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Abstract. Immunofluorescence microscopy revealed 
the presence of protein phosphatase 2A (PP2A) on 
micrombules in neuronal and nonneuronal cells. Inter- 
phase and mitotic spindle microtubules, as well as 
centrosomes, were all labeled with antibodies against 
individual PP2A subunits, showing that the ABo~C 
holoenzyme is associated with microtubules. Biochem- 
ical analysis showed that PP2A could be reversibly 
bound to microtubules in vitro and that ,'~75 % of the 
PP2A in cytosolic extracts could interact with 
microtubules. The activity of micrombule-associated 

PP2A was differentially regulated during the cell cy- 
cle. Enzymatic activity was high during S phase and 
intermediate during G1, while the activity in G2 and 
M was 20-fold lower than during S phase. The amount 
of microtubule-bound PP2A remained constant 
throughout the cell cycle, implying that cell cycle 
regulation of its enzymatic activity involves factors 
other than microtubules. These results raise the possi- 
bility that PP2A regulates cell cycle-dependent 
microtubule functions, such as karyokinesis and mem- 
brane transport. 

T 
HE reversible phosphorylation of proteins is a ubiqui- 
tous biochemical mechanism involved in the regula- 
tion of cellular behavior, including structural and 

functional dynamics of the cytoskeleton. The cytoskeleton 
undergoes a dramatic alteration during the transition from 
interphase to mitosis. In nonpolarized cells at interphase, 
microtubules arc usually arrayed in a radial network emanat- 
ing from the perinuclear centrosome. At the onset of mitosis, 
the interphase network disappears and microtubules reor- 
ganize to form the mitotic spindle. Reversible phosphoryla- 
tion of component proteins is involved in regulating the sta- 
bility and function of intcrphasc microtubules, microtubule 
reorganization during mitosis, and the function of the mitotic 
spindle. The onset of mitosis is controlled by activation of 
the cyclin B/p34 ~c2 protein kinase at the G2/M transition 
(Norbury and Nurse, 1992). Treatment of Xenopus oocyte 
extracts with p34 ~c2 kinase induces a decrease in microtu- 
bule stability similar to that observed during the interphase 
to metaphase transition (Verde et al., 1990, 1992). The cy- 
clin B/p34 '~2 complex is localized to cytoplasmic microtu- 
bules and centrosomes (Ookata et al., 1993), and to the spin- 
die during mitosis or meiosis (Bailly et al., 1989, 1992; 
Riabowol et al., 1989; Pines and Hunter, 1991; Ookata et al., 
1992). Effects on microtubule stability similar to those 
caused by p34 ~c2 kinase have also been observed with 

mitogen-activated protein kinase (MAP kinase) 1 (Gotoh et 
al., 1991), which is activated at M phase, and localizes to 
the mitotic spindle poles and to cytoplasmic microtubule or- 
ganizing centers (Verlhac et al., 1993). The serine/threonine 
phosphatase inhibitor okadaic acid causes depolymerization 
of interphase microtubules and abnormalities in the mitotic 
spindle in LLC-PK cells (Vandr~ and W'dls, 1992). Okadaic 
acid also induces interphase to mitotic-like dynamic insta- 
bility of sea urchin egg microtubules (Gliksman et al., 1992) 
and a loss of interphase microtubules in BHK-21 cells 
(Eriksson et al., 1992). These results suggest that main- 
tenance of the interphase microtubule network requires pro- 
tein phosphatase activity. Important sites of phosphorylation 
in the control of microtubule function and stability are likely 
to be microtubule-associated proteins and centrosomal pro- 
teins. 

Protein phosphatase 2A (PP2A) accounts for a significant 
portion of the total phosphatase activity in many tissues and 
cell types (Cohen, 1989), and plays important roles in cell 
growth and transformation (Mumby and Walter, 1993). 
PP2A is a heterotrimeric holoenzyme composed of a com- 
mon core structure bound to different regulatory subunits. 
The core enzyme is a complex between the catalytic (C) and 
structural (A) subunits. The third subtmit, termed B, com- 
prises several distinct families of regulatory subunits that 

Address all correspondence to Estelle Sontag, University of Texas South- 
western Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235- 
9041. Tel.: (214) 648-7908. Fax: (214) 648-8626. 

1. Abbreviations used in this paper: MAP, microtubule- associated protein; 
MAP kinase, mitogen-activated protein kinase; PP2A, protein phospha- 
tase 2A. 

© The Rockefeller University Press, 0021-9525/95/03/1131/14 $2.00 
The Journal of Cell Biology, Volume 128, Number 6, March 1995 1131-1144 1131 



generate a diversity of holoenzymes (Mumby and Walter, 
1993). The B subunits bind to the heterodimeric AC form 
of PP2A and regulate phosphatase activity and specificity 
(Waelkens et al., 1987; Umi et al., 1988; Chen et al., 1989; 
Kamibayashi et al., 1992, 1994). 

There is substantial evidence that PP2A performs func- 
tions essential for cell division. Mutations in genes encoding 
subunits of PP2A cause defects in cell division in fungi and 
Drosophila (Kinoshita et al., 1990, 1993; Healy et al., 1991; 
Mayer-Jaekel et al., 1993). To better understand the role of 
PP2A in regulation of cell division, we investigated its sub- 
cellular localization, expression, and activity during the cell 
cycle. In this paper, we report that '~50-75 % of the cytosolic 
pool of PP2A is associated with microtubules and is local- 
ized to interphase microtubules, centrosomes, and the mi- 
totic spindle in various cell types. Moreover, the activity of 
microtubule-associated PP2A is regulated in a cell cycle- 
dependent manner. These findings suggest that PP2A plays 
a critical role in controlling the phosphorylation of proteins 
involved in controlling microtubule functions. 

Materials and Methods 

Proteins and Antibodies 
Tubulin was purified from bovine brain by multiple cycles of GTP-stim- 
ulated assembly at 37°C and cold-induced disassembly, followed by DEAE 
chromatography, as described previously (Bloom et al., 1988). F-actin was 
purified from rabbit skeletal muscle (Spudich and Watt, 1971). The an- 
titubulin monoclonal antibody has been characterized previously (Vallee 
and Bloom, 1983). Antibodies against the subunits of PP2A included: a 
monoclonal antibody against the catalytic subunit (Mumby et ai., 1985), 
an antiserum raised against a COOH-terminal 20-amino acid peptide (resi- 
dues 290-309) of the catalytic subunit (Kamibayashi et al., 1991), a poly- 
clonal antibody raised against the A subunit, and an antipeptide antiserum 
against residues 13-26 of the 55-kD B~ subunit. The specificities of these 
antibodies have been demonstrated previously by immunoblotting of whole- 
cell or tissue extracts (Mumby et al., 1985; Kamibayashi et ai., 1994). 
Nocodazole was obtained from Aldrich (Chemical Co., Milwaukee, WI) 
and taxol was a gift from the National Cancer Institute (Bethesda, MD). 

