syndromes for which there is limited
consensus on its defining and emergent characteristics
[11]. Findings from this study will advance the literature
on measurement, analysis, and conceptualization of
frailty by identifying empirically derived frailty profiles
that are not differentiated on the basis of the number of
physical impairments or proportion of accumulated defi-
cits. Instead, detected profiles would reflect empirically
observed classes of deficits, within a broad spectrum of
morbidity, sharing pattern, and severity characteristics.
Interestingly, identification of clusters of vulnerabil-

ities, signs, and symptoms of frailty was established as a
priority area in the beginning stages of this field [12, 13].
Some experts reasoned that detection of frailty subtypes
may contribute to a refined definition that would be use-
ful for understanding the antecedents, emergence, or dif-
ferential mechanisms associated with the variety of
deficits subsumed under this general construct. Never-
theless, few studies have employed data-driven statistical
techniques to distinguish frailty profiles based on

multidomain deficit accumulation. Recently, Sadiq and
colleagues [14] assembled 18 items related to physical,
functional, emotional, and social deficits and subjected
these data to an LCA. Findings revealed three discrete
frailty profiles that differed primarily in overall severity:
(a) not frail, which was characterized by minimal impair-
ment across all morbidity indicators, (b) moderately
frail, which was characterized by moderate physical and
functional limitations, and (c) severely frail, which was
characterized by severe limitations in physical, func-
tional, and emotional health. These findings converge
with an earlier study that subjected 41 items related to
self-reported health, cognitive function, social function,
mental health, morbidity status, and functional limita-
tions to an LCA [15]. The following six frailty profiles,
that also differed primarily in overall severity, were dis-
tinguished: relatively healthy, mild physically frail, psy-
chologically frail, severe physically frail, medically frail,
and multi-frail. The relatively healthy profile was charac-
terized by minor problems across all indicators, whereas
the remaining profiles were characterized by singular
deficits in either physical or psychological health (at
varying levels of severity), or by a combination of phys-
ical, psychological, cognitive, and social deficits.
We extend this prior work by determining which

frailty profiles representing distinct configurations of
aging morbidity are detected and examining how they
are related to level and change trajectories in neurocog-
nitive speed. Accumulating literature suggests that frailty
and cognitive impairment are related but distinct con-
cepts that frequently co-occur in older age [16, 17]. Yet,
few studies have examined broader definitions of frailty
in relation to normal age-related decline in specific do-
mains of cognition [18], such as neurocognitive speed
[19–21]. Given that non-memory domains may be par-
ticularly susceptible to early frailty effects [22], this is an
important target of research attention. Findings from
this study may advance understanding of whether there
are specific combinations of deficits that appear early on
in the frailty trajectory that predict an increased risk for
accelerated cognitive decline.
Data were drawn from the Victoria Longitudinal Study

(VLS), which is a multi-faceted, large-scale, long-term
investigation of biomedical and neurocognitive aging
[23]. We assembled baseline data for each participant
that included 50 items representing the typical hetero-
geneity of frailty [4]. We used exploratory factor analysis
to reduce the total number of items for estimation feasi-
bility in the LPA. These results produced separable
health domains that were interpreted on the basis of
previous research [14, 24, 25]. The proportion of deficits
accumulated in each domain was calculated for each
participant and used as continuous observed indicators
in the LPA.
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A recent VLS study used these same 50 items to calcu-
late a frailty index and investigated whether the level
and/or rate of change in frailty predicted performance
and decline in neurocognitive speed across a 40-year
band of aging [4]. Findings showed that the level of
frailty at baseline was predictive of neurocognitive speed
performance at baseline. Moreover, change in the level
of frailty was related to the rate of change in neurocog-
nitive speed performance. Of note, these effects were
moderated by sex, such that frailty change predicted the
change in speed selectively for females, whereas frailty
was unrelated to level or change in speed for males. At
least one other study pointed to sex differences in the
mechanisms linking frailty with early changes in cogni-
tive function [26]. Given these findings and those from
related research [27, 28], we tested whether our results
were robust across sex.
The specific research goals (RG) of this study were as

follows. For RG1, we employed LPA in order to detect
empirically derived frailty profiles. As the sample was
relatively healthy, we expected to observe early frailty
profiles that differed in the nature of deficit accumula-
tion. For RG2, we investigated how frailty profiles related
to performance and decline in neurocognitive speed. We
expected to observe frailty-cognition associations, al-
though the extent could vary across detected profiles.
For RG3, we tested whether profile membership and tra-
jectory predictions generalized across sex.

