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ABSTRACT: The Hessian matrix of the potential energy of
molecular systems is employed not only in geometry optimizations
or high-order molecular dynamics integrators but also in many
other molecular procedures, such as instantaneous normal mode
analysis, force field construction, instanton calculations, and
semiclassical initial value representation molecular dynamics, to
name a few. Here, we present an algorithm for the calculation of
the approximated Hessian in molecular dynamics. The algorithm
belongs to the family of unsupervised machine learning methods,
and it is based on the neural gas idea, where neurons are molecular
configurations whose Hessians are adopted for groups of molecular
dynamics configurations with similar geometries. The method is
tested on several molecular systems of different dimensionalities both in terms of accuracy and computational time versus calculating
the Hessian matrix at each time-step, that is, without any approximation, and other Hessian approximation schemes. Finally, the
method is applied to the on-the-fly, full-dimensional simulation of a small synthetic peptide (the 46 atom N-acetyl-L-phenylalaninyl-
L-methionine amide) at the level of DFT-B3LYP-D/6-31G* theory, from which the semiclassical vibrational power spectrum is
calculated.

■ INTRODUCTION
In standard molecular dynamics (MD) simulations, the atomic
positions, velocities, and forces are evolved in time according
to Hamilton’s equations and calculated at each time-step. The
physical interpretation of the atomistic details provided by
dynamics simulations is very powerful and finds uncountable
applications every day. However, if one looks for a deeper
physical insight that requires information about the potential
curvature, it becomes necessary to evaluate the Hessian
(second-order derivatives of the potential energy) matrix at
each time-step. Specifically, Hessians are employed for higher
than second-order MD time-integrators,1−3 for geometry
optimization calculations,4,5 for instantaneous normal mode
analysis,6,7 for accurate force field constructions,8 for semi-
classical dynamics,9 and other applications, such as reaction
rate constants with the instanton method.10,11 While
integration of Hamilton’s equations of motion is doable for
any number of degrees of freedom, assuming that the
interacting potential is readily available as well as that there
is suitable computational power, computing properties that
depend on the second or even higher coordinate derivatives of
the potential is a challenging task since these calculations
usually scale polynomially with the system size. The task may
become prohibitive in ab initio MD12 where the potential and
its derivatives are evaluated on-the-fly, that is, by solving the
electronic structure problem and using the Hellman−Feynman
theorem, or by the finite difference formula using the forces or

the potential. To address this issue, a number of approximate
methods have been introduced.13−16 Usually, these are of the
type of updating schemes, where the Hessian is approximated
in a step-wise fashion using the latest information available.17

These updating schemes were originally developed for
optimization17−21 (see also references therein) but have
much evolved and improved since then. Later, they have
been employed in various algorithms for direct dynamics
simulations.1−3 For example, the Broyden method is based on
a first-order Taylor expansion, which is equivalent to the quasi-
Newton methods employed in optimization processes.
However, in ab initio MD, a higher accuracy is desirable as it
has been shown how a highly accurate Hessian approximation
can attain high simulation quality.13 More recently, Denzel and
Kas̈tner22 followed another route to face the problem, which is
to use the Gaussian process regression method23−25 to
generate a local fit of the potential surface (GPR-PES),
possibly using Hessians as fitting variables. Then, the GPR-PES
can be differentiated analytically as many times as required,
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providing accurate Hessian matrices. The method has been
successfully employed in various applications ranging from
accurate instanton calculations26 to the modeling of molecular,
amorphous materials and surfaces (see ref 25 and references
therein), to mention some. However, the GPR-PES method
(including Hessian estimation) was intended to give an
accurate description of only a local region of the PES.
Hence, it is unsuited for extensive MD simulations.
Furthermore, the GPR fitting time and memory usage scale
unfavorably with the system size, and the method is not
recommended for systems with more than 100 degrees of
freedom, as the authors pointed out.22

In this paper, we take a different strategy from those
described above for the Hessian approximation. The idea is to
assign the same Hessian matrix to a group of MD trajectory
configurations that are characterized by similar geometric
properties. Since the Hessian ultimately depends on the
potential energy surface (PES), we think that the collection of
molecular coordinates is an appropriate set of variables to
combine a group of configurations, given that the Hessian is
uniquely defined for each set of atomic coordinates.
Specifically, we employ the unsupervised machine learning
algorithm “neural gas” to clusterize similar coordinates. The
neural gas (NGas) algorithm was originally proposed as a self-
organizing-map or a self-organizing-network by Martinetz and
Schulten27 in 1991, with the objective of learning the
dimensions and topology of a generic manifold of simple
geometrical shapes and complicated time series.28 The
algorithm devised by Martinetz, Berkovich, and Schulten
features a number of landmark coordinates called neurons that
are initialized nearby the objective manifold either randomly or
according to some rule. Then, the neurons gradually adapt and
connect to best represent the manifold shape, thus arranging in
the manifold as an approximate time series. For the adaptation
to be effective, the algorithm iteratively drags the neurons
closer to the manifold in a way to minimize a given error
function, which can be, for example, the sum of the Euclidean
distances of each neuron from the collection of events in the
time series. As a final result, the manifold is divided into
optimal domains, the Voronoi cells, one for each reference
neuron.
An intermediate step of the algorithm is pictorially

represented in Figure 1, where the time series of configurations

is reported as a line of small circles and the neuron locations as
larger circles. The molecular geometry of each neuron is
pictorially represented. The collection of the trajectory
configurations that are related to each neuron are distinguished
by a color code, and the neuron domains are bordered by
continuous black lines. In a few words, molecular geometries of
the same color share the same Hessian, which is the one
calculated at the corresponding neuron geometry. The time
series of configurations which form the manifold can be
generated by many trajectories as well. The procedure avoids
any redundancy that a multiple trajectory time series may
generate when trajectories have crossing paths. This algorithm
will take advantage of the fact that bound system trajectories
are subject to visit the same phase space neighborhood several
times during the dynamics, a point which is missed by the
Hessian update schemes (vide infra).16 As a matter of fact,
neurons undergo a competitive behavior in getting closer to
larger portions of manifold conformations, and more probable
phase space regions will exhibit higher densities of neurons.
Also, we expect that, as shown in Figure 1, for a curved
trajectory, the optimal neuron location would be nearby the
center of curvature, which is equally representative of the
curvature geometries. Instead, when the trajectory lies on a
straight line, the optimal neuron location would be on top of
the trajectory. A modified version of the NGas algorithm was
introduced in 1994 by Fritzke.29 In this version, it is not
required to specify the number of input neurons, with new
neurons being added as the optimization proceeds. Later on,
many groups provided further advances and optimizations on
top of the original version to enforce topology preservation30,31

and allow for a better scaling and optimal growth with
increasing amount of data.31−33