Cell Culture 
Monkey kidney CV-1 cells (American Type Culture Collection, Rockville, 
MD), rat embryo fibroblasts (REF52), CHO, bovine kidney MDBK cells, 
mouse 3"1"3 fibroblasts and N1A neuroblastoma cells were maintained at 5 % 
CO2 in DME containing 10% bovine calf serum. In some cases, microtu- 
bules were depolymerized by treating CV-1 cells for 45 min with 4 t~g/ml 
nocodazole. 

Selective Cell Extraction 
Selective extraction of cultured CV-1 cells was performed as described pre- 
viously (Solomon, 1986). For immunofluorescence studies, CV-1 cells were 
grown overnight on glass coverslips and washed twice with phospbate- 
buffered saline at room temperature. The washed cells were extracted for 
90 s to 5 rain by addition of 0.1% NP-40 in microtubule-stabilizing buffer, 
PEM2G (0.1 M Pipes, 2 M glycerol, 5 mM MgCh, and 2 mM EGTA, pH 
6.9). The solubilizad materials were then removed by a second extraction 
in PEM2G without detergent. The preparations were then fixed for 3 rain 
at -20°C in methanol and labeled as described in the subsection titled "Im- 
munotluorescenceY 

For quantitation of PP2A activity in synchronized CV-1 cells, the cells 
were selectively extracted using the same protocol and scraped from culture 
dishes in PEM2G buffer. Microtubules in the cytoskeletal preparations were 
stabilized by the addition of 10 ~tM taxol to the extraction buffer and were 
recovered after centrifugation for 2 rain at 700 g. The microtubule- 
containing pellets were washed extensively with PEM buffer (0.1 M Pipes, 
5 mM MgCIz and 2 mM EGTA, pH 6.9) and were analyzed for protein 
content and phospbatase activity. Control experiments consisted of prein- 
cubating cells with 4 ~g/mi nocodazole for 45 min before detergent extrac- 

tion in the absence of taxol. No appreciable microtubules or PP2A were 
recovered in the pellet fraction of nocodazole-treated cells. 

Cell Synchronization 
For synchronization to GI, 150-ram dishes of CV-1 or mouse neuroblastoma 
cells were grown to confluency, starved for 24 h in DME containing 0.05% 
calf serum, and harvested. Synchronization to S was achieved by incubating 
cells for 24 h in leucine-free medium containing 2% dialyzed fetal calf se- 
rum followed by an incubation in DME containing 10% calf serum and 2.5 
mM thymidine for 16-24 h. Cells were then released for 1 or 2 h in DME 
containing 10% calf serum and harvested. Cells were synchronized to 
G2/M by a 24-h thymidine block, followed by incubation for 24 h in DME 
containing 0.26 ~tM ~ l e .  Cells were then either harvested directly 
(G2/M), harvested by mitotic shake-off (M), or released for 5 h in DME 
containing 10% calf serum (early G1). Growing cells (G1/S) were used in 
some experiments. All cells were washed extensively with phosphate- 
buffered saline before harvesting. 

The efficiency of cell synchronization was analyzed by FACS ° (Becton 
Dickinson Immunocytometry Systems, Mountain View, CA). Cells (1 x 
106) were fixed in saline glucose/95% ethanol (1:3), washed with phos- 
phate-buffered saline, and stained with propidium iodide solution contain- 
ing 30 U/mi of RNase A. After incubating for 10 rain at 37°C, NaC1 was 
added to a final concentration of 0.15 M, and the cells were fiRered through 
nylon mesh before being analyzed by flow cytometry. 

lmmunofluorescence 
Cells grown overnight on glass coverslips were fixed for 20 min in 4% 
paraformaldehyde-PBS and permeabilized for 10 min in PBS containing 
0.1% Triton X-100. Alternatively, cells or detergent-resistant cytoskeletons 
(see "Selective Cell Extraction") were fixed/permeabilized by incubation for 
3 min at -20°C in absolute methanol. Cells were then washed twice each 
with DME and PBS. Subsequent antibody incubations and washing steps 
were performed in PBS containing 1% bovine serum albumin. Cells were 
incubated for 45 min to 1 h with the following primary antibodies: purified 
monoclonal anfi-PP2A catalytic subunit antibody (12.6/~g/mi), polyclonal 
anti-C subunit antiserum (1:200), polyclonal anti-A subunit antiserum 
(1:100), polyclonal anti-Bet subunit antiserum (1:1,000), or antitubulin IgM 
monoclonal antibody tissue culture supernatant (1:2). After washing, cells 
were incubated for 30 rain with the following secondary antibodies: affinity- 
purified FITC-conjngated goat anti-mouse or Texas red-conjugated goat 
anti-rabbit antibodies (Fisher Scientific, Pittsburgh, PA) at 6.7/tg/ml for 
double labeling experiments. For single labeling experiments, Cy3-conju- 
gated affinity-purified goat anti-rabbit antibody (Jackson ImmunoResearch 
Labs, West Grove, PA) and Texas red-conjugated affinity-purified goat anti- 
mouse IgG (Fisher) were used at 2.6 and 40 ~g/mi, respectively. After ex- 
tensive washing, the coverslips were mounted with Fluoromount (Fisher) 
and examined with a confocal microscope (63 x objective; Carl Zeiss, Inc., 
Thornwood, NY). Control experiments for immunottuorescence were 
performed in which the first or second antibodies were omitted. Primary 
antibody specificity was also tested by preadsorbing antisera with the 
homologous antigens (purified peptides or proteins). For double labeling 
experiments, samples were scanned simultaneously for Texas red and FI'IC 
by laser confocal microscopy. 

Purification of Microtubules and 
Microtubule-binding Proteins 
150-ram dishes (four to eight) of CV-I or neuroblastoma cells were washed 
with ice-cold PBS and doonced homogenized in 500 ~tl of PEM buffer con- 
taining protease inhibitors (l mM phenylmethylsulfonylfluoride, l0  ttg/ml 
leupeptin, 10 ~g/ml aprotinin, and 0.1 mg/ml soybean trypsin inhibitor). 
Cells were centrifuged for 10 min in a microcentrifuga to remove insoluble 
material, and the resulting cell extract was centrifuged at 4oc for 1 h at 
120,000 g. 

For purification of endogenous microtubules, the cytosolic fractions 
from neuroblastoma cells were normalized for protein concentration and in- 
cubated at room temperature for 15 rain in the presence of 20/~M taxol and 
1 mM GTP. Microtubules were then pelleted by centrifugation for 30 min 
at 20°C at 30,000 g. The microtubule pellets were washed twice with PEM 
buffer. The remaining supernatant was again treated with taxol and GTP, 
as described above, to increase the yield of polymerized microtubules. 
Microtubules obtained from the second centrifugation were combined with 
the first microtubule pellet. The final microtubule pellet was resuspended 
in 100 ~1 of PEM buffer (one fifth of initial volume). 
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Microtubule*binding proteins (including structural micmtubule-asso- 
ciated proteins [MAPs]) were also isolated from cytosolic extracts of cul- 
tured cells using purified exogenous microtubules (Bloom et al., 1985). For 
these experiments, the soluble cell extracts (500/zl) were incubated for 15 
rain on ice with 0.5 mg/ml purified bovine brain tubulin preassembled with 
taxol. The microtubules and associated proteins were then collected by cen- 
trifugation at 4°(2 for 30 win at 30000 g. In some experiments (see Table 
I), the postmicrotubule supernatants were supplemented with microtubules 
and centrifugnd again, a process that was repeated multiple times. As a cow 
trol for exogenous micrombules, cell extracts were incubated in an identical 
fashion, but with 0.5 mg/ml purified F-actin instead of polymerized tubulin. 