Methods
Participants
Participants were community dwelling older adults from
the VLS who provided written and informed consent.
Both the VLS and data collection procedures were in full
and certified compliance with prevailing human research
ethics guidelines and boards. The VLS is comprised of
longitudinal cohorts that were aged 53–85 years at re-
cruitment. Continuing participants were tested at an
average of 4.4-year intervals. The source cohort for this
study (n = 693) provided (a) baseline multi-morbidity
data and (b) three waves of neurocognitive speed data.
In accordance with established procedures for acceler-
ated longitudinal designs [29, 30], age was used as the
metric of longitudinal change. This approach allowed us
to control for age-related effects and increase interpret-
ability of the findings. The resulting design spans a 40-
year band of aging [28].
The following exclusionary criteria were applied at

baseline: (a) diagnosis of Alzheimer’s or dementia (n =
0), (b) missing data across each of the 50 multi-
morbidity items at baseline (n = 40), and (c) missing data
across all waves and indicators of the latent speed vari-
able (n = 4). Descriptive statistics for the remaining sam-
ple are outlined in Table 1 (n = 649; 431 females; M

age = 70.61, SD = 8.64, age range = 53–95 years; primarily
White). Retention rates were 82% for wave 1 to wave 2
and 78% for wave 2 to wave 3.

Measures
Multi-morbidity data
We assembled baseline data for 50 multi-morbidity
items that (a) have been used in the VLS and related re-
search to form a frailty index [4], (b) have demonstrated
associations with adverse brain and cognitive aging out-
comes [4], and (c) satisfy prevailing conventions sur-
rounding deficit accumulation approaches to frailty
assessment [31]. Data for these items were collected
using self-report, physical examinations, and formal tests
with standardized scales. All items were recoded such that
scores ranged from 0 (no deficit present) to 1 (deficit was
maximally expressed [31]; see Table 2 for examples; full
list in Supplementary Table 1, Additional File 1).

Neurocognitive speed
We represented neurocognitive speed as a multi-
indicator latent variable using the following four mani-
fest indicators: simple reaction time, choice reaction
time, lexical decision, and sentence verification. Each of
these indicators are multi-trial, computer-based neuro-
psychological tasks that have (a) established psychomet-
ric properties, (b) been widely used and documented in
the VLS and related cognitive aging research, and (c)
demonstrated sensitivity to neurocognitive factors and
functional biomarkers [4, 32]. The target measure for
each task was the average response latency across the
test trials. Responses were recoded such that higher
scores represented better performance. We present de-
scriptions of each task and data correction procedures in
the Supplementary Methods, Additional File 1.

Statistical analyses
Analyses were conducted using Mplus 8.0 [33]. Missing
data were handled using full information maximum like-
lihood unless specified as otherwise.

Foundational analyses
The following foundational analyses served the purpose
of testing and confirming basic characteristics of the
neurocognitive speed data, as well as preparing the latent
variable: (a) confirmatory factor analysis, (b) longitudinal
measurement invariance tests, and (c) unconditional la-
tent growth modeling. Further details are presented in
the Supplementary Methods, Additional File 1.

Focal analyses
The 50 multi-morbidity items were submitted to an ex-
ploratory factor analysis. Importantly, we made decisions
related to the number of factors (health domains) and
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which indicators to retain on the basis of best-practices
literature [34, 35]. We verified that this latent structure
fit the data using confirmatory factor analysis. Model fit
was determined using standard indices (see Supplemen-
tary Methods, Additional File 1).
For the latent profile analysis (LPA), we fit a sequence

of models with varying numbers of latent profiles (e.g.,
1, 2, 3). We selected the best fitting model based on in-
terpretability of the study findings, as well as the follow-
ing model parameters, tests, and fit indices [36]: (a) log-
likelihood value (LL), (b) number of parameters esti-
mated, (c) Bayesian Information Criterion (BIC), (d)
sample-size adjusted BIC (SABIC), (e) Akaike Informa-
tion Criterion (AIC), (f) adjusted Lo-Mendell-Rubin like-
lihood ratio test (LMR-LRT), (g) adjusted Vuong-Lo-
Mendell-Rubin likelihood ratio test (VLMR-LRT), and
(h) entropy. Low values of BIC, SABIC, and AIC indicate
better fit [10]. The LMR-LRT and VLMR-LRT compare
the current model (k) against the model of one fewer la-
tent profile (k-1); a non-significant p value supports the
selection of the k-1 profile model [10]. Entropy (ranging
between 0 and 1) is not used for model selection but
suggests the classification accuracy (the higher the
better).
To avoid local maxima, we used 5000 multiple starting