The use of supervised and unsupervised machine learning
algorithms for molecular modeling has a long history in the
field of quantitative structure−activity relationships (QSAR).34
Different kinds of molecular descriptors35 are employed to
predict a plethora of properties, especially in the field of
medicinal chemistry36 and drug discovery.37,38 In recent years,
supervised algorithms have been recognized as powerful tools
in the formal field of theoretical physical chemistry (see ref 39
for an insightful perspective), also for MD simulations.40−42 In
addition, unsupervised algorithms have found successful

Figure 1. Pictorial representation of neuron adaptation for a MD trajectory manifold in a convenient 2D plane. The trajectory configurations are
represented by the collection of small circles, and the neuron positions are the larger circles labeled by Q̃i for the i-th neuron. The arrows at the
neuron circles represent the updating coordinate direction. The domains of each neuron are bordered by solid lines and identified by different
colors. All geometries within the same domain share the same Hessian matrix, which is the one calculated at the neuron location.
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applications in (al)chemical space exploration and chemical
design.43−45

In this paper, we show that the unsupervised machine
learning algorithm “neural gas” can optimally compress the
information contained in simple molecular geometries along a
MD simulation, and we use the compressed information to
approximate the Hessian matrix. More specifically, in this
work, we develop and test a NGas method for Hessian
approximation with applications to the computation of
vibrational spectra using the semiclassical initial value
representation (SCIVR) method9,46 with the divide-and-
conquer technique (DC SCIVR) implementation developed
by our group.47 In fact, the bottleneck of SCIVR dynamics is
the computation of the Hessian matrix along the trajectories.
The paper is organized as follows: in the Methods section,

we present in detail the NGas method implementation for the
Hessian approximation, after recalling other two methods for
Hessian approximation that we will compare with. Then we
briefly recall the approach we use for the computation of
vibrational power spectra in the semiclassical approximation,
and eventually in the Results section, we apply the method to
several molecular systems of growing dimension up to a small
synthetic peptide. We conclude the paper with a summary and
discussion of our findings.

■ METHODS
Compact Finite Difference Methods. In previous

publications,14,15 Ceotto, Zhuang, and Hase have presented
and showed how to employ a Hessian updating scheme based
on a compact finite difference (CFD) strategy for MD
simulations.48−51 The CFD approach allows one to obtain a
high-order finite difference approximation of function differ-
entiations without incurring a large stencil. This goal is
achieved by including differentiated terms at more locations
within a “compact” stencil. In this updating scheme, the
Hessian is estimated by extrapolation. For example, if the MD
geometry Xi = (xi,1,xi,2,...,xi,n) of n scalar entries is followed by
Xi′ at a later time, the updating scheme H(Xi′) = H(Xi) + ΔH
allows one to estimate the Hessian for the later geometry
H(Xi′) once ΔH is estimated. Bofill21 proposed the following
update recipe
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where λ is a parameter allowed to vary, ΔX = Xi′ − Xi

= [ − − · − ]′ ′R G X G X H X X X2 ( ) ( ) ( ) ( )i i i i i (2)

G(X) is the gradient and⊗ and · are the symbols for outer and
inner products of vectors.13 When λ = 0, the CFD-symmetric
rank-one scheme19 is derived, while the CFD-power symmetric
Broyden scheme is obtained with λ = 1, and the CFD-Bofill
family schems is represented by the set of linear combinations
between the two. Bofill21 suggested the following practical
value for λ

λ = − ·Δ
∥Δ

R X
R X

1
( )T 2

2 2 (3)

which avoids the singularity division by near-zero when R is
almost orthonormal to ΔX in the first term of eq 1. This choice

was reported to be quite an accurate Hessian approximation.13

We provide both our implementation and the pseudocode in
the Supporting Information.

Dynamical Hessian Database Methods. An alternative
strategy proposed by our group is to create a dynamical
database of Hessians (DBH) and related geometries.16 The
idea is to approximate H(Xi′) ≈ H(Xi) at the MD configuration
Xi′, whenever Xi′ is a geometry close enough to Xi, that is, a
geometry which has already been saved in a database. Two
molecular configurations Xi = (xi,1,xi,2,...,xi,n) and Xi′ are
considered close enough when

ρ
∑ −

<= ′x x

n

( )k
n

i k i k1 , ,
2

(4)

or

ρ| − | < ∀ =′x x k n, 1, ...,i k i k, , (5)

that is, their distance is smaller than a given threshold ρ.
Equation 4 is less strict than eq 5, and hence we adopt the
latter (eq 5) for the simulations presented below. To avoid
database search latency time, |xi,k − xi′,k| can be evaluated mode
after mode only for those geometries satisfying the threshold
condition. If more than one geometry satisfies eq 5, then the
Hessian is approximated by the one associated with the
geometry with the smallest difference in eq 5. The database
may be updated step by step during the MD simulation, or it
may be created once from a given trajectory. In both cases,
only the Hessians for those geometries which do not satisfy the
requirement in eq 5 are computed, and the corresponding
entry is saved in the database. This method has been
extensively tested.16 The method has allowed for semiclassical
simulation of systems where the computational time would
have been otherwise too demanding. More details can be
found in ref 16. We provide both our implementation and the
pseudocode in the Supporting Information of this paper.