Microtubules and microtubule-binding proteins were also prepared from 
rat brain using a taxol-dependent procedure Cv~lee, 1982), modified such 
that the microtubule assembly step was performed at room temperature, in- 
stead of at 37°C. To maximize yield, the rat brain extract (1 ml) was treated 
twice with taxol and GTP. The washed microtubule pellets were resus- 
pended in 200 pl of PEM buffer (one fifth of initial volume). Microtubule- 
binding proteins were dissociated from microtubules with high salt (Vallee, 
1982). Salt-extracted mierotubule-associated proteins were dialyzed against 
PEM buffer. To determine the maximum amount of brain PP2A activity that 
could associate with microtubules, rat brain microtubule-binding proteins 
were isolated by cosedimeutation with multiple successive aliquots of exog- 
enous micrombules, as described for cultured cells. 

Phosphatase Assay 
Aliquots of cytosol, isolated microtubules, and other cytosol-derived frac- 
tions were assayed for protein phosphatase activity for 5 rain at 30°C using 
phosphorylated myosin light chain as a substrate (Mumby et al., 1987). In 
parallel experiments, the fractions were preincubated with 1-5 aM okadaic 
acid before assay for phosphatase activity. PP2A was defined as the myosin 
light chain phosphutase activity that was sensitive to I or 5 nM okadnic acid 
(Cohen et al., 1989). 1 mU of phosphatase activity is that amount which 
released I nmol of 32p per minute. Protein concentrations were determined 
using the Bradford assay and bovine serum albumin as standard. 

Electrophoresis and lmmunoblotting 
The samples obtained during isolation of microtubules and micrombule- 
binding proteins were diluted with 3 x SDS sample buffer. Equal volumes 
or equivalent amounts of protein were resolved on 8% SDS-pulyacryl- 
amide gels, transferred to nitrocellulose membranes, and blotted with anti- 
bodies against the C, Bot, and A subunits of PP2A. SDS-PAGE was carried 
out in 0.75-ram-thick slab gels. Immunoblots were developed using the 
ECL chemiluminescence detection method (Amersham Corp., Arlington 
Heights, IL). 

Results 

Immunofluorescence Localization of PP2A 
on Microtubules 
The subcellular localization of PP2A in intact CV-1 cells was 
examined by immunofluorescence with polyclonal and 
monoclonal antibodies raised against individual PP2A sub- 
units or subunit-spexific peptides. Our efforts were focused 
in particular on the ABc~C form of the enzyme, the predomi- 
nant heterotrimeric species of PP2A in CV-1 ceils (Sontag et 
al., 1993). Fig. 1, A and B, show that the A and C subunits 
of PP2A were colocalized in the cytoplasm. The most in- 
tense staining of both subunit polypeptides was observed in 
the perinuclear region. The nonperinuclear cytoplasmic 
staining of the A and C subunits was faint and had a some- 
what filamentous appearance. Simitar results were obtained 
using either monoclonal or polyclonal antipeptide antibodies 
against the catalytic subunit (Fig. 1, B and C). Immunofluo- 
rescent staining of the Bet subonit showed a strikingly fila- 
mentous pattern (Fig. 1 D). Double labeling with antitubulin 
monoclonal antibodies showed that Bo~ was localized to the 
centrosome and the interphase microtubule network (Fig. 1, 
D and E). A perinuclear staining of Bot was also observed 

using confocal microscopy. Perinuclear Ba staining was dis- 
tinct from the microtubule network and was similar to the 
staining with anti-A and anti-C antibodies (Fig. 1 D). Some 
nuclear staining was also observed with all anti-PP2A 
subunit antibodies using confocal microscopy (results not 
shown). 

Control experiments were performed to assess the spec- 
ificity of all antibodies by preadsorbing antisera with homol- 
ogous antigens (purified peptides or proteins). The staining 
of all three subunits was specifically blocked by the cor- 
responding antigen (data not shown). In particular, the 
microtubule labeling observed with anti-Ba antibody was 
abolished by preincubating the antiserum with an excess of 
purified Bc~ peptide. The same distribution of Bo~ was ob- 
served using either methanol or paraformaldebyde as fixa- 
fives. Nocodazole treaanent of cells before fixation resulted 
in the disappearance of microtubule staining with both an- 
titubulin (results not shown) and anti-B, antibodies (Fig. 1 
F). Finally, immunoblotting analysis showed that anti-Box 
antiserum did not cross-react with purified tubulin or any 
protein other than Bc~ in CV-1 cell extracts (results not 
shown). 

The strong microtubule staining with anti-l~x antibodies, 
but not with anti-A or anti-C antibodies, suggested the possi- 
bility that the heterodimeric (AC) form of PP2A was not 
colocalized on microtubules with B~. Alternatively, the ab- 
sence of obvious micrombule labeling with anti-A and anti-C 
antibodies might have resulted from masking of the antigenic 
sites by microtubules or a high background of non-micro- 
tubule-associated subunits. Although anti-A and anti-C sub- 
unit antibodies primarily stained the perinuclear region, 
labeling of the centrosome with the monoclonal anti-C 
subunit antibody was observed using confocal microscopy 
(Fig. 1 B, arrow). Centrosome staining suggested that the C 
subunit might also be localized to microtubule-associated 
structures. Further evidence for the interaction of PF2A with 
microtubules came from experiments in which cells were 
selectively extracted with nonionic detergent before fixation 
and labeling. This type of extraction can solubilize ~80% of 
the total cellular protein (Brown et al., 1976), but when ap- 
propriate buffers are used, most cytoskeletal elements, in- 
cluding microtubules, remain intact (Osborn and Weber, 
1977). The presence of intact microtubules in the extracted 
cells was verified by immunofluorescence using antitubulin 
monoclonal antibody (Fig. 2 B). Extraction of CV-1 cells re- 
moved the bulk of the perinuclear staining observed with all 
the PP'2A subunit antibodies (Fig. 2, A, C, and D). The 
microtubule labeling with anti-Be antibody in extracted cells 
was unchanged relative to intact cells but its relative intensity 
was enhanced due to elimination of background perinuclear 
and cytoplasmic staining (Fig. 2 A). Strong staining of inter- 
phase micrombules with antibodies against the A and C 
subunits was also observed in extracted cells (Fig. 2, C and 
D), Specificity of the labeling obtained with all anti-PP2A 
subunits antibodies in extracted cells was verified in parallel 
control experiments (results not shown). 