values. Indicators were allowed to covary within class,
while the variances-covariances were constrained to be
equal across profiles (i.e., class invariant-unrestricted
structure). Alternative models allowing free estimation of
variance-covariance across profiles did not converge, sug-
gesting over-parameterization [37]. We controlled for po-
tential age effects by regressing the observed indicators
and profile membership on age. An adapted formula for
Cohen’s d was used to (a) calculate standardized mean

differences across latent profiles in the observed indicators
and (b) facilitate interpretations of the final latent-profile
solution [36]. Values > 2.0 indicate a less than 20% overlap
in profile-specific distributions and a high degree of separ-
ation on the associated indicator, whereas values < 0.85 in-
dicate more than 50% overlap and a low degree of
separation on the associated indicator.
We examined how the frailty profiles related to inter-

cept (performance at a statistical centering age) and lin-
ear slope (longitudinal change) of neurocognitive speed
using the manual BCH method (for further details, see
[38, 39]). We tested whether latent profiles differed in
the level or rate of change by comparing the nested
models with constrained equal performance level (i.e.,
intercept) or decline in speed (i.e., linear slope) with the
full model where performance level and decline in speed
were freely estimated for each latent profile using χ2

tests. Significant differences were inferred from a -2LL
difference statistic (D at p < .10), which compared the
unconstrained model to the constrained model.
We tested whether membership in the frailty profiles

was comparable across sex by performing a multinomial
logistic regression using the R3step approach (for further
details, see [40]). We examined whether frailty-cognition
associations generalized across sex by regressing the inter-
cept and slope of speed on sex separately for each profile.

Results
Foundational analyses
Results of the confirmatory factor analysis indicated that a
single-factor latent variable model for neurocognitive speed
fit the data adequately. Measurement invariance tests
showed full metric and full scalar invariance (final model fit
indices: root mean square error of approximation (RMSE

Table 1 Participant characteristics at baseline

Characteristic Total sample Not-clinically-frail Mobility-type Respiratory-type Sig.

Class prevalence n (%) – 542 (84%) 59 (9%) 48 (7%)

n (%) female 431 (66%) 351 (65%) 44 (75%) 36 (75%) ns

Age (in years) 70.61 (8.64) 69.78 (8.39)e 78.21 (7.53)f 70.60 (8.27)e ***

Education (in years) 15.27 (2.97) 15.39 (2.94) 14.67 (2.83) 14.54 (3.34) ns

APOE ɛ4+ 150 132 (24%) 6 (11%) 12 (25%) ns

Frailty indexa 0.13 (0.07) 0.11 (0.06)e 0.22 (0.07)f 0.20 (0.07)f ***

MMSE 28.67 (1.25) 28.70 (1.24) 28.29 (1.39) 28.78 (1.11) ns

Timed walkb,c 6.42 (1.65) 6.12 (1.13)e 9.28 (2.80)f 6.51 (1.65)e ***

Peak flow (L/min)b,d 421.98 (117.77) 435.40 (114.01)e 360.17 (100.86)f 329.10 (123.31)g ***

Results presented as mean (standard deviation). p values are based on one-way ANOVA or chi-square tests, as appropriate. We adjusted for multiple comparisons
using post-hoc Tukey tests
aWe calculated the proportion of deficits for each person on the 50 item frailty index as reported in Thibeau et al. [4]
bWe tested whether mobility- and respiratory-type differed from one another and the not-clinically-frail profile using planned comparisons
cThe number of seconds taken to walk 20 ft
dThe largest volume of air expired over three attempts
e, f, gValues with different superscripts differ from one another
***p < .001
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A) = .08; comparative fit index (CFI) = .96; standardized
root mean square residual (SRMR) = .09; see Supplemen-
tary Table 2, Additional File 1). Regarding the latent growth
model for speed, participants demonstrated (a) significant
variation in level of performance ( σ̂ 2 = 1.00, p < .001), (b)
significant decline over time (M = −.074, p < .001), and (c)
significant interindividual differences in the rate of decline (
σ̂ 2 = .003, p < .001; see Supplementary Table 3, Additional
File 1). This model was subsequently used to generate
intercept and linear slope estimates for each participant,
which then served as the target distal outcome measures.