NGas Algorithm for Hessian Approximation. We
borrow from the DBH method the idea that close enough
molecular configurations have similar Hessians, but we add the
feature that the algorithm is allowed to look for optimal
configurations even outside the trajectory pathway. As
described above, the idea of the NGas method is to
approximate a given set of elements with few representative
ones, called neurons. In the case of the set of Hessian matrices
along a classical trajectory, a NGas algorithm would find few
geometries whose Hessians can be employed to approximate
the Hessian matrix at every configuration along the trajectory.
Notice that all methods shown in this paper are agnostic

with respect to the coordinate system and units. In our case,
we usually perform MD either in Cartesian or normal mode
coordinates. However, we ultimately employ mass-scaled
normal mode coordinates for our spectra calculations. To
locate the neurons and proceed with the NGas optimization
process, we first scale the whole trajectory set of coordinates to
fit a cubic box with edge 1. In other words, we map each mass-
scaled normal mode coordinate component qj(t) according to
the equation

=
−

−
Q t

q t m

M m
( )

( )
j

j j

j j (6)

where mj = min qj(t) is the minimum value in the time series of
the j-th component, Mj = max qj(t), and the new coordinates
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Q(t) are the scaled coordinates with values between 0 and 1.
Once the number of neurons, that is, the number of most
representative geometries, is chosen, we evenly sample the
initial guess s for the neuron positions directly from the set
Q(t) of the trajectory geometries, that is, initially the set {Q̃} ⊂
{Q(t)}. In practice, a fixed number of neurons are initialized
on top of the trajectory configurations in normal mode
coordinates and distributed at fixed time intervals. In their first
presentation of the NGas algorithm, Martinez and Schulten27

suggested that at each epoch τ, all trajectory geometries Qi are
sampled in a random order from the set of trajectory
configurations {Q(t)} (without repetition). Every time a
configuration Qi is sampled, each j-th neuron Q̃j is updated
according to following rule

α τ̃ = ̃ + ̃ −λ τ−Q Q Q Q( ) e ( )j j
K

j i
/ ( )ij

(7)

where Kij is an integer number that ranks the distance between
the trajectory scaled coordinate geometry Qi and the neuron
Q̃j. Specifically, Kij is equal to 0 for the nearest trajectory
geometry and to (n − 1) for the furthest one. In eq 7, α(τ) and
λ(τ) are parameters which are modeled to decrease during the
optimization process. These parameters change for each
epochal iteration, and they tune the NGas adaptability, that
is, its ability to expand and how fast this expansion is
performed. More specifically, λ tunes the number of neighbor
coordinates that can significantly interact with each neuron,
while α tunes the adaptability of the NGas. In other words, the
larger the λ, the greater the number of trajectory geometries
that significantly contribute to the updating scheme in eq 7,
while α tunes how large the response of Q̃ is and after how
many iterations it is still responsive and learning. α and λ are
updated at each epoch with the same rule28
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with ginit and gfinal being parameters. Reasonable choices for
these parameters are αinit = 0.3, αfinal = 0.05, λinit = 30, and λfinal
= 0.01, independently of the simulated system.28

The updating formula in eq 7 can also be written using the

ij operator formalism that we introduce here
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where α(τ) and λ(τ) have been grouped into one parameter
Aij(τ) = α(τ) e−Kij/λ(τ), which depends on α, λ, and Kij. Aij(τ)
has the form of a Boltzmann factor with temperature λ(τ), and
it is interpreted as a kind of neuron “influence probability.” As
the NGas training goes on, λ(τ) (the analogous of temper-
ature) decreases and the gas freezes nearby the trajectory.
Assuming that we know beforehand all Kij coefficients for the
motion of the neuron Q̃j (in general we do not), by applying
the ij operator of eq 9 for Nsteps time-steps, that is, for the

whole set of trajectory points {Q(t)}, in a random order and
without repetition, one gets
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where p(i,u) is the u-th element of a random permutation of
the index i over the list of the first Nsteps natural numbers, and
we wrote the matrix with permuted indices as a three indice
tensor: Biuj(τ) = 1 + Ap(i,u)j(τ). Equation 10 accounts for the
core functionality of the NGas algorithm. In eq 10, the first
term on the right-hand side does not depend on the trajectory
position but only on the trajectory distance ranking from the j-
th neuron Q̃j, in the form of the Kij coefficients. Instead, the
second term in eq 10 depends on the trajectory position Qp(i,u)
both explicitly and implicitly through Kij. Eventually, when λ
tends to 0 as described above, also Aij goes to 0 and the sums
and products in eq 10 converges to a final neuron position with
less than Nsteps terms. Within the analogy of the NGas, we
would say that in the case when the gas is cold, it is influenced
only by the local manifold (nearby trajectory points) rather
than by the whole environment (the entire trajectory points),
even if all trajectory configurations are summed by the index u
in eq 10. However, even if eq 10 has been introduced to better
understand the physics of the NGas iterations, eq 7 is
employed in practice. According to these equations, the NGas
process is a competitive type of learning since neurons
compete to be nearest as possible to the trajectory geometries.
This competitiveness is encoded in the parameters Kij, which
may change every time a neuron is moved and make it
impossible to use eq 10 straightforwardly.
Once the gas is frost, we perform further optimization of

each neuron position Q̃j. First, we consider that for each
trajectory point Qi, there is only one nearest neuron position
Q̃j. Then, we collect all these points into a set {Q(t)}j which is
the collection of trajectory segments nearest to the j-th neuron,
and there will be as many sets of this type as the number of
neurons. Eventually, we can estimate the error E(Q̃j) to
consider the neuron Q̃j at the place of the trajectory segments
Q(t) as the line integral

∫̃ = ̃ −
{ }

E
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( ( )) dj Q t j( )
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where V = ∫ {Q(t)}jds is a normalization constant and ds is the
integration line segment. Now, we can locate Q̃j such that
E(Q̃j) is minimal. The first-order derivative of E(Q̃j) with
respect to each Q̃j is
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Equation 12 is equal to 0 when Q̃j is equal to the “center of
mass” ⟨Q(t)⟩j of the trajectory segments {Q(t)}j. Hence, we
implemented into the algorithm this further optimization step
such that each neuron is eventually placed at the center of mass
with respect to the trajectory points associated with that
neuron.
Figure 2 reports the flow diagram of the algorithm described