PP2A Associates with Microtubules In Vitro 
The results obtained by immunofluorescence indicated that 
PP2A was associated with microtubules in vivo. To verify 
this association at the biochemical level, microtubules and 
microtubule-binding proteins were purified from high speed 
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Figure 1. Analysis of PP2A distribution in CV-1 cells by indirect immunofluorescence. Growing CV-I cells were fixed/permeabilized with 
4% paraformaldehyde/0.1% Triton X-100 and labeled with the following primary antibodies: (A and B) Cells were double stained with 
PP2A polyclonal anti-A and monoclonal anti-C subunit antibodies, respectively. (C) Cells were labeled with anti-C subunit peptide antise- 
rum. (D and E) Cells were doubled stained with PP2A anti-Bc~ and monoclonai antitubulin antibodies, respectively. (F) Ceils were 
pretreated with 4/~g/ml nocodazole for 45 vain before fixation and subsequent labeling with PP2A and anti-Bc~ antiserum. Bar in F, 25 
~m for A-C and F, and 12 pm for D and E. 

extracts of cultured mammalian cells and rat brain using ei- 
ther of two standard methods. Isolation of microtubule- 
binding proteins by the first method was achieved by 
cosedimentation with microtubules assembled from endoge- 
nous mbulin with the aid of taxol (Vallee, 1982). The 
microtubule assembly step in this case required a 15-30-rain 
incubation of cytosol at a temperature of 20°C or higher. The 
second method made use of exogenous microtubules that 
were preassembled from purified brain tubulin with taxol 
and, when added to cytosol, associated with endogenous 
microtubule-binding proteins (Bloom et al., 1985). This lat- 
ter technique allows eytosol to be maintained at 0-4°C 
throughout isolation of microtubule-binding proteins, and is 
especially useful for situations in which prolonged exposure 
of such proteins to elevated temperature compromises their 
structural and functional integrity (Bloom et al., 1985). 

Fig. 3 documents experiments in which PP2A was de- 

tected in microtubule pellets that had been sedimented out 
of CV-1 cell or rat brain cytosol. Exogenous microtubules 
were used for CV-1 cells because the 37°C incubation of 
cytosol that was required for assembly of endogenous tubulin 
nearly abolished the enzymatic and microtubule-binding ac- 
tivities of CV-1 cell PP2A (data not shown). This problem 
was circumvented by using exogenous microtubules and 
maintaining CV-1 cytosol at 0--4°C. In the case of the rat 
brain, microtubules were efficiently assembled from endoge- 
nous mbulin at room temperature, which did not adversely 
affect the functional properties of the endogenous cytosolic 
PP2A. 

Two distinct types of assays indicated that approximately 
half of the PP2A present in high speed extracts of both CV-1 
ceils and rat brain could be reo~ered in micrombule pellets 
that were collected by one cycle of centrifugation. Micro- 
tubule-bound PP2A was detected by Western blotting using 
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lqgure 2. Immunofluorescent localization of PP2A in extracted CV-1 cells. CV-1 cells were extracted for 1.5 rain with a detergent-containing, 
microtubule-stabilizing buffer before fixation. The cells were then fixed in methanol and stained with anti-Bc~ (A), antitubulin (B), anti-A 
(C), or monoclonal anti-C (D) antibodies. Bar in D, 12 #m for A and B, and 25 #m for C and D. 

antibodies to the A, Ba, or C subunits of the protein (Fig. 
3 B), as well as by enzymatic assays (Fig. 3 C). When 
microtubules were washed with a high salt buffer, most of the 
bound PP2A was solubilized, demonstrating that ionic inter- 
actions are important for association of the enzyme with 
microtubules (Fig. 3 B). About 80% of the PP2A in the salt 
wash fraction was able to rebind to purified microtubules af- 
ter dialysis against salt-flee buffer (data not shown). Nearly 
all of the protein phosphatase activity detectable at all stages 
of the experiments shown in Fig. 3 was inhibited by 1 nM 
okadaic acid. Sensitivity to low concentrations of OA indi- 
cated, as reported earlier (Sontag et al., 1993), that PP2A 
was the major serine/threonine protein phosphatase present 
in the cell and tissue extracts used for these experiments (Fig. 
3 C). As was the case for CV-1 cells, the brain microtubule- 
associated phosphatase activity was extremely sensitive to 
OA (Fig. 3 C, right panel). Because of the abundance of the 

PP2A in brain samples, a concentration of 5 nM OA was 
necessary to fitly inhibit microtubule-bound PP2A activity. 

When exogenous actin filaments, instead of microtubules, 
were added to cytosol and centrifuged, the resulting pellets 
contained nearly all of the added actin, but they lacked de- 
tectable PP2A, as judged by both Western blotting and 
enzymatic assays (data not shown). The actin filament 
experiments emphasize that the association of PP2A with 
microtubules is specific, and does not merely reflect adventi- 
tious binding of PP2A to acidic, fibrous protein polymers. 

To estimate the maximal amount of cytosolic PP2A that 
could associate with microtubules, supematants, obtained 
after cosedimentation of cytosol with exogenous microtu- 
bules, were supplemented with additional microtubules, in- 
cubated for another 15 rain, and centrifuged. The resulting 
fractions were then assayed for PP2A activity. This process 
was repeated until no additional PP2A activity could be de- 
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Figure 3. Binding of PP2A to exogenous microtubules in CV-1 cell 
extracts (left portion) and to endogenous rat brain microtubules 
(right portion). (A) Coomassie blue-stained gel of the different 
stages of microtubule purification. Microtubule-binding proteins 
were purified from a CV-1 cell extract by cosedimentation with ex- 
ogenous bovine brain tubulin preassembled with taxol (left por- 
tion), as described in Materials and Methods. Lane 1, high molecu- 
lar weight markers; lane 2, purified tubulin standard; lane 3, 
cytosolic extract; lane 4, postmicrotubule supernatant; lane 5, 
microtubule pellet obtained after one cycle of eentrifugation and ex- 
tensive PEM washing. The microtubule pellet was resuspended in 
one fifth of the initial extract volume, and all lanes contained 50 V1 
of each fraction. Endogenous microtubules and microtubule- 
binding proteins were isolated from rat brain using one cycle of 
taxol-assisted assembly (right portion), as described in Materials 
and Methods. Lane 6, cytosolic extract; lane 7, postmicrotubule su- 
pernatant; lane 8, microtubule pellet obtained after one cycle of 
centrifugation and PEM washing; lane 9, microtubule pellet ob- 
tained after salt extraction; lane 10, proteins eluted from microtu- 
bules by salt extraction. The microtubule pellets were resuspended 
in one fifth of the initial volume, and all lanes contained 20/zl of 
each fraction. Thus, for both CV-1 cells and rat brain, the MT 
pellets were concentrated five times relative to cytosol to emphasize 
the presence of microtubule-binding proteins. (B) Chemilumines- 
cent immunodetection of samples obtained during the microtubule 
purification in CV-1 cells (left portion) or rat brain (right portion) 
with antibodies directed against the A (anti-A), Bc~ (anti-Bct), and 
C (anti-C) subunits of PP2A. All lanes contained 10 ~,1 of each 
fraction. To facilitate direct comparison of the PP2A subunit levels 
in each fraction, the microtubule pellets were resuspended to the 
original volume of the cell extracts from which they were derived. 
Note that about half of the immunoreactive subunits were recovered 
in the pellets. (C) Phosphatase activity was determined in the total 
cytosolic extract (Cytosol) and in the microtubule fraction (MT) in 
the presence (solid bars) or absence (open bars) of 1 nM okadaic 
acid. Values are expressed as the percentage of the total PP2A ac- 
tivity in the cytosolic extract, and they represent the mean + SD 
of duplicate assays. The specific activity in the cytosolic extract was 
2 + 0.3 rnU/mg for CV-1 cells (lefiportion). Similar results were 