RG1a: Exploratory and confirmatory factor analysis for
multi-morbidity items
Results from the exploratory factor analysis indicated
that a 7-factor solution adequately explained associations
amongst the final 30 multi-morbidity items. We tested
whether this latent structure fit the study data using
confirmatory factor analysis. Results showed adequate to
good model fit (χ2(384) = 649.02, p < .001; RMSEA = .03;
CFI = .90) and all indicators had strong loadings on the
corresponding latent construct (for model depiction see
Supplementary Fig. 1, Additional File 1). In accordance
with earlier research [14, 24, 25], we labeled these do-
mains as: mobility (n = 4), instrumental health (n = 6),
emotional wellbeing (n = 4), comorbidity (n = 4), respira-
tory symptoms (n = 3), cardiac symptoms (n = 5), and
physical activity (n = 4). Indicators for each domain are
outlined in Table 2. We subsequently calculated the pro-
portion of deficits in each domain for each participant.
Values ranged between 0 and 1, with higher scores de-
noting greater impairment. These data were used as con-
tinuous observed indicators in the LPA.

RG1b: Identification of latent frailty profiles
As shown in Table 3, AIC, BIC, and SABIC all steadily
decreased (i.e., became more negative) as the number of
latent profiles increased, suggesting that model fit im-
proved with the addition of each latent profile. Further,
the adjusted LMR-LRT (p < .001) and VLMR-LRT
(p < .001) indicated that the 3-profile solution provided
better fit relative to the 2-profile solution. Notably,
prevalence of each profile exceeded a conventional
standard of 5% [10]. Entropy for this solution was also
high (0.99), indicating that participants were classified
into the profiles with a high degree of precision. The 3-
profile solution was therefore selected as the final model.

Interpretation of the frailty profiles
Model estimated indicator means for each latent profile
are depicted in Fig. 1. The first profile (n = 542, 84%)
was characterized by relatively low impairment across all
observed indicators and was thus labeled as not-clinic-
ally-frail (NCF). Notably, participants in this profile had

Table 2 Multi-morbidity items by exploratory factor analysis
derived frailty domain

Domain Indictor

Mobility Finger dexteritya

Timed turna

Grip strengthb

Use of walker, cane, or wheelchairc

Instrumental health Health has affected ability to traveld

Health has affected ability to socialized

Health has affected ability to do hobbiesd

Health has affected ability to do mental
activitiesd

Health has affected ability to get around townd

Health has affected ability to do choresd

Emotional wellbeing Bradburn negative affect (restless, lonely, bored,
depressed, upset due to criticism)e

CES-D “during the past week, my sleep was
restless”f

CES-D “during the past week, I felt depressed”f

CES-D “during the past week, I felt lonely”f

Comorbidity Anemiag

Sex-related health problems (i.e., gynecological
problems or prostate problems)g

Gastrointestinal problems (colitis/diverticulitis,
gall bladder trouble, and/or liver trouble)g

Kidney or bladder troubleg

Respiratory symptoms Feeling short of breathc

Bronchitis or emphysemag

Asthmag

Cardiac symptoms Pulse pressureh

Heart troubleg

Hardening of arteries (i.e., atherosclerosis)g

High blood pressureg

Strokeg

Physical activity Stay at home but in chair most of the timec

Health has affected ability to do physical
recreational activitiesd

Spinal condition and/or back troubleg

Arthritis (rheumatoid and/or osteo)g

aPerformance was recoded as 0 (< 90th percentile) or 1 (within
90th percentile)
bPerformance was recoded as 0 or 1. See Supplementary Table 1, Additional
File 1
c0 = no, 1 = yes
d0 = no change, improved, N/A; 0.25 = slightly reduced; 0.50 =moderately
reduced; 0.75 = drastically reduced; 1 = gave up doing activity
e0 = no to all; 0.2 = yes to one; 0.4 = yes to two; 0.6 = yes to three; 0.8 = yes to
four; 1 = yes to all
f0 = rarely or none of the time; 0.33 = some or a little of the time; 0.67 =
occasionally or a moderate amount of the time; 1 =most or all of the time
g0 = no; 0.33 = yes, not serious; 0.67 = yes, moderately serious; 1 = yes,
very serious
hPerformance was recoded as 0 = 32.13–63.90; 0.5 = 64–75.9; 1 = 76+