above, with the core part of the algorithm enclosed by the red
rectangular frame. Apart from the scaling and the final
optimization steps, the algorithm can be traced back to the
first version by Martinetz and Schulten.27 At each epoch, all
trajectory coordinates Qi enter in a random order the NGas
optimization cycle, where the distance Dij from its nearest
neuron Q̃j is evaluated together with the order coefficient Kij.
The epoch step is completed only after all trajectory points
have been considered and the related neuron updated
according to eq 7. For the following epoch, Aij(τ) is updated
and so on. At the end of the epoch evolution, each j-th neuron
coordinate is placed at the center of mass of the collection of
trajectory points that are nearest to that neuron {Q(t)}j. The
new location Q̃j is then transformed back into the original
trajectory coordinate system of reference, q̃j, that can be either
Cartesian or normal mode ones. Recently, an algorithm52 that
uses the idea of dividing the configuration space in Voronoi
cells (as in the NGas method) has been proposed. The
algorithm creates an on-the-f ly updated mesh to approximate
the potential energy from previous potential and potential
gradient evaluations.
We evaluate the quality of the approximation as the mean

absolute error (MAE) of the Cartesian Hessian matrix
elements

∑ ∑ ∑σ = | − |
N N

H k H k
1

( ) ( )
k

N

i

N

j

N

ij ijHess
steps cart

2
approx

steps cart cart

(13)

where Ncart is the number of Cartesian coordinates, Nsteps is the
number of MD time-steps, Hij(k) is the entry of the exact
Hessian matrix, and Hij

approx(k) is the approximated one, both at
step k. We provide both our implementation and the
pseudocode in the Supporting Information.

■ SEMICLASSICAL INITIAL VALUE
REPRESENTATION VIBRATIONAL SPECTROSCOPY

In this paper, we will employ the NGas approximation
described above for the calculation of Hessians in semiclassical
dynamics for spectroscopy calculations. The semiclassical
power spectrum I(E) of a system of Hamiltonian Ĥ can be
written as the Fourier-transformed wavepacket survival
amplitude (in atomic units)53−55

∫π
χ χ= ⟨ | ⟩

−∞

+∞
I E t t( )

1
2

e ( ) dEti
(14)

where |χ(t)⟩ = e−iĤt|χ⟩ is the quantum time-evolution of the
arbitrary reference state |χ⟩. The power spectrum provides the
collections of all vibrational eigenvalues on an absolute scale.
We calculate eq 14 using the time-averaging semiclassical
initial value representation (TA SCIVR) method,9,56−64 where
a time-averaging filter is applied to the semiclassical Heller−
Herman−Kluk−Kay (HHKK) propagator.65−77 The TA
SCIVR expression of eq 14 for a system characterized by
Nvib degrees of freedom is

Figure 2. Flow diagram of our NGas implementation. Neurons are sampled from the scaled coordinates and iteratively optimized according to the
cyclic part of the diagram. Every time a coordinate Qi is sampled, one needs to compute its distance from every neuron to determine the ordering
(encoded in the K matrix). Once the training is done, the neurons are scaled back to their original normal mode or Cartesian form. A red
rectangular frame delimits the core part of the NGas algorithm, where neurons are updated in competition with one another to get closer to the
trajectory.
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where T is the total simulation time, St(p0,q0) is the
instantaneous action of the classically evolved trajectory
(pt,qt), and the phase-space integration is performed on the
initial trajectory momenta p0 and positions q0. In eq 15, |ptqt⟩
are coherent states with the following expression in position
representation78
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where γ is an Nvib × Nvib diagonal matrix, whose elements are
equal to the harmonic frequencies of the system. In eq 15,
ϕt(p0,q0) is the phase of the HHKK prefactor46,79
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where Mij, with i,j = p, q, are the elements of the symplectic
(monodromy or stability) 2Nvib × 2Nvib matrix
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Following Hamilton’s equations, the time-evolution of M(t)
is
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and where H(t) is the Hessian matrix at time t. Thus, it is
necessary for an accurate Hessian approximation to have an
accurate M(t) matrix and an accurate vibrational power
spectrum. We monitored the accuracy ofM(t) by exploiting its
symplectic property and checking the deviation of its
determinant (or better, the determinant of the positive-definite
matrix MT(t)M(t)) from unity.
To beat the curse of dimensionality, we reduced the phase

space integration of eq 15 to a few, or just one, trajectory
simulations, where each trajectory starts from the global
minimum and with an energy equal to the harmonic
vibrational energy level that one is looking for.80 This method
is called multiple coherent SCIVR (MC SCIVR),81,82 and it
exploits the fact that during the simulation, the delocalization
of the coherent states will account for anharmonicity and
reproduce the anharmonic vibrational peak position.14,15,83−95

The method also allows to identify each mode contribution by
selecting a suitable combination of coherent states obtained by

changing the sign of the momentum part of the coherent
state.96 This method has been recently further improved by
introducing the DC SCIVR method. The DC basic idea is to
calculate the full-dimensional spectrum as the composition of
subdimensional ones using eq 15 but with reduced
dimensionality phase space quantities. In eq 15, the potential,
which is a part of the action, is the only quantity that cannot be
exactly projected in a reduced dimensionality space. For this
reason, we have introduced the following approximation for
the partial M-dimensional spectrum
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where the tilde ∼ indicated a M-dimension quantity,
V(q̃t′,qt′

(Nvib−M)) is the full dimensional potential, and V-
(q̃eq,qt′

(Nvib−M)) is the one obtained by fixing at equilibrium the
coordinates in the M-dimensional subspace. This approach has
been successfully applied to several high-dimensional complex
systems, including fluxional ones, like small water clusters97

and the protonated water dimer.98 When combined with MC
SCIVR by projecting few full-dimensional classical trajectories
into sub-dimensional phase space components, we obtain the
MC-DC SCIVR, which can deal with very high-dimensional
systems. Notable applications of MC-DC SCIVR include
dipeptide derivatives,99 nucleobases100 and nucleosides,101

water clusters up to (H2O)23,
102,103 and molecules adsorbed

on titania surfaces.104 In the DC SCIVR method, one needs to
properly partition the full-dimensional vibrational space. One
can reach this goal by coarse-graining the time-averaged
Hessian matrix or by splitting the Jacobian (monodromy)
matrix M(t) in square blocks, such that the determinant of
each block is as close as possible to 1, in partial satisfaction of
Liouville’s theorem. In either case, the result is a block
diagonalized matrix, where each block represents a vibrational
subspace. If one chooses to use the Jacobian approach, the
probability graph−evolutionary algorithm (PG−EA) that we
recently reported is the way to go.105 The PG−EA algorithm
uses a cluster graph representation of the molecule’s normal
modes, where connected modes are within the same subspace.
Such a representation is particularly advantageous because it is
invariant with respect to the permutation of modes and
subspaces.