Table L Binding of  PP2A to Exogenous Microtubules 

Phosphatasc activity 

Treatment Supernatant Microtubule pellet 

mU 
1 2.06 2.10 
2 0.98 1.06 
3 0.87 0.10 
4 0.86 0 

A CV-1 cell extract was supplemented with purified brain microtuboles and 
then incubated for 15 min on ice as described in Materials and Methods. 
Micrntubules were collected by centdfugation, and total PF2A activity remain- 
ing in both the postmicrotubule supernatant and the microtubule pellet was then 
measured (Treatment 1). This entire process was repeated three more times by 
substituting the postmicrotubule supematant from each successive round for 
the original CV-1 cell extract (Treatments 2-4). The specific activity of PP2A 
in the starting cytosol was 1.7 mU/mg, and the t~tal activity was 4.2 mU. 

tected in the microtubule pellets. Table I summarizes results 
from a typical experiment using CY-1 cells. After one round 
of  microtubule sedimentation, 2.1 mU of PP2A activity re- 
mained in the postmicrotubule supernatant, and 2.1 mU was 
present in the microtubule pellet. After the next round, the 
supernatant and pellet contained 1 and 1.1 mU of  activity, 
respectively. Little, if any, PP2A activity was detected in 
subsequent microtubule pellets. Taken together, these data 
demonstrate that <75 % of the PP2A activity in CV-1 cytosol 
was able to associate with microtubules in vitro. Nearly 
identical results were obtained using cytosol isolated from 
rat brain and mouse neuroblastoma cells (data not shown). 

PP2A Is Associated with Microtubules during Mitosis 

The results of  the immunofluorescence and biochemical 
analyses showed an association of  PP2A with microtubules 
in interphase cells. To determine if PP2A was also associated 
with microtubules during mitosis, the localization of  PP2A 
during the cell cycle was investigated. Dividing cells at vari- 
ous stages of  mitosis were either fixed directly or extracted 
with nonionic detergent before fixation. Cells were then 
processed for immunofluorescence using antibodies against 
all three subunits of PP2A. Although labeling of  the centro- 
some was visible with all of  the antibodies in interphase 
cells, a particularly pronounced staining of  the duplicated 
centrosome was observed with the anti-C subunit monoclo- 
nal antibody after detergent extraction of dividing cells (Fig. 
4 A). Intense staining of  microtubule arrays emanating from 
the duplicated centrosomes was observed with anti-Bet anti- 
body in intact prophase cells (Fig. 4 B). The mitotic spindle 
was labeled with antibodies against all three subunits. An ex- 
ample of the spindle localization in detergent-extracted cells 
is shown for the A subunit (Fig. 4 C). Localization of PP2A 
on the mitotic spindle was confirmed by double labeling ex- 
periments, as shown for the Bet subunit (Fig. 4, D and E).  
The localization of  the Bt~ subunit at different stages of mito- 
sis is shown in Fig. 4 E Immunofluorescence demonstrated 
prominent localization of Bt~ on centrosomal arrays of mi- 
crotubules during prophase (thick arrow), and on the mitotic 

obtained in five separate experiments. Brain PP2A specific activity 
was 12.9 + 1.9 mU/mg in the microtubule pellet (right portion). 
Similar results were obtained in two separate experiments. 
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spindle during metaphase (long arrow) and anaphase (open 
arrow). Bc~ was also localized to the midbody of telophase 
cells (small arrow). The labeling of the interphase microtu- 
bule network, duplicated centrosomes, and mitotic spindles 
with antibodies against all three subunits indicates that PP2A 
remains associated with microtubules throughout the cell 
cycle. 

PP2A Is Localized to Microtubules in Several 
Cell l)2pes 
To determine if localization on microtubules was a general 
phenomena, the distribution of PP2A in other cell types was 
examined. Asynchronous cultures of four cell lines were 
grown on coverslips and processed for immunofluorescence 
using the anti-Bt~ antiserum. Although the intensity of 
microtubule labeling varied with the cell type, the Bot 
subunit was associated with microtubules in each cell type. 
Fig. 5 shows some examples of the different patterns of 

microtubule staining observed in these cell types with anti- 
Bot antibody. In rat embryo fibroblasts and bovine MDBK 
cells, which have abundant microtubules, prominent label- 
ing of the interphase microtubule network, mitotic spindles, 
and centrosomes was observed (Fig. 5, A and C). Similar ob- 
servations were made in 3T3 and CHO cells, as illustrated 
in Fig. 5, B and D. The interphase microtubules in these lat- 
ter micrographs were not prominent because they were 
printed in a manner that highlighted the mitotic spindle 
staining. The Bcx subunit also localized to centrosomes and 
microtubules in mouse neuroblastoma cells (results not 
shown). In all cases, the anti-Btx antiserum staining of 
microtubules colocalized with antitubulin monoclonal anti- 
body and was blocked by preincubation with the Bc~ anti- 
genic peptide (results not shown). The localization of Bu in 
these cell types indicates that the association of PP2A with 
microtubules occurs in epithelial cells, fibroblasts, and neu- 
rons, and that it is likely to be a general property of the 
ABt~C heterotrimeric form of PP2A. 