Bohn et al. Alzheimer's Research & Therapy            (2021) 13:1 Page 5 of 12



an average score on the frailty index (see Table 1) that
fell below the clinical threshold typically used to assign
frailty status, whereas the remaining two profiles had
scores that met or exceeded a previously established cut-
off value of .20 [31]. The second profile (n = 59, 9%) was
characterized by pronounced impairment in mobility
function relative to the first (d = 5.09) and third (d =
3.90) profile. This profile was thus labeled as mobility-
type frailty (MTF). The third profile (n = 48, 7%), labeled
as respiratory-type frailty (RTF), was characterized by
pronounced impairment in respiratory function rela-
tive to the NCF (d = 6.96) and MTF profiles (d =
4.72). Interestingly, none of these profiles were distin-
guished on the basis of emotional well-being, comor-
bidity, cardiac symptoms, or physical activity (for
details see Supplementary Table 4, Additional File 1).
As highlighted in Table 1, the pattern of mean differ-
ences observed across profiles in performance-based
tasks was in keeping with our interpretations. That is,
participants classified into MTF had the slowest

performance on a timed-walk task, while participants
classified into RTF had the lowest peak-expiratory
flow. We present further descriptive baseline informa-
tion for each latent profile in Table 1.
In a series of follow-up analyses, we tested whether

the MTF and RTF profiles function as morbidity-
intensive portals that subgroups of older adults pass
through into classifiable chronic frailty. We assembled
three waves of data for the 50 item frailty index [4] and
calculated a growth model over the 40-year longitudinal
band. Key results showed significant (a) variation in the
level of frailty (σ̂ 2 = .004, p < .001), (b) increase in frailty
over time (M = .003, p < .001), and (c) interindividual dif-
ferences in the rate of frailty progression ( σ̂ 2 = .001,
p < .001; see Supplementary Table 3, Additional File 1).
We generated intercept and linear slope estimates for
each participant and tested whether the profiles were
differentially related to level (severity) and rate of change
in the frailty index using the manual BCH approach. Evi-
dence in support of a portal approach to frailty emer-

Table 3 Model fit indices for one- to four-latent profile solutions

Profile (−)2LL npar AIC BIC SABIC LMR VLMR Entropy

1 − 5029.43 42 − 4945.43 − 4757.47 − 4890.81 – – –

2 − 5584.96 51 − 5482.96 − 5254.72 − 5416.64 < .001 < .001 0.99

3 − 5880.55 60 − 5760.55 − 5492.02 − 5682.52 < .001 < .001 0.99

4b − 6235.52 69 – – – – – –

(−2)LL − 2 log-likelihood; npar number of parameters free; AIC Akaike information criterion; BIC Bayesian information criterion; SABIC sample size adjusted BIC; LMR
adjusted Lo-Mendell-Rubin likelihood ratio test; VLMR adjusted Vuong-Lo-Mendell-Rubin likelihood ratio test
bThis model was not considered due to non-replicated log-likelihood

Fig. 1 Model estimated observed indicator means for each latent profile. PA, physical activity; CS, cardiac symptoms; RS, respiratory symptoms;
CO, comorbidity; EW, emotional well-being; IH, instrumental health; MO, mobility. For further explanation of the profile interpretations, see the
“Results” section
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gence and progression would be constituted by a higher
level and steeper rate of deficit accumulation for MTF
and RTF as compared to the NCF profile.

Results for portal-related analyses
The predicted growth curve model for the frailty index
is presented in Fig. 2. Consistent with our expectations,
profiles differed significantly in intercept. Specifically,
older adults with MTF (b = .20, p < .001) and RTF (b =
.20, p < .001) had higher (worse) scores on the frailty
index relative to those who were NCF (b = .14, p < .001;
D = 11.20, Δdf = 4, p < .001). Differences across profiles
in the rate of frailty progression (slope) were also in the
expected direction. MTF was associated with the fastest
rate of deficit accumulation (b = .005, p < .001), followed
in order by RTF (b = .004, p < .001; D = 8.62, Δdf = 2, p =
.01), and then NCF (b = .003, p < .001; D = 14.71, Δdf = 2,
p < .001).

RG2: Latent profile-speed associations
The predicted growth curve model for neurocognitive
speed is depicted in Fig. 3. Intercept did not vary signifi-
cantly across MTF (b = −.46, p < .001), RTF (b = −.47,
p < .001), and NCF (b = −.24, p < .001) profiles (D = 7.87,
Δdf = 4, p = .10). However, we observed significant differ-
ences across profiles in the rate of cognitive decline
(slope; D = 31.81, Δdf = 4, p < .001). Specifically, MTF
(b = −.10, p < .001) was associated with more precipitous
decline relative to RTF (b = −.08, p < .001; D = 13.90,
Δdf = 2, p < .001) and the NCF profile (b = −.08, p < .001;
D = 23.61, Δdf = 2, p < .001). RTF was also associated
with more accelerated decline relative to the NCF profile
(D = 7.88, Δdf = 2, p = .02).

