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Purpose: The purpose of this work was to investigate the use of a segmentation approach that could potentially improve the speed and
reproducibility of contouring during magnetic resonance−guided adaptive radiation therapy.
Methods and Materials: The segmentation algorithm was based on a hybrid deep neural network and graph optimization approach
that also allows rapid user intervention (Deep layered optimal graph image segmentation of multiple objects and surfaces
[LOGISMOS] + just enough interaction [JEI]). A total of 115 magnetic resonance−data sets were used for training and quantitative
assessment. Expert segmentations were used as the independent standard for the prostate, seminal vesicles, bladder, rectum, and
femoral heads for all 115 data sets. In addition, 3 independent radiation oncologists contoured the prostate, seminal vesicles, and
rectum for a subset of patients such that the interobserver variability could be quantified. Consensus contours were then generated
from these independent contours using a simultaneous truth and performance level estimation approach, and the deviation of Deep
LOGISMOS + JEI contours to the consensus contours was evaluated and compared with the interobserver variability.
Results: The absolute accuracy of Deep LOGISMOS + JEI generated contours was evaluated usingmedian absolute surface-to-surface distance
which ranged from a minimum of 0.20 mm for the bladder to a maximum of 0.93 mm for the prostate compared with the independent
standard across all data sets. The median relative surface-to-surface distance was less than 0.17 mm for all organs, indicating that the Deep
LOGISMOS + JEI algorithm did not exhibit a systematic under- or oversegmentation. Interobserver variability testing yielded a mean absolute
surface-to-surface distance of 0.93, 1.04, and 0.81 mm for the prostate, seminal vesicles, and rectum, respectively. In comparison, the deviation
of Deep LOGISMOS + JEI from consensus simultaneous truth and performance level estimation contours was 0.57, 0.64, and 0.55 mm for the
same organs. On average, theDeep LOGISMOS algorithm took less than 26 seconds for contour segmentation.
Conclusions: Deep LOGISMOS + JEI segmentation efficiently generated clinically acceptable prostate and normal tissue contours,
potentially limiting the need for time intensive manual contouring with each fraction.
Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-
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Introduction
Daily delineation of the intended target and nearby criti-
cal structures is a critical step for magnetic resonance imag-
ing (MRI)−guided adaptive radiation therapy (MRIgART).
During the inverse planning process, dosimetric objectives
placed on these structures define the shape of the final
dose distribution, and the bulk density assignments of each
structure are commonly used for dose calculations on the
MRI. When an online plan adaption is necessary, contem-
porary MRIgART workflows include a deformation of the
reference plan contours, which frequently includes the
time-consuming step of manual editing followed by reop-
timization of the treatment plan. An average MRIgART
treatment session time ranges between 53 to 80 minutes,1-4

depending on the site and complexity of the plan. The con-
tour delineation constitutes a significant portion of this
time, ranging between 10 to more than 20 minutes.1,5

Specific to prostate cancer, both deep-learning and
atlas-based algorithms have been published to facilitate
improved autosegmentation of the prostate and other
low-contrast organs.6-8 Although these algorithms may
enable rapid autosegmentation, they still required manual
editing to make any corrections when the contours need
adjustment. To overcome these challenges, this work
implements a segmentation tool called deep layered opti-
mal graph image segmentation of multiple objects and
surfaces (LOGISMOS) + just enough interaction (JEI),9

which is based on a hybrid deep neural network and
graph optimization approach, for use in MRIgART. An
early application of the LOGISMOS segmentation
approach for prostate delineation was reported by Yin et
al,10 with promising results for segmenting the prostate’s
central gland and its peripheral zone. However, this early
Figure 1 Schematic of the automated Deep LOGISMOS + JE
expert-guidance option. Abbreviation: JEI = just enough interact
tion of multiple objects and surfaces; MRI, magnetic resonance i
application required manual selection of the volume of
interest and lacked any means to efficiently adjudicate the
resulting segmentation surfaces when needed. In addition,
no segmentation of additional nearby organs at risk was
performed. The approach reported here builds on our ear-
lier work by newly introducing a deep learning preseg-
mentation to guide the LOGISMOS segmentation for the
prostate and surrounding organs at risk. In addition, and
only when needed, the proposed technique integrates
physician guidance through a JEI approach to streamline
the editing of automated contours.8 To the best of our
knowledge, no similar approach has been proposed for
MRIgART that allows for automated yet quickly editable
contours on the fly. We expect this approach to not only
result in efficiency improvements, but also improve the
reproducibility with respect to manually drawn contours,
which is particularly important for standardization of
radiation therapy and the accuracy of outcomes measured
from clinical trials.
Methods and Materials
Deep LOGISMOS + JEI