Figure 5. PP2A is localized with microtubules in several cell lines. Cells were grown on coverslips, fixed with methanol, and stained with 
anti-Bc~ antiserum, as described in Materials and Methods. (A) Rat embryo fibroblasts, (B) mouse 3T3 cells, (C) bovine MDBK cells, 
and (D) Chinese hamster ovary cells. Bar, 25 #m in panels A and C, and 12/~m for B and D. 
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Figure 6. Binding of PP2A to microtuhules at different stages of the 
cell cycle. CV-1 cells were synchronized to G1, S, G2, M, and in 
some cases, to intermediate stages of the cell cycle. For each cell 
population, a soluble extract was prepared and incubated at 0-4°C 
with exogenous bovine brain mbulin that had been preassembled 
with taxol. Microtubules and micrombule-binding proteins (micro- 
tubule pellet) were isolated as described in Materials and Methods. 
(,4) DNA profiles obtained after FACS ° analysis of cells syn- 
chronized to (31 (85%), S (75%), and M (93%). (a), upper portion: 
Coomassie blue-stained SDS gel of total soluble extracts (lanes 
1-4) or microtubule pellets (lanes 5-8), which were resuspended 
to the same volumes as the extracts from which they were derived. 
All lanes contained 5 #1 of each fraction. The mobility of molecular 
mass marker proteins, expressed in kilodaltons, is indicated on the 
left. Cells were synchronized to G1 (lanes I and 5), S (lanes 2 and 
6), (32 (lanes 3 and 7), and M (lanes 4 and 8). (B, lower portion) 
The same samples shown in the upper portion were analyzed by 
chemiluminescent immunodetection with a monoclonal anfi-C 
subunit antibody. The portion of the immunoblot corresponding to 
the migration of the C subunit (C) is shown. Note that approxi- 
mately half of the immunoreactive protein in each extract was re- 
covered in the corresponding microtubule pellets. (C) Microtubule- 
associated PP2A activity was assayed in the microtubule pellets 

The Activity of  Microtubule-associated PP2A Is 
Regulated during the Cell Cycle 

To define the role of microtubule-associated PP2A in the 
regulation of microtubule function, we investigated the pos- 
sibilities that its microtubule-binding and enzymatic activity 
are altered during the cell cycle. CV-1 cells were syn- 
chronized to various stages of the cell cycle and analyzed for 
total and microtubule-bound PP2A. The efficiency of the cell 
synchrony was determined by flow cytometry (Fig. 6 A). 
Microtubule-binding proteins were isolated from the syn- 
chronized cells using an excess of exogenous brain microtu- 
bules (Fig. 6 B, upper portion, lanes 5-8), since endogenous 
microtubules could not be polymerized efficiently from the 
small number of cells available. The m o u n t  of PP2A in 
microtubule pellets was determined by immunoblot analysis, 
and the activity of the bound PP2A was determined by phos- 
phatase assay. 

As reported previously (Virshup et al., 1989; Kinoshita et 
al., 1990; Ruediger et al., 1991), the level of PP2A in the 
CV-1 extracts was constant during the cell cycle (Fig. 6 B, 
Western blot, lanes 1-4). The amount of PP2A that as- 
sociated with exogenous microtubules were also constant 
throughout the cell cycle (Fig. 6 B, Western blot, lanes 5-8). 
Although only data for the C subunit are shown, immuno- 
blotting with anti-A and anti-Ba antibodies showed that the 
levels of these subunits associated with microtubules were 
also constant during the cell cycle. In contrast, the phospha- 
tase activity associated with the microtubule pellets fluctu- 
ated significantly during the cell cycle. A peak of activity was 
observed in early S phase, and it was followed by a progres- 
sive decline in late S, (32, and M (Fig. 6 C). PP2A activity 
was significantly lower in G2 and M than in interphase cells. 
When cells were released from M phase, phosphatase activ- 
ity gradually increased (early GI) until it reached the level 
present in resting cells. In all cases, the rnicrotubule- 
associated phosphatase activity was completely inhibited by 
1 nM okadaic acid, showing that dephosphorylation of the 
substrate was caused by PP2A (results not shown). The 
changes in PP2A activity in the microtubule pellets were not 
the result of a change in PI>2A binding since the amount of 
PP2A catalytic subunlt in the microtubule pellets was con- 
stant. 

To provide further evidence for cell cycle-dependent 
changes in PP2A activity, the levels and activity of microtu- 
bule-associated PP2A were determined in detergent-resis- 
tant cytoskeletons prepared from synchronized CV-1 cells 
using the same method of detergent extraction that was used 
for some of the immunofluorescence experiments. As shown 
by immunofluorescence in Figs. 2 and 4, microtubules and 
microtubule-bound PP2A remain associated with cytoskele- 
tons prepared in this manner. The amount of the PP2A cata- 
lytic subunit in the cytoskeletal preparations was invariant 
throughout the cell cycle, as detected by immunoblotting 
(Fig. 7, top right-hand portion). As controls for these experi- 

obtained from cells synchronized to different stages of the cell cycle. 
Values shown ate expressed as the percent of maximal PP2A activ- 
ity (early S phase), and they represent the mean ± SD of duplicate 
assays performed on samples from four separate experiments. Stan- 
dard deviations for G1/S, early S, and late S were <1%. 
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Figure 7. Analysis of microtubule-associated PF2A activity in syn- 
chronized CV-1 cells. CV-I cells were synchronized to GI, S, G2, 
and M, and then extracted in a microtubule-stabilizing buffer con- 
talning 0.1% NP-40, as described in Materials and Methods. In par- 
ariel, duplicate dishes of synchronized cells were incubated on ice 
with 4 pg/rnl nocodazole to depolymerize microtubules before ex- 
traction. Phosphatase activity was measured in the total cytoskele- O 
ton prepared from each set of cells. Phosphatase activity resulting 
from PP2A was defined as the activity inhibited by 1 nM okadaic , - ,  
acid. The microtubule-associated PP2A was calculated by subtract- ~ 
ing the activity in nocodazole pretreated cells from the PP2A activ- "~ 
ity in untreated cells synchronized to the same stage. Values are ex- ~._ 3 
pressed as the percent of maximal PP2A activity (obtained in S :~ 
phase ceils), and they represent the mean 5- SD of duplicate assays 
performed on samples from three separate experiments. The inset ~ 2 
at the top right-hand portion of the figure shows the amount of ~ -  
PP2A catalytic subunit (C) detected by immunoblotting in the "-~ 
cytoskeletal preparations from extracted cells synchronized to G1, ~ 1 
S, G2, and M (lanes 1-4, respectively). ' ~  

ments, we assayed cytoskeletons that were isolated from 
cells which, before detergent extraction, had been incubated 
with nocodazole to depolymerize their microtubules. The 
amount of PP2A activity remaining in the nocodazole- 
treated cytoskeletal preparations was only 2 -4% of that 
found in preparations isolated from untreated cells. These 
data show that microtubule-associated PP2A accounted for 
nearly all of the okadaic acid-sensitive phosphatase activity 
in the cytoskeletal preparations that contained microtubnles. 

Further use of  this method allowed determination of the 
level of microtubule-associated PP2A activity in synchronized 
cells (Fig. 7). The cell cycle profile of microtubule-associated 
PP2A activity in cytoskeletal preparations was qualitatively 
similar to those determined by sedimentation of microtubule- 
associated proteins with exogenous microtubules (Fig. 6). 
There was a peak of phosphatase activity in S phase, followed 
by a pronounced decrease in activity during G2 and M. The 
microtubule-associated PP2A activity in G1 was 35 % of the 
S phase activity, while the activity in G2 and M was only 
5-7% of the S phase activity. 