RG3: Generalizability of profile membership and
prediction patterns across sex
We found that profile membership was similar across sex
(coded as 0 = female, 1 =male) such that male sex was
equally related to the likelihood of being classified into
MTF (OR = .62, ns) or RTF (OR = 0.61, ns) as compared
to NCF. Further, male sex was equally related to the likeli-
hood of being classified into RTF as compared to MTF
(OR = .98, ns). Similarly, sex showed comparable associa-
tions with the level and rate of change in neurocognitive
speed for each of the frailty profiles (all p values > .20).

Discussion
The frailty phenotype [8] and the frailty index [9] are the
two important and productive approaches to measuring,
conceptualizing, and investigating frailty. Each of these
approaches has been widely used to capture variations in
the risk for adverse aging outcomes [41], including ac-
celerated cognitive decline and dementia [3, 5]. The
present study examined a complementary approach that
relied on data-driven statistical techniques. Specifically,
we submitted 50 items to an exploratory factor analysis
and derived the following 7 domains of aging morbidity:
mobility, instrumental health, emotional wellbeing, co-
morbidity, respiratory symptoms, cardiac symptoms, and
physical activity [14, 24, 25]. We calculated the propor-
tion of deficits accumulated in each domain and submit-
ted these data to a latent profile analysis (LPA) in order
to detect frailty profiles. We then examined whether (a)
distinguishable early frailty profiles could be empirically
detected and characterized, (b) frailty profiles differen-
tially predicted the level and rate of change in neurocog-
nitive speed, and (c) profile membership and prediction
of cognitive trajectories was comparable across sex.

Fig. 2 Predicted growth curve model for the 50 item frailty index across profile. Age in years was used as the metric of change and centered at
75 years. Profiles differed significantly in intercept and slope
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RG1: Identification of latent frailty profiles
In this person-centered analysis, three mutually exclu-
sive early morbidity profiles of individuals were identi-
fied. The first profile we identified, not-clinically-frail
(NCF), has been reliably documented in related re-
search [14, 15, 42, 43] and was characterized by individ-
uals with minimal impairment across the observed
indicators and low scores on the frailty index. This pat-
tern would be expected in a relatively healthy and cog-
nitively normal aging group, and thus would include
numerous persons who could later develop global or
phenotypic frailty. The second profile, mobility-type
frailty (MTF), was differentiated on the basis of deficits
in mobility function. This profile is consistent with
some research that suggests mobility deficits may ag-
gregate to form a unique frailty subtype [44–46]. For
example, Liu and colleagues [42] recently applied latent
class analysis (LCA) to the five items from the physical
frailty phenotype and detected four subtypes, one of
which was labeled mobility-type. The present study ex-
tracts this subtype from a much broader range of mor-
bidity measures and identifies it as an early frailty
profile. The third profile we detected represented re-
spiratory-type frailty (RTF). This profile was comprised
of individuals with pronounced impairment in respira-
tory function. Identification of RTF as an early frailty
profile advances the literature on subgroups of frail
older adults. Although expanding [47], the vast majority
of available works have conceptualized frailty using
only the physical phenotype [42, 48–50] or have not in-
cluded respiratory symptoms and diseases in the meas-
urement of aging morbidity [14, 15]. However, another
recent study also distinguished a data-driven frailty
subtype marked by concomitant respiratory impairment

[51]. Our results suggest that deficits in respiratory
function are a defining characteristic of early frailty
profiles and should be targeted and tracked in clinical
and research settings [43, 52, 53]. Finally, we note that
older adults classified into the two early frailty profiles
had comparable scores on the 50 item frailty index—
and these scores exceeded those of the non-frail group
and met an established threshold for clinical frailty
[31].
We tested whether MTF and RTF may represent early

and specific morbidity-intensive portals into broader and
chronic frailty in a series of follow-up analyses. Notably,
the results buttressed this interpretation. Not only did
older adults classified as MTF or RTF have higher levels
of frailty (intercept), but they also showed more rapid pro-
gression into general frailty as compared to those who
were NCF (slope). Interestingly, MTF was also associated
with a faster rate of deficit accumulation as compared to
RTF. These findings contribute to the emerging literature
on trajectories of frailty [54] and extend earlier research
that reported single indicators of mobility [55, 56] and re-
spiratory function [57, 58] are predictive of frailty progres-
sion. We advance these works by proposing and validating
a portal approach to frailty emergence, which reasons that
profiles of aging morbidity marked by mobility or respira-
tory deficits may serve as gateways to classifiable global
frailty, which then cascades into more rapid and wide-
spread deficit accumulation [59]. The present focus on de-
tecting early manifestations of frailty profiles and the
representation of these as portals into global frailty is a
promising research direction. Future epidemiological stud-
ies would profitably be directed towards replicating and
extending these results (e.g., data-driven frailty assessment
in clinical cohorts).