■ RESULTS
In this section, we present simulations of growing complexity,
starting from the small molecular systems H2O, HCOH, and
CH4, going to the smallest prototype of peptide bond [trans N-
methylacetamide (NMA)], up to a small synthetic peptide (N-
acetyl-L-phenylalaninyl-L-methionine amide), which is com-
posed of 46 atoms and 132 vibrational degrees of freedom. All
simulations consist of a single 3000 time-step constant energy
(NVE) classical trajectory with a 10 a.u. constant time-step.
The initial conditions are chosen according to the MC-DC
SCIVR recipe described above. The classical equations of
motion are integrated using a four-order symplectic integra-
tor.106 We employed precomputed PESs for H2O,107

HCOH,108 CH4,
109 and NMA,110 while the N-acetyl-L-

phenylalaninyl-L-methionine amide (Ac-Phe-Met-NH2) mole-
cule was simulated on-the-fly by direct ab initioMD at the level
of DFT-B3LYP-D/6-31G* theory. The PES derivatives are
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computed by finite differences with a fixed displacement of
10−3 a.u. In the case of the trans NMA calculation, we employ
an analytical gradient PES,110,111 and the Hessian matrix is
computed by the finite difference of the gradient. The NGas
method has been optimized using 150 neurons for the
simulation of H2O, HCOH, CH4, and NMA, and 300 neurons
are employed in the case of Ac-Phe-Met-NH2. The number of
learning epochs and the αinit, αfinal, λinit, λfinal parameters are
kept fixed, as described in the Methods section. We performed
all computations reported here on a computer laptop using a
single core [Intel(R) Core(TM) i7-4510U CPU@2.00GHz,
with less than 16 GB of available memory] with the exception
of Ac-Phe-Met-NH2, whose Hessians have been computed on
the group computer cluster using 10 cores [Intel(R) Xeon(R)
CPU E5-2660 v3@2.60GHz 125Gb] per Hessian matrix.
Hessian Approximation Accuracy. To test the accuracy

of each method, we performed calculations where 150
Hessians (300 in the case of Ac-Phe-Met-NH2) out of 3000
time-steps (2500 in the case of Ac-Phe-Met-NH2) are
calculated explicitly, that is, from the PES or the electronic
structure, and the remaining ones are approximated. In others
words, exact Hessians are estimated every 20 (about 8 in the
case of Ac-Phe-Met-NH2) MD time-steps, and all others are
approximated. The deviations of the approximated Hessians
from the exact ones are estimated using eq 13. Notice that,
although the Hessians in eq 13 are in Cartesian coordinates, we
employ normal mode coordinates in the DBH and NGas
methods to locate the optimal configurations.
Table 1 reports the results of this test for each molecule, and

it shows that the computational time of the Hessian matrix
calculation is the simulation bottleneck when evaluated by ab
initio methods. Actually, when using a precomputed PES, the
time required for the NGas algorithm iterations is roughly of

the same order of magnitude of evaluating the Hessian for each
trajectory configuration. To appreciate the advantage of the
approximation schemes in terms of cpu-time, one has to reach
the 30 degrees of freedom of the NMA molecule. However,
even in this case, the use of analytical gradients provided by the
precomputed PES110 accelerates the Hessian matrix estimation
and keeps the option to evaluate all Hessians along the
trajectory viable. We can see a clear advantage of the
approximation methods only when dealing with Ac-Phe-Met-
NH2, which we simulated on-the-fly. In this case, the
evaluation of a single Hessian (SH) matrix takes about 3 h
with NWChem package112 on a 10 core [Intel(R) Xeon(R)
CPU E5-2660 v3 @ 2.60GHz 125Gb] node, and the NGas
and DBH methods become, in this case, the only viable option.
Table 1 reports also in the fourth column the error σHess for
each method with respect to the all-Hessian evaluation. We
notice that the NGas method is as accurate as the DBH one in
the case of Ac-Phe-Met-NH2. In the fifth column of Table 1,
the relative σHess shows how each method compares with the
NGas in terms of accuracy. We see that by using the NGas
method, we can decrease the error by about 26% for small
molecular systems, while the NGas error is comparable with
the DBH method in the cases of the NMA and Ac-Phe-Met-
NH2 molecules. We can understand this trend, considering
that the higher the number of degrees of freedom, the less
often the trajectory visits the same phase space region. In these
cases, the NGas method provides a solution that is very similar
to the DBH one since neurons are distributed along the
trajectory and basically coincide with the molecular geometries
at which Hessian matrices are calculated according to the DBH
approach.
Overall, we can observe that the ratio of computational time

versus the number of degrees of freedom is almost constant for

Table 1. Accuracy and Computational Time for Different Hessian Approximation Methodsa

molecule #Hessians method 102σHess relative σHess
b method cpu-time Hessians cpu-time total cpu-time

H2O 150 NGas 0.539 1.00 19.314 0.197 19.51
150 DBH (ρ = 2.59) 0.728 1.35 0.355 0.55
150 Bofill 2.336 4.33 0.148 0.346
3000 all Hessians 0.000 NA 0.000 3.947 3.95

HCOH 150 NGas 0.612 1.00 19.395 0.356 19.75
150 DBH (ρ = 8.22) 0.824 1.34 0.329 0.69
150 Bofill 1.570 2.56 0.160 0.52
3000 all Hessians 0.000 NA 0.000 7.115 7.12

CH4 150 NGas 0.732 1.00 18.923 0.492 19.42
150 DBH (ρ = 7.95) 1.000 1.37 0.345 0.84
150 Bofill 2.231 3.05 0.192 0.68
3000 all Hessians 0.000 NA 0.000 9.835 9.84

NMA 150 NGas 0.447 1.00 22.582 12.842 35.42
150 DBH (ρ = 21.15) 0.490 1.09 0.499 13.34
150 Bofill 0.935 2.09 0.262 13.10
3000 all Hessians 0.000 NA 0.000 256.834 256.83