Cell cycle changes in microtubule-associated PP2A activ- 
ity were also determined in synchronized neuroblastoma 
cells (Fig. 8). Neuronal cell lines are especially rich sources 
of  microtubules, and isolation of microtubnle-binding pro- 
teins was achieved by cosedimentation with endogenous 
micrombules polymerized with the aid of taxol. Yields of 
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Figure 8. Microtubule-associated PP2A in synchronized mouse 
neuroblastoma ceils. Mouse neuroblastoma cells were synchro- 
nized to (31, S, G2, and M, and endogenous taxol-stabilized 
microtubules were isolated as described in Materials and Methods. 
(A) DNA profiles of neuroblastoma cell populations synchronized 
to GI (78%), S (65%), and M (75%). (B)Immunoblot showing the 
amount of PP2A catalytic subunit present in the total soluble ex- 
tract (lanes 1-4) and in the microtubule pellets (lanes 5-8). The 
pellets were resuspended in one fifth of the original volume of the 
cell extract. Each lane contained 5 ~g of protein from cells syn- 
chronized to G1 (lanes 1 and 5), S (lanes 2 and 6), (32 (lanes 3 
and 7), and M (lanes 4 and 8). (C) Microtubule-associated PP2A 
activity during the cell cycle. PP2A was defined as the activity sen- 
sitive to 1 nM okadaic acid. Results are expressed as the mean + 
SD of duplicate assays. Microtubule-associated PP2A activity rep- 
resented 56 % of total activity present in S-phase cell extracts. Simi- 
lar results were obtained in a separate experiment. 

microtubules isolated in this manner from synchronized neu- 
roblastoma cells remained constant throughout the cell cycle 
(results not shown). PP2A was enriched in the microtubule 
pellet relative to the cytosol (Fig. 8 B, lanes 1-4 vs lanes 
5-8). As observed in CV-1 cells, the levels of  total PP2A 
catalytic subunlt were constant during the cell cycle (Fig. 8 
B, lanes I-4). Moreover, the ability of PP2A to bind to en- 
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dogenous microtubules was not affected by cell division 
since the amount of microtubule-associated PP2A catalytic 
subunlt was the same in G1, S, G2, and M (Fig. 8 B, lanes 
5-8). In contrast, the activity of microtubule-associated 
PP2A varied significantly. PP2A activity was maximum in 
S phase, very low in G2 and M (<5% of S phase), and ,o15% 
of the S phase activity in G1 (Fig. 8 C). The fluctuations in 
PP2A activity in synchronized neuroblastoma cells were 
consistent with the changes in microtubule-associated PP2A 
activity in CVol cells. These results indicate that microtu- 
bule-bound PP2A activity is regulated in both neuronal and 
nonneuronal cell lines in a cell cycle--dependent fashion. 
Furthermore, the cell cycle regulation of microtubule-asso- 
ciated PP2A does not involve a change in the amount of 
PP2A that is bound to microtubules. 

Discussion 

PP2A is one of the predominant protein serine/threonlne 
phosphatases in most cells and tissues, but relatively little is 
known about its subcellular distribution. Numerous bio- 
chemical studies have suggested that PP2A is largely a solu- 
ble cytosolic protein (Cohen, 1989; Shenolikar and Nairn, 
1991; Mumby and Walter, 1993). Small but significant 
amounts of PP2A are also present in the nucleus (Jakes et 
al., 1986; Kuret et al., 1986). We provide evidence in this 
report that PP2A is also targeted to the cytoskeleton through 
association with microtubules. PP2A is associated with the 
interphase microtubule network, the centrosome, and the 
mitotic spindle in several cell types, including fibroblasts, 
epithelial cells, and neurons, as demonstrated by immu- 
nofluorescence analysis with antibodies against three differ- 
ent PP2A subunits. Cosedimentation studies showed that 
50-75 % of the PP2A in extracts of CV-1 cells, neuroblastoma 
cells, and brain tissue was capable of binding to microtu- 
bules. Immunoblotting of microtubule-associated PP2A in- 
dicated that all three subunlts were associated with micro- 
tubules, in the same abundance relative to each other as in 
cytosol. These results imply that the heterotrimeric (ABaC) 
species of PP2A, and not the catalytic subunit or AC com- 
plex, is the form bound to microtubules. The association 
may involve direct interaction of one or more subunlts with 
polymerized tubulin, or it may be mediated by MAPs. Indi- 
rect immunofluorescence analysis showed that the A, Bot, 
and C subunits are also localized in the perinuclear region 
in addition to microtubules. The perinuclear fluorescence 
had a reticular pattern suggesting association with the en- 
doplasmic reticulum, Preliminary studies using subcellular 
fractionation and immunofluorescence have shown that 
significant amounts of PP2A are localized in the endoplas- 
mic reticulum, the Golgi, and in the nucleus (Sontag, E., 
unpublished results). We found little evidence for a diffuse 
pattern of immunostaining associated with a soluble cyto- 
plasmic protein. Thus, in contrast to the previous consensus 
that PP2A is a cytoplasmic protein, our data indicate that 
this protein serine/threonine phosphatase is highly localized 
in cells. The microtubule localization of PP2A may have 
been overlooked in previous work because of the fact that mi- 
crotubules depolymerize, and their constituent proteins are 
thereby solubilized, under conditions normally used for tis- 
sue homogenization. 

Despite the prevalence of PP2A, its intracellular sub- 

strates are largely unknown. The localization of PP2A de- 
scribed in this report indicates that phosphoproteins as- 
sociated with microtubules, microtubule organizing centers, 
and the mitotic spindle are likely to be targets of PP2A. A 
dramatic reorganization of the microtubule cytoskeleton oc- 
curs during the transition from interphase to mitosis. Mitotic 
spindle microtubules, assembled after dissolution of the in- 
terphase network, are highly dynamic (Wynford-Thomas et 
al., 1989). Current evidence suggests that microtubules 
are destabilized during mitosis as a resuk of increased phos- 
phorylation of mierotubule-associated proteins. Phosphopro- 
teins are also components of mitotic microtubule organizing 
centers (Vandr6 et al., 1984). The increased phosphorylation 
of proteins associated with microtubules and microtubule or- 
ganizing centers is likely to be at least partly due to the ac- 
tivation of the cyclin B/p34 ~2 protein kinase. This kinase is 
associated with microtubules (Hill et al., 1989; O'Callahan 
et al., 1988), as well as with centrosomes during G2 and M 
(Alfa et al., 1989; Bailly et al., 1989; Riabowol et al., 1989; 
Maldonado-Codina and Glover, 1992; Gallant and Nigg, 
1992). The data presented in this report indicate that the M 
phase increase in protein phosphorylation may also be caused 
in part by the decrease in microtubule-associated PP2A ac- 
tivity during G2 and M. Okadaic acid activates the cyclin 
B/p34 °a¢2 protein kinase activity and induces a premature 
mitosis-like state (Yamashita et al., 1990). Studies in Xeno- 
pus oocytes (F~lix et al., 1990; Lee et al., 1991) and yeast 
(Kinoshita et al., 1993) have suggested that PP2A can act as 
a negative regulator of cyclin B/p34 ¢d°2 kinase activation. 
Localization of PP2A on microtubules and centrosomes, as 
well as the decrease in PP2A activity in G2 and M, are 
consistent with a role of PP2A in regulation of microtubule- 
associated cyclin B/p34 '~a activity and/or dephosphoryla- 
tion of cyclin B/p34 ~c2 substrates. A role of microtubule- 
associated PP2A in dephosphorylation of cyclin B/p34 ¢ac2 
substrates is supported by studies showing that only the 
ABotC form of PP2A, and not the free catalytic subunit, the 
AC heterodimer, or other heterotfimeric forms of PP2A, 
has high activity toward proteins phosphorylated by cyclin 
B/p34 ~2 (Ferrigno et al., 1993; Kamibayashi et al., 1994). 
The Bt~ subunit may play a role in targeting PP2A to micro- 
tubules and stimulating dephosphorylation of substrates of 
cyclin-dependent protein kinase. 