The LOGISMOS approach and its most recent Deep
LOGISMOS incarnation have been developed by this team—
much of the infrastructure is a result of multiple phases of
National Institutes of Health/National Institute of Biomedical
Imaging and Bioengineering research project R01-EB004640.
At its core, Deep LOGISMOS, as illustrated in Fig. 1, is an
automated n-dimensional image segmentation approach that
uses a novel combination of deep learning and optimal
graph-based identification of multiple mutually interacting
I for adaptive prostate radiation therapy planning with
ion; LOGISMOS = layered optimal graph image segmenta-
maging.
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objects and their surfaces.11With Deep LOGISMOS, the pro-
cess is initiated by a deep-learning preliminary segmentation
followed by graph-based optimization, guaranteeing topolog-
ical consistency and global optimality with respect to a task-
specific machine-learned cost function. The LOGISMOS
approach uses a set of surface- and/or region-specific costs,
representing the multisurface segmentation task as a graph
optimization problem, and finds the optimal solution via s−t
cut graph optimization.12-15 As a result, all target objects and
their surfaces are segmented simultaneously in 3-dimensions
(3D) in a single optimization process that employs not only
information about the surface properties but also uses
regional information about image appearance of the individ-
ual objects and anatomy-based information about mutual
object-to-object interactions.11,13,16-19 If clinically necessary,
the automated Deep LOGISMOS result can be augmented by
JEI, an additional step of expert guidance. This approach
affects the underlying graph-optimization algorithm to
achieve clinically appropriate 3D segmentations of organs/
objects of interest and facilitate subsequent treatment plan-
ning steps. For this application, Deep LOGISMOS + JEI was
designed to universally and consistently obtain the desired
segmentation of the prostate and surrounding tissues (semi-
nal vesicles, bladder, rectum, and left/right femur heads)
required for radiation treatment planning.
Deep-learning presegmentation

The deep-learning presegmentation module is based on
the “convolutional neural network and a transformer”
architecture developed by Xie et al,20 as it learns long-range
dependencies from features extracted by a convolutional
neural network from the input images. We selected this
specific architecture as its multiscale deformable self-atten-
tion mechanism enables us to leverage the representational
power of a transformer network across multiple scales of
encoded features while still having the computational effi-
ciency to process large input regions that better leverage
the relationships between different anatomic landmarks in
3D. Our network operates on input patches with a size of
160 £ 160 £ 96 voxels and outputs separate predicted seg-
mentation maps for each of the desired structures and the
background. During inference, these volume patches are
evaluated across the entire target volume.

To facilitate the training of our model, we used the nnU-
Net training pipeline.21 During preprocessing, all training
volumes were resampled to 0.83£ 0.83£ 1.00 mm spacing,
and intensity values were standardized to 0 mean and unit
variance for each volume separately. To mitigate the risk of
overfitting on our limited data set, we applied random data
augmentations to all training samples. Random augmenta-
tions included up to a 15° rotation along each axis, resizing
along each axis within a range of 85% to 125% of image size,
mirroring operations along each axis, and gamma adjustment
within the range of 0.7 to 1.5, with the augmentations and
augmentation intensities selected independently for each
training sample. The training process was performed over
1000 epochs with a polynomial decay learning rate schedule.
The learning rate was initialized with a value of 0.01 and
updated at the end of each epoch with the policy: 0.01£ (1−
epochcurrent / epochmax)

0.9. For each training sample, loss was
computed using combined generalized Dice and cross
entropy terms with equal weights for each term. Only 2 sam-
ples were used in each batch, and instance normalization was
used rather than the more standard batch normalization for
ourmodel layers.
Multi-object segmentation of prostate and
surrounding organs

The presegmentation results were converted to trian-
gular mesh surfaces using a standard marching cube algo-
rithm and then smoothed and decimated (number of
triangles reduced). LOGISMOS graphs, 1 for each organ,
were constructed based on the resulting surface meshes
such that each vertex of the mesh is associated with a col-
umn that goes from the inside of the mesh to the outside
along the surface normal direction (Fig. 1). The typical
(adjustable if needed) length of the graph column was
5 mm for the seminal vesicles and 10 mm for the other
organs, with the mesh surface passing through the middle
of the columns, determined experimentally to reflect the
observed distances between the presegmentation and
desired organ surfaces in the training set. The spacing
between graph nodes on a column was 0.4 mm. Edge-
based cost functions were used. Following automated
Deep LOGISMOS segmentation, an expert user visually
inspects the results and has the option to correct potential
inaccuracies (Fig. 1). Finally, the segmentations are con-
verted back to labeled volumes for quantitative analysis.
Training and evaluation

To demonstrate the feasibility of Deep
LOGISMOS + JEI for adaptive prostate cancer radiation
treatment, 115 daily MR data sets acquired pretreatment
for adaptive therapy (T2 weighted, 2-minute acquisition;
Elekta Unity) from 23 unique patients were used to evalu-
ate the performance of the pilot Deep LOGISMOS + JEI
implementation for prostate cancer treatments. Each data
set was manually contoured by a clinical expert for the
prostate, bladder, seminal vesicles, rectum, and left and
right femur heads. Training and quantitative testing were
performed using a 5-fold, leave 20% out cross-validation
technique. The training folds were stratified by subject to
ensure no model was evaluated on data sets acquired
from subjects represented in the training data.