Fig. 3 Predicted growth curve model for speed factor scores across profile. Age in years was used as the metric of change and centered at 75
years. Intercept was comparable across profiles. Slope differed significantly across profiles
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RG2: Latent profile-speed associations
We found that, while the two emergent frailty profiles
differed only marginally for prediction of level (intercept
of neurocognitive speed), they differed significantly for
slope (decline or slowing). Regarding level, the pattern of
effects was in the expected direction [4, 19, 21]. Specific-
ally, older adults classified into MTF or RTF subtypes
trended towards worse performance relative to those
who were NCF. Notably, regarding slope, older adults
classified as having MTF showed the most precipitous
decline, followed in order by RTF and then NCF. These
relationships support the validity of these profiles and
suggest that distinct configurations of aging morbidity
marked by deficits in mobility and respiratory function
may have differential effects on neurocognitive slowing.
We note that these results cannot be attributed to age,
educational background, or proportion of deficits accu-
mulated. Three reasons are noted. First, we statistically
controlled for the effects of age. Second, the frailty pro-
files did not differ from one another in their level of
educational achievement. Third, participants assigned to
MTF and RTF had comparable baseline scores (and
intercept values) on the frailty index and yet they dif-
fered in the rate of decline.
To our knowledge, this is the first study to determine

data-driven early frailty profiles using LPA and examine
their prediction of cognitive aging trajectories. Of the re-
lated works summarized above, cognition was treated
variably as (a) a study covariate [48], (b) amongst one of
the indicators of aging morbidity [15, 49], or (c) not rele-
vant or included in the analysis [14, 50]. Notably, Liu
and colleagues [42] explored descriptive differences
across frailty subtypes and reported findings that run in
parallel to our own in mobility-type frailty was associ-
ated with lower scores on the MMSE relative to the ro-
bust subtype. Other research highlights that single
indicators of mobility or physical function, such as gait
speed or grip strength, are associated with decline in
processing speed [60, 61]. Far less research has examined
respiratory-cognition associations [62], particularly
within the context of frailty [58]. Olaya and colleagues
[43] recently reported that older adults assigned to a car-
diorespiratory latent multi-morbidity profile had worse
verbal memory performance relative to a healthy profile.
Several recent reviews have also reported that single in-
dicators of respiratory function, such as forced expira-
tory volume or asthma, predict neurocognitive slowing
[62, 63]. Nevertheless, this is the first study to extract
MTF and RTF profiles from a multi-morbidity inventory
in mostly non-frail older adults and then systematically
compare them in their initial frailty scores (similar), rate
of frailty progression (dissimilar), and their predictions
of cognitive change trajectories (dissimilar). These re-
sults suggest older adults presenting with deficits in

mobility or respiratory function may be particularly vul-
nerable to advancing frailty and accelerated neurocogni-
tive slowing. Proper assessment and management of
these signs, symptoms, and diseases as they appear early
on in the frailty trajectory is therefore encouraged. Accu-
mulating literature suggests that frailty is a potentially
reversible condition [64]. It has therefore been reasoned
that early interventions designed to reverse or attenuate
frailty progression may have downstream effects on re-
ducing negative aging outcomes, including differential
cognitive decline and impairment [16, 65].

RG3: Generalizability of profile membership and
prediction patterns across sex
Limited research has examined whether data-driven
early frailty profiles, particularly those derived on the
basis of multidomain deficit accumulation, are robust
across sex. A small number of studies have explored
whether the proportion of males and females assigned
into frailty profiles is comparable; however, this question
differs conceptually from the one tested in the present
study and the earlier findings were equivocal [14, 42,
49]. Our results indicated that males and females were
equally likely to be classified into the MTF, RTF, and
NCF profiles. Looman and colleagues [15] also examined
whether profile membership generalized across sex and
reported findings that converge with our own. Previous
literature suggests that there may be sex differences in
the impact of frailty on cognitive aging trajectories [4, 5,
26]. However, we did not detect such a pattern in our
data. Rather, we found that performance and decline in
neurocognitive speed was comparable across sex. Sex
differences may be more likely to appear in later life or
in more serious frailty conditions.
Given the heterogeneity of frailty, the mechanisms under-