The MAP kinase ERK2 (p42~p ~) is another enzyme that 
is activated at metaphase and is associated with microtubule- 
organizing centers in oocytes (Verlhac et al., 1993) and in 
CV-1 cells (Sontag, E., unpublished observation). In a previ- 
ous report, we showed that PP2A is involved in the normal 
dephosphorylation and inactivation of MAP kinase and 
MAP kinase kinase (Sontag et al., 1993). The distribution 
of PP2A on centrosomes and its low activity in M phase, 
when MAP kinase is activated, indicate that PP2A could also 
regulate microtubule-associated MAP kinase by preventing 
inactivation during G2 and M. 

Although it is clear that PP2A plays an important role in 
the cell cycle, there has been little evidence until now that 
its activity is regulated during the cell cycle. Several studies 
have shown that both the expression and activity of PP2A are 
constant throughout the cell cycle in mammalian cells and 
in yeast (Virshup et al., 1989; Kinoshita et al., 1990; 
Ruediger et al., 1991). However, a study using SV-40 large 
T antigen as substrate suggested that a PP2A-like activity is 
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elevated during S phase in CV-1 cells (Ludlow, 1992). The 
changes in microtubule-associated PP2A activity also sug- 
gest that PP2A activity is elevated during S phase. Changes 
in the activity of microtubule-associated PP2A were not 
caused by changes in binding of the enzyme to microtubules, 
since equivalent amounts of PP2A could bind to microtu- 
bules in each phase of the cell cycle. This indicates that the 
activity of microtubule-associated PP2A is controlled by fac- 
tors other than differential binding of the catalytic subunit or 
loss of the Bot regulatory subunit. It is possible that the 
change in the activity of microtubule-associated PP2A is 
caused by covalent modifications, such as phosphorylation 
or methylation, which are known to occur on PP2A (Chen 
et al., 1992; Floer and Stock, 1994; Xie and Clarke, 1994). 

The association of PP2A with the centrosome suggests that 
protein dephosphorylation plays an important role in micro- 
tubule assembly/disassembly during the cell cycle. Centro- 
somes are the preferred site of microtubule nucleation during 
interphase (Kellog et al., 1994). Cytoskeletal integrity dur- 
ing interphase requires protein phosphatase activity (Eriks- 
son et al., 1992), and PP2A has been implicated in the regu- 
lation of microtubule stability in fibroblasts (Gurland and 
Gundersen, 1993). Microtubule organizing centers also 
serve as a focal point for microtubule nucleation at the onset 
of mitosis (Karsenti, 1991), when phosphoproteins are major 
components of these structures (Vandre et al., 1984). The 
phosphatase inhibitor okadaic acid suppresses spindle for- 
mation without interfering with the ability of tubulin to poly- 
merize (Alexandre et al., 1991), implicating a phosphatase 
in microtubule nucleation. Okadaic acid also induces dy- 
namic instability of microtubules similar to that observed 
during the transition from interphase to mitosis (Gliksman 
et al., 1992). These previous findings, along with the associ- 
ation of PP2A with microtubules reported here, point to an 
important role of this phosphatase in regulation of the 
microtubule network. PPX, another protein serine/threonine 
protein phosphatase whose distribution is more restricted 
than PP2A, has also been localized on centrosomes (Brewis 
et al., 1993). It will be interesting to determine the substrate 
specificities of these related protein phosphatases. 

The localization of PP2A reported here is different from 
that described in a previous report, which claimed that PP2A 
is localized in the cytoplasm, nucleus, and the nucleoli, but 
not on centrosomes or microtubules (Brewis et al., 1993). 
The previous study used an antiserum raised against bacteri- 
ally expressed PP2A catalytic subunit to examine the distri- 
bution of PP2A in human MRC-5 cells. In our study, staining 
of PP2A on microtubules was only readily observed in intact 
cells using anti-Bot antibody. The indirect immunofluores- 
cent staining of the interphase microtubule network or the 
mitotic spindle with anti-A or anti-C subunit antibodies was 
not obvious until the ceils were selectively extracted with the 
nonionic detergent NP-40. Detergent-based cell permeabil- 
ization has also been used to show the association of the cy- 
clin B/p34 o~c2 complex with the centrosome and mitotic 
spindles (Ookata et al., 1993). Visualization of microtubule- 
associated A and C subunits in detergent-extracted cells ap- 
peared to result from the removal of the relatively intense 
perinuclear staining. Detergent extraction may also remove 
proteins that prevent or reduce recognition by the anti-A and 
anti-C subunit antibodies. 

The presence of microtubule-associated PP2A in a non- 

dividing tissue, such as the brain, suggests that microtubule- 
associated PP2A is likely to have a role in addition to cell 
cycle regulation. Recent findings indicate that PP2A is able 
to dephosphorylatc specific phosphorylation sites in tau, a 
major brain-specific MAP (Drcwes et al., 1993), which as- 
sembles into the paired helical filaments of Alzhcimer's 
neurofibdllary tangles (Goedcrt, 1993). One of the sites de- 
phosphorylated by PP2A in vitro has been implicated in 
regulation of tau binding to microtubules. 

Another potential role for microtubule-associated PP2A is 
in regulation of membrane-bounded organelle transport 
along microtubulcs. For example, the elaboration of Golgi- 
derived membrane tubule networks along microtubules in 
vitro occurs readily in the presence of intcrphase, but not mi- 
totic cytosol (Allan and Vale, 1991). Perhaps this difference 
reflects the cell cycle-dependent fluctuations reported here 
for the enzymatic activity of microtubule-bound PP2A. In 
addition, okadaic acid has been reported to stimulate micro- 
tubule-based membrane transport in live cells and cell ex- 
tracts (Hamm-Alvarez et al., 1993; Mcllvain et al., 1994), 
presumably as a result of inhibiting PP2A. 

In conclusion, data obtained by immunocytochemistry 
and biochemical analyses strongly support the idea that 
PP2A is associated with microtubules in neuronal tissue and 
a variety of nonneuronal cells. The microtubule localization 
of PP2A in both dividing and nondividing cells suggests 
potential roles for PP2A in regulation of microtubule dy- 
namics and microtubule-based motility. The relative abun- 
dance of PP2A on microtubules indicate that it is likely to 
play a major role in controlling the phosphorylation state of 
structural MAPs, such as tan, and of other microtubule- 
binding proteins. 
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