Ac-Phe-Met-NH2 298 NGas 0.059 1.00 27.667 7620.819c 7621.28c

298 DBH (ρ = 11.9) 0.059 1.00 2.697 7620.86c

312 Bofill 0.153 2.58 2.030 7978.845c 7978.88c

2500 all Hessians 0.000 NA 0.000 63,933.049c 63,933.05c

aFirst column is the molecule, the second column is the number of exact Hessian calculations, the third column is the Hessian approximation
method, the fourth column is the error according to eq 13, the fifth column is the relative error respect to the NGas method, the sixth column is the
cpu-time for each method, the seventh column is the cpu-time for the exact Hessian evaluation, and the last column is the total computational time.
All times are in seconds, except explicitly indicated. For each molecule, the NGas, the DBH at threshold ρ, and the CFD (Bofill) methods are
tested. The “all Hessians” label is for Hessian calculations at each time-step, that is, without any approximation. bDefined as the error of the method
divided by the error of the NGas method. cCore hours (average of core hours necessary for the computation).
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all methods, and it increases moderately only in the case of the
Ac-Phe-Met-NH2 system. This is mainly due to the time
required to store and copy the trajectory. At this stage, we
cannot assert what will happen for even higher-dimensional
systems. However, we still can test the robustness and stability
of each method by decreasing the number of PES or ab initio
Hessian entries. In this way, we can also better understand
which are the minimum number of Hessian evaluations
necessary for obtaining an accurate estimate. We focus on
the Ac-Phe-Met-NH2 system and on the NGas and DBH
approximations. Table 2 reports the values of σHess of eq 13 for

the two methods for the different exact Hessian evaluation
times reported in the second column. Clearly, the more the ab
initio Hessians are computed, the smaller the approximation
error is, as reported in the third column. If the NGas and DBH
errors are compared for about 200 exact Hessian evaluations,
DBH is more and more accurate as the number is significantly
reduced down to 25. We think that this poor performance of
the NGas method is due to the fact that, given the extremely
low numbers of Hessians provided, the neuron locations are
not representatives of their trajectory neighborhood. In other
words, when the system conformation is averaged over many
ones, the result may be very different from the actual
conformations visited along the classical trajectory. To improve
and going beyond this limitation, we use an extended set of
variables for the neurons’ space, which includes also the
potential gradients in the NGas training process. While the
original neurons are identified by a set of normal mode
molecular coordinates of the type q̃ = (q̃1,...,q̃Nvib

) in the
improved version, the vector which identifies the neuron
includes the energy gradient coordinates as well,
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. This extended

neuron set of variables accounts for the PES slope in addition
to the molecular positions. In this way, unrealistic
conformations with huge internuclear forces (and conse-
quently large Hessian elements) are excluded in favor of more
realistic conformations. The improved results are reported in
the last column of Table 2. The extended NGas is always more
accurate not only with respect to the original NGas method
but also to the DBH method, in particular, for the cases when

there are few exact Hessian estimates. We observe again that
when the number of neurons is increased, these are allowed to
have a neighboring trajectory segment that is a straight line,
and thus the NGas and DBH methods become alike.
Although the NGas method seems to provide a small

improvement with respect to the DBH one for the larger
systems, that is, NMA and Ac-Phe-Met-NH2, we can prove
that it can reach an accuracy comparable to that one observed
for the smaller systems. In fact, both NGas and DBH methods
approximate only the regions of configurational space that are
close to the trajectory since they are based on the distance
from neighboring geometries. Hence, if we employ 150
neurons to approximate a 3000 step trajectory, each Voronoi
cell contains on average 20 geometries and the related
Hessians. When the system becomes larger, we expect these
geometries to be visited within the same portion of the
trajectory. This is the reason why DBH and NGas methods
provide more and more similar results as the system size grows.
However, things are different if we use an ensemble of MD
trajectories because in this case, it is very likely that trajectories
cross and overlap significantly, as in a tangle of strings. Table 3
reports the numerical results of two ensembles of trajectories.

The trajectory initial conditions were sampled from the
Husimi distribution in phase space centered at the equilibrium
values. We notice that the trajectories originated by this
distribution are spread in energy values, in contrast to previous
simulations, and the errors in the Hessian matrix are inevitably
higher. In the upper part of Table 1, the NGas method
provides a smaller value of σHess for the same number of ab
initio Hessians employed in the DBH simulation. In the lower
part of the table, the same average error in the Hessian matrix
is reached only when DBH employs more than 6 times ab initio
Hessians than the NGas method. With about 500 thousand
geometries and one thousand neurons, our implementation of
the NGas method takes its toll, and the training of the NGas
takes about 7 h to be optimized compared to the 50 min
required by DBH. However, if one takes into account the ∼10
min per core [Intel(R) Xeon(R) CPU E5-2660 v3@2.60GHz
125Gb] that it takes to compute the ab initio Hessian matrix of
NMA at DFT-B3LYP/6-31G* level of theory, it is still

Table 2. Hessian Element MAE from Eq 13 (σHess) for the
NGas and DBH Methods by Varying the Number of Exact
Hessian Evaluations Indicated in the Second Column in the
Case of the Ac-Phe-Met-NH2 Molecule

102σHess relative σHess
b

method #Hessians q̃a q̃ ∪ ∇q̃a q̃ ∪ ∇q̃a

NGas 25 0.372 0.260 1.00
DBH (ρ = 55.0) 25 0.319 1.23
NGas 50 0.357 0.219 1.00
DBH (ρ = 40.0) 50 0.267 1.21
NGas 100 0.157 0.153 1.00
DBH (ρ = 27.3) 100 0.167 1.09
NGas 200 0.090 0.089 1.00
DBH (ρ = 17.3) 200 0.090 1.01

aThe columns “q̃” and “q̃ ∪ ∇q̃” refer to different NGas training
spaces, as described in the text, while the last column reports the
relative error with respect to the best NGas estimate. bDefined as the
error of the method divided by the error of the NGas method.