Quantitative assessment of the predicted contours was per-
formed using absolute surface-to-surface distance (ASSD),
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relative surface-to-surface distance (RSSD), the 95th percentile
Hausdorff distance, and the Dice similarity coefficient (DSC).
ASSDwas calculated by computing the shortest distance from
each point on the predicted contour surface to a point on the
independent standard surface and taking the average across
all such distances for the given contour. RSSD was calculated
using the same method, but distances where the predicted
contour surface is located within (inside of) the independent
standard contour surface are considered negative. The maxi-
mum Hausdorff distance is the maximum distance from a
point on either contour surface to the closest point on the
other. As the maximum can be heavily skewed by even a sin-
gle outlier, we insteadmeasured the 95th percentile Hausdorff
distance by computing the 95th percentile of these distances
rather than themaximum. Lastly, theDSC is ameasure of vol-
umetric overlap that was evaluated by computing twice the
volume of the considered contours’ intersection divided by
the sum of the individual volumes of the 2 contours.

To assess whether the achieved processing times were
sufficiently short for clinical use in adaptive radiation
treatment planning, computational times of the auto-
mated Deep LOGISMOS, times needed for inspection
and optional JEI, and combined processing times were
measured for each analyzed case.
Figure 2 Quantitative assessment of segmentation performanc
in prostate and 5 surrounding organs using 5-fold cross-validati
RSSD, and 95% HD, plotted as boxplots with 1.5 interquartile r
tion performance is consistently within millimeters of the manu
RSSD values demonstrating minimal bias of the Deep LOGIS
under- or oversegmentation). Abbreviation: ASSD = absolute su
HD = Hausdorff distance; LOGISMOS = layered optimal gra
RSSD = relative surface-to-surface distance.
To demonstrate the reproducibility improvements
resulting from Deep LOGISMOS + JEI compared with
interobserver variability of expert manual tracings, 3 radi-
ation oncologists that specialize in the treatment of pros-
tate cancer manually contoured the prostate, seminal
vesicles, and rectum in 3 patients with body mass indices
of 21, 25, and 32, respectively. Consensus contours were
created using the simultaneous truth and performance
level estimation (STAPLE) approach,22 and interobserver
variabilities of manual contours and the deviation of
Deep LOGISMOS + JEI contours from the consensus
contours was calculated. Contours were evaluated using
the same quantitative metrics described previously.
Results
Results of the validation of the Deep LOGISMOS + JEI
method performed against the 115 expert-contoured data
sets is shown in Fig. 2. The absolute accuracy of Deep
LOGISMOS + JEI generated contours was evaluated using
median ASSD, which ranged from a minimum of
0.20 mm for the bladder to a maximum of 0.93 mm for
the prostate compared with the independent standard
e achieved by Deep LOGISMOS + just enough interaction
on in 115 daily magnetic resonance data sets. DSC, ASSD,
ange whiskers, demonstrate that 3-dimensional segmenta-
ally defined independent standard. Note the close-to-zero
MOS + just enough interaction approach (no consistent
rface-to-surface distance; DSC = dice similarity coefficient;
ph image segmentation of multiple objects and surfaces;
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across all data sets. The median RSSD was less than
0.17 mm for all organs, indicating that the Deep
LOGISMOS + JEI algorithm did not exhibit a systematic
under- or oversegmentation. The median DSC value was
more than 91.2% across all organs excluding the seminal
vesicles, indicating a high degree of shape similarity
between the Deep LOGISMOS + JEI and expert contours.
The seminal vesicles had a DSC of 84.2%. The median
95% Hausdorff distance was less than 2.6 mm, indicating
limited outliers in surface consistency.