lying the observed associations are unclear. Current reviews
attribute frailty-cognition associations to hormonal dysreg-
ulation, nutritional factors and deficiencies, chronic inflam-
mation, and cardiovascular risks [16, 18, 66]. Perhaps more
relevant for the present research are studies showing that
non-demented older adults accumulate neuropathology
[67–69] and show structural and functional declines [70] in
the regions that underlie motor functions and processing
speed, such as the striatum, substantia nigra, and motor
cortices. Increased white matter hyper-intensities and de-
creased cerebellar gray matter volumes have also been
linked with reduced mobility function [46] and poorer per-
formance on speeded tasks [71, 72]. Similarly, impaired re-
spiratory function predicts overall and subcortical brain
atrophy as well as white matter hyperintensities [73]. One
possible explanation for the finding that MTF was associ-
ated with accelerated cognitive decline relative to RTF is
that our measures of neurocognitive speed were computer-
based reaction time tasks. Performance on these tasks thus
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reflects not only processing speed, but also motor control
and muscle function. Individuals with deficits in mobility
function may therefore have been disproportionately
impaired on these tasks relative to those with respira-
tory deficits. Although linked to relevant literature,
these explanations are speculative and multiple contrib-
uting mechanisms likely account for the frailty-speed
associations. Continued research efforts are required in
order to understand the pathophysiologic underpin-
nings of MTF and RTF.

Strengths and limitations
We acknowledge several methodological strengths and
limitations. First, with respect to the former, we used a
substantial and well-characterized sample of participants
from the VLS. These individuals were tested on three
occasions across a 40-year band of aging and were rela-
tively healthy and free of neurodegenerative disease at
baseline. These characteristics allowed us to distinguish
and subsequently examine the impact of early frailty pro-
files on normal cognitive aging trajectories. At the same
time, our findings may be limited in generalizability to
other populations (e.g., more frail older adults; ethnic mi-
norities) or contexts (e.g., continuing care settings). Future
investigations should explore this possibility. Second, we
examined our research questions using contemporary
statistical approaches. Specifically, we derived empirically
based frailty profiles using LPA. This data-driven ap-
proach boasts several advantages over classical statistical
models (e.g., cluster analysis) [11], such as model-based
participant classifications, statistical diagnostic tools that
elucidate the quality of participant classifications, and
information-theoretic indices that favor selection of the
most parsimonious model (thus discouraging overfitting).
We validated our profiles by examining how they related
to the level and rate of change in frailty and neurocogni-
tive speed using the BCH approach, which allowed us to
statistically account for misclassification errors. We calcu-
lated the primary distal outcome measure using multiple
standard neuropsychological tasks, which contributed to a
validated, invariant, longitudinal, latent measure of neuro-
cognitive speed. We controlled for the potential con-
founding effects of age, as well as verified that prediction
patterns generalized across sex and could not be attrib-
uted to educational background or proportion of deficits
accumulated. Third, we assembled baseline data that rep-
resented the heterogeneity of frailty. This enabled us to
detect nuanced frailty profiles and address a prominent
criticism of earlier data-driven research [74]. It is worth
noting, however, that our indicators in the LPA do not
represent the full range of deficits that older adults may
accumulate. For example, due to unavailability, we did not
include indicators related to social function (beyond those
included in instrumental health) or nutritional status.

Previous studies including these indicators did not distin-
guish social or nutrition profiles [14, 15, 45, 49]. This is a
common issue in frailty research. The phenotype ap-
proach does not include all possible phenotypes and the
frailty index includes no phenotypes, but rather a score
that could vary according to the available items. Neverthe-
less, future studies could explore whether inclusion of
social and nutritional deficits may result in profile inter-
pretations and prediction patterns that diverge from the
present research.

Conclusions
Our study distinguished three early frailty profiles using
data-driven statistical techniques: not-clinically-frail
(NCF), mobility-type frailty (MTF), and respiratory-type
frailty (RTF). Whereas the former and larger profile rep-
resented older adults with minimal current impairment
across multiple indicators of aging morbidity, the latter
two profiles represented individuals with marked impair-
ment in either mobility or respiratory function. Prevail-
ing approaches that collapse across markers of aging
morbidity may therefore mask important variability, in-
cluding identification of (a) differentiable profiles that
may be characterized as morbidity-intensive portals into
broader and chronic frailty and (b) older adults at risk
for accelerated cognitive decline and impairment. These
profiles were differentially associated with longitudinal
change in neurocognitive slowing, such that MTF was
associated with the steepest decline, followed by RTF. As
new and more effective treatments become available,
studies directed towards identifying subgroups of frail
older adults who are not yet exhibiting cognitive impair-
ment but who are at increased risk are essential. Our re-
sults indicate that older adults presenting with mobility
or respiratory complaints may benefit from early and
targeted interventions [53, 75]. Future research should
explore the extent to which rehabilitation and pharma-
cologic treatments targeting these deficits may offset or
delay cognitive decline and frailty progression.
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