Table 3. Hessian Element MAE of Eq 13 (σHess) for the
NMA Molecule Using the NGas and DBH Methods
Obtained by Varying Either the Total Number of
configurations (second Column) or the Number of ab initio
Hessians (Third Column)

method
configurations

(#trajectories × #steps) #Hessians 102σHess
relative
σHess

a

NGas 100 × 1000 999 1.33 1.00
DBH
(ρ = 54.7)

100 × 1000 1008 1.64 1.23

NGas 500 × 1000 1000 1.52 1.00
DBH
(ρ = 67.6)

500 × 1000 999 1.94 1.28

NGas 100 × 1000 999 1.33 1.00
DBH
(ρ = 45.6)

100 × 1000 2049 1.34 1.01

NGas 500 × 1000 1000 1.52 1.00
DBH
(ρ = 47.5)

500 × 1000 6082 1.56 1.03

aDefined as the error of the method divided by the error of the NGas
method
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convenient to use the NGas method. Finally, the σHess values
reported in Table 3 are rather large as we enforced less than
one ab initio Hessian matrix every 100 Hessians, which is quite
a drastic setup.
Spectroscopic Simulations. One may wonder which level

of Hessian approximation accuracy is requested in MD
applications and how important the choice of the approx-
imation method is. To reply to this question, we decided to
employ our approximate Hessians for the integration of eq 19
and the calculation of the power spectrum using eq 15.
Specifically, we simulated the full-dimensional vibrational
power spectrum of the small Ac-Phe-Met-NH2 peptide using
a single on-the-fly ab initio trajectory with our MC-DC SCIVR
method, described in the Semiclassical Initial Value Repre-
sentation Vibrational Spectroscopy section. In the DC strategy,
we need to find a vibrational space subdivision, which is the
result of a trade-off between spectroscopic accuracy and
feasibility. Too high-dimensional vibrational subspaces are not
practical, but too low-dimensional ones may turn out to be a
drastic approximation. For these reasons, we performed a
preliminary coarse-graining of the time-averaged Hessian
matrix by fixing to zero all elements smaller than 8.0 × 10−6

a.u.113 In this way, after conveniently permuting rows and
columns, we obtained a block diagonal matrix whose 23-
dimensional subspace contains all stretching modes of the
amine group we are interested in. These are denominated as

sNH2 (mode number 129), NH(II) (130), NH(I) (131), and
aNH2 (132). We focus on these fundamentals because their
experimental values are available for comparison.114 This
subspace is further decomposed into smaller subspaces using
our PG−EA algorithm.105 The stretches we are interested in
are highlighted in bold in the normal mode subspaces {10 30
33 36 37 38 42 46 130 131} and {47 105 129 132}. The mode
numbers are assigned according to the harmonic frequency
values, where smaller numbers mean lower harmonic
frequency values. Both subspaces contain floppy modes. In
particular, the first subspace contains several floppy modes, and
we expect that the partial spectra of the NH(II) (130) and
NH(I) (131) modes will embody several combination features
of these stretches with floppy modes.
Figure 3 shows the power spectra of the selected amide

group stretching modes using different Hessian approxima-
tions. On each panel is reported the signal of each mode after a
suitable combination of coherent states.96 Continuous lines are
for MC-DC SCIVR simulations where Hessians have been
calculated at each time-step and are labeled as “all Hessians.”
Dashed lines are for our NGas approximation presented above,
that is, with the inclusion of the gradients in the set of neuron
variables. The dotted line is the so-called “SH” approxima-
tion,115 where the Hessian is constant and it is equal to the
equilibrium geometry one. The NGas simulation is very similar
to the exact, especially for the higher-dimensional subspace.

Figure 3. Spectroscopic Hessian accuracy test for the NH2 stretches in the amide group of the Ac-Phe-Met-NH2 peptide. The dotted line is for the
SH approximation;115 the dashed line is for the NGas approximation including the gradient information with 200 neurons and 200 ab initio Hessian
calculations. The continuous line, which is labeled as “all Hessians,” reports the simulation where all Hessians are obtained from ab initio
calculations.

Figure 4. Ac-Phe-Met-NH2 amide group related vibrational stretching power spectra. Vertical continuous sticks are the experimental values,114

while vertical dashed sticks are the harmonic approximation frequencies. Continuous lines are for MC-DC SCIVR simulation using the Hessian
NGas approximation and dotted lines are for the quasi-classical simulation on the same ab initio potential (see main text).
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However, the SH approximation is quite good if one takes into
account how drastic the approximation is. Nevertheless, the
main problem of the SH approximation is that for the higher-
dimensional subspace containing the NH(I) and NH(II)
stretches, it does not allow for a definitive assignment, while in
the case of the NGas spectra, a main peak is present, despite
the numerous overtone side peaks. We can confirm that these
side peaks of smaller intensities are of the type of overtones or
combination bands by comparing the NGas spectra with the
classical ones in Figure 4.
Quasi-classical spectra are obtained by Fourier transforming

the velocity−velocity correlation function of a constant energy
trajectory (NVE), which is the same one employed for the
MC-DC SCIVR calculations, that is, trajectories starting from
the equilibrium geometry and with kinetic energy equals to the
harmonic zero-point energy (ZPE). While these types of
classical simulations provide frequency values with anharmonic
corrections because the ab initio trajectory accounts for the
shape of the PES, these values are restricted only to the
fundamental transition frequencies and higher harmonics.
Instead, semiclassical simulations, such as MC-DC SCIVR,
provide the full collection of eigenvalues as in eq 14, and all
type of transition frequencies can be obtained by the difference
between the eigenvalues. Thus, the semiclassical power
spectrum includes not only the fundamental frequencies but
also anharmonic overtones, combination bands, and the ZPE
value on an absolute scale. For these reasons, the MC-DC
SCIVR spectra of Figure 4 (continuous lines) present several
more spectroscopic features than the classical ones (dashed
lines). However, it is still possible to compare the two of them
with the experiments on the fundamental frequency values.
The comparison is reported in Table 4 and Figure 4, where the

experimental values114 are reported as a red continuous stick
spectrum, while the harmonic estimates are the dashed blue
sticks. Overall, we can observe in Figure 4 that the semiclassical
simulations present broader peaks than the classical ones. The
classical peak width is what is expected from the Fourier
transform of a ∼0.73 ps simulation. We do not pursue longer
trajectories because the quantum accuracy of the semiclassical
approximation would deteriorate for longer simulations. We
also decided to not apply any artificial exponential constant
decay (Gaussian filter) to avoid any sort of biasing. In Figure 4,
the semiclassical signals are broader in the case of the NH(I)

and NH(II) stretches, as expected, because of the numerous
strongly coupled floppy modes. Specifically, the more intense
peaks in the NH(I) and NH(II) panels represent the
convolution of a series of overtones coupled to the numerous
floppy modes, while the other side peaks, which are absent in
the classical spectrum, are a combination or overtone bands of
other modes. In fact, both the subspace subdivision and the
filtering process provided by the combination of coherent
states96 can only partially filter the numerous eigenvalues
which are present in a given energy window of a 132-
dimensional power spectrum. Clearly, in Figure 4, these side
peaks are less intense at higher frequencies because the
trajectory energy shell is at the level of the harmonic ZPE
value, where the Fourier transformed coherent state is
centered.
Table 4 summarizes the results in Figure 4 with the

additional results of the semiclassical MC-DC SCIVR
simulation obtained using the Hessian database approxima-
tion.16