Application of the Deep LOGISMOS algorithm on the
daily prostate MR data sets took 25.8 § 0.2 seconds on
average for the 3D 6-organ segmentation. Expert review
Figure 3 Deep LOGISMOS + JEI; (green) versus consensus co
slices are shown for each patient to visualize the interfaces betw
ations: BMI = body mass index; JEI = just enough interaction;
of multiple objects and surfaces; SV = seminal vesicles.
and optional JEI took an additional 2 to 3 minutes in cases
for which interactive editing was needed. This represents
a significant time reduction compared with an average of
14 minutes for completely manual edits on a slice-by-slice
basis, which is the current standard.1

One major advantage of the Deep LOGISMOS + JEI
method is the potential to improve reproducibility
compared with interobserver variability of expert manual
tracings. Figure 3 visually compares a single-user
LOGISMOS + JEI result with consensus STAPLE con-
tours for patients of variable size. Detailed metrics are
summarized in Fig. 4, where the interobserver variability
between the 3 expert contours used to create the
ntours (yellow) for 3 patients of variable BMI. Two axial
een both the prostate/rectum and the SV/rectum. Abbrevi-
LOGISMOS = layered optimal graph image segmentation



Figure 4 Performance and variability of Deep LOGISMOS + JEI compared with that of manual tracings by 3 expert radi-
ation oncologists on 3 patients with a wide range of body mass index (21-32). ASSD, 95% Hausdorff distance, and Dice
similarity coefficient are summarized (mean § standard deviation). The error bars show variability of each approach.
Abbreviations: ASSD = absolute surface-to-surface distances; JEI = just enough interaction; LOGISMOS = layered optimal
graph image segmentation of multiple objects and surfaces; SV = seminal vesicles.
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consensus STAPLE contours had a mean ASSD of 0.93,
1.04, and 0.81 mm for the prostate, seminal vesicles, and
rectum, respectively. In comparison, the deviation of
Deep LOGISMOS + JEI from consensus STAPLE con-
tours was 0.57, 0.64, and 0.55 mm for the same organs.
Discussion
The results presented in this work are quite encourag-
ing for improving the efficiency of adaptive therapy while
still allowing clinician input and the ability to edit the
contours more efficiently. One of the key advantages of
our approach, afforded by the use of LOGISMOS after the
initial deep learning presegmentation, is the fact that a
limited data set (115 MR data sets in this case) can be
used for training with excellent results. Our results indi-
cate an excellent accuracy (median ASSD of <1 mm) with
respect to expert contours. The relatively small training
data set is an advantage for future implementations as
new imaging sequences are expected to be employed.
With regards to clinical implementation, we expect the
fully automated functionality of Deep LOGISMOS will be
used most often for radiation treatment planning, with
the available JEI guidance used in situations of anatomic
ambiguities or low image quality that consequently
require specialized insights of a human expert. This is
especially powerful as any automated segmentation
method may fail in certain cases, but the use of JEI allows
corrections to be made efficiently in 3D rather than in a
slice-by-slice fashion.

Algorithms such as Deep LOGISMOS + JEI are
expected to reduce one of the main operational challenges
of MRIgART, which is the extended treatment session
times compared with conventional cone beam computed
tomography−based image guidance on traditional linear
accelerators.2,23 Contouring continues to be a time-con-
suming manual process, which is a major contributor to
the treatment time and reduced patient throughput on
MR linear accelerators. This work presents a more effi-
cient and less user-intensive workflow which will increase
throughput and may aid in accelerating the adoption of
MRIgART in the broader radiation therapy community.24

Furthermore, shorter treatment session times improve
patient comfort and can reduce the magnitude of intra-
fraction motion which is an important factor in MRI-
gART, particularly when considering planned target
volume margin reduction.25-27 The rapid and accurate
contouring presented in this work is expected to also be a
valuable addition for future adaptive intrafraction plan-
ning.

It is important to note that efficiency is not the only
advantage of the Deep LOGISMOS + JEI approach, as man-
ual segmentation, even on high-qualityMR images, is inher-
ently nonreproducible. Nearly all the discrepancies between
the manual and LOGISMOS + JEI results can be attributed
to a lack of slice-to-slice consistency in themanually derived
contours. It is expected that the improvements in contour
reproducibility enabled by the Deep LOGISMOS + JEI
approach will enable greater contouring standardization in
radiation therapy. Additionally, accurate and reproducible
organ/object segmentations in radiation therapy would
translate into more reliable organ-specific functional imag-
ing metrics for response assessment during radiation ther-
apy, the repeatability of which has been previously
investigated.28,29 This opens the door for future application
of radiomic analyses derived from these now readily avail-
able image contours.
Conclusion
This work demonstrates the potential of the Deep
LOGISMOS + JEI approach to assist in the contouring of
key structures in the ART workflow for the treatment of
prostate cancer. Through accurate segmentation of key
structures, this approach can limit the need for manual
recontouring that can lead to decreased treatment times.
Additionally, the autosegmentation with minor physician
intervention could result in more consistent contours
between fractions for a single patient as well as across
multiple patients.
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