The comparison between different levels of calculation
shows that classical and semiclassical results are systematically
more accurate than the harmonic ones, while the semiclassical
ones are further more accurate with respect to the classical
ones. The semiclassical reference is reported in the second
column of Table 4, where the calculations have been
performed without any Hessian approximation but using
directly the ab initio values. The third and fourth columns
report, respectively, the NGas and the DBH approximated
Hessian semiclassical values. For the NGas simulation, 200
neurons and 200 ab initio Hessians have been employed, while
the DBH results are obtained with 300 ab initio Hessians.16 At
this level of comparison, we think it is not possible to assert
which of the Hessian approximations, either the NGas or the
DBH one, is more appropriate for spectroscopic analyses with
the MC-DC SCIVR method. Actually, the NGas MAE with
respect to the experimental values in Table 4 is slightly smaller
than calculating all ab initio Hessians. This is clearly due to a
compensation of effects, which include the level of ab initio
theory. Eventually, given the NGas and DBH MAE of Table 4,
both of them are accurate enough for semiclassical calculations,
considering that any semiclassical simulation strongly depends
on the level of ab initio theory and that the Fourier transform
broadening is about ∼20 cm−1 for a typical semiclassical
trajectory simulation, where the total time is on the order of
picoseconds.

■ CONCLUSIONS
Given the importance of an accurate method for approximating
instead of calculating the Hessian matrix during MD
simulations, we have investigated the possibility to employ a
slightly customized NGas algorithm that allows us to compute
the Hessian matrix of the potential energy along a MD
simulation. After presenting the method, we have tested its
accuracy compared to other algorithms already present in the
literature.14−16 Then, we applied it to speeding up the
calculation of semiclassical spectra, where the Hessian
calculation is mandatory at each MD time-step. We find that
the NGas algorithm can be ∼20% more accurate than other
methods for simulations of molecular systems whose
trajectories overlap and cross significantly. Furthermore, it
appears that the NGas method may require far fewer ab initio
Hessian calculations to provide the same accuracy as
competitive methods. However, some caveats must be taken

Table 4. Selected Amide Group Vibrational Stretching
Fundamentals of the Ac-Phe-Met-NH2 Peptide at Different
Levels of Approximationa

modes all Hessians NGas DBH16 classical harmonic exp114

aNH2 3548 3530 3490 3552 3682 3520
NH(I) 3448 3456 3480 3490 3607 3452
NH(II) 3412 3416 3300 3461 3568 3363
sNH2 3426 3406 3360 3422 3535 3388
MAE 29 21 37 51 167 0.0

aThe first column reports the type of stretch, the second reports the
MC-DC SCIVR frequencies without any Hessian approximation, the
third and the fourth columns, respectively, report the NGas and the
DBH approximated Hessians semiclassical frequency values, the fifth
column is the quasi-classical frequencies of vibration, the sixth column
is the harmonic results, and the last column shows the experimental
values.114 In the last row, the MAE with respect to the experimental
values is reported for each method.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00707
J. Chem. Theory Comput. 2021, 17, 6733−6746

6742

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00707?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


into account. First of all, if one aims to study a single short
trajectory of a large molecular system (such as Ac-Phe-Met-
NH2), it appears that the NGas method is just as accurate as
the DBH approach that our group presented recently.16 As a
matter of fact, in such cases, the NGas method provides a
solution that is similar to that proposed by DBH. Furthermore,
if the user can afford to compute only very few Hessian
calculations along a nonoverlapping trajectory, it is recom-
mended to add gradients of the potential to the NGas training
set. This set up is slightly more robust than the DBH method
with respect to the number of ab initio Hessians. Second, while
at high dimensions, all methods scale favorably, the NGas
method would suffer from longer simulations and higher
number of neurons. However, we expect that this feature
should still compensate for the time spent for the ab initio
calculation of all Hessians. We did not pursue the simulations
of molecular systems significantly larger than Ac-Phe-Met-NH2
because the Hessian calculations at each time-step would be
out of reach for standard computational power. The third
caveat is that the DBH method can also be performed on-the-
fly, while the NGas one is necessarily a postprocessing method.
This means that in the DBH method, the number of ab initio
Hessian calculations can be automatically determined during
the dynamics if one applies the method to the available
database at each time-step and increment the database during
the dynamics, while in the case of the NGas method, it has to
be fixed a priori. The last caveat is that the DBH parameter ρ is
system-dependent. Also, ρ ensures that the approximated
Hessians are close enough to the trajectory, but it does not
allow to control the number of Hessians to compute. On the
other hand, the NGas method requires as input the number of
Hessians one is willing to compute, but it does not assure that
the neuron locations would be close enough to the trajectory.
Nevertheless, both these shortcomings can be mended by a
preliminary trial and error calculation. Eventually, for semi-
classical spectroscopic calculations, we conclude that both
methods are accurate. We also tested the SH approximation
and confirm that this choice should be avoided or employed as
a preliminary calculation together with a classical power
spectrum calculation. Finally, in this work, we have also shown
that our DC SCIVR technique implemented by reasonable
approximations can allow for power spectrum calculations with
the inclusion of quantum nuclear features of systems as large as
small peptides. As a future perspective, our NGas method
could be interfaced with methods that generate a local fit of the
potential, such as the GPR-PES method.22 In fact, the
trajectory geometries within a Voronoi cell can be used to
train a GPR model and better approximate the Hessian matrix
within the same cell. This approach would allow for more
reliable Hessian estimates within the current limitations of
applications of the GPR-PES methodology.

■ CODE AVAILABILITY
The codes developed for this work are freely available on
github at: https://github.com/ganmichele/hessapprox.
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