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Fetal hydronephrosis is the most common anomaly detected on antenatal ultrasound, affecting 1–5% of pregnancies. Postnatal
investigation has the major aim in detecting infants with severe urinary tract obstruction and clinically significant urinary
tract anomalies among the heterogeneous universe of patients. Congenital uropathies are frequent causes of pediatric chronic
kidney disease (CKD). Imaging techniques clearly contribute to this purpose; however, sometimes, these exams are invasive, very
expensive, and not sufficient to precisely define the best approach as well as the prognosis. Recently, biomarkers have become a focus
of clinical research as potentially useful diagnostic tools in pediatric urological diseases. In this regard, recent studies suggest a role
for cytokines and chemokines in the pathophysiology of CAKUT and for the progression to CKD. Some authors proposed that the
evaluation of these inflammatory mediators might help the management of postnatal uropathies and the detection of patients with
high risk to developed chronic kidney disease. Therefore, the aim of this paper is to revise general aspects of cytokines and the link
between cytokines, CAKUT, and CKD by including experimental and clinical evidence.

1. Introduction

Fetal hydronephrosis is the most common anomaly detected
on antenatal ultrasound, affecting 1–5% of pregnancies [1,
2]. Despite their high frequency of occurrence, there is
little consensus on the management of infants with prena-
tal hydronephrosis (PNH) [3]. There have been a number
of studies discussing the significance of fetal renal pelvic
dilatation (RPD) as an indicator of urinary tract anomalies
[4–7]. The degree of PNH varies from mild to severe, and
intuitively, the degree of PNH should correlate with the sever-
ity of the underlying etiology [1, 2, 8]. More specifically, the
risk of ureteropelvic junction obstruction (UPJO) increased
significantly with greater degrees of PNH [9], but the risk
of vesicoureteral reflux (VUR) was not significantly different

among all severity groups. Most studies also have shown
that a single postnatal US is unable to predict the presence
or severity of VUR [6, 10, 11]. Consequently, postnatal
management is heterogeneous, with some centers advocating
detailed investigations including voiding cystourethrography
(VCUG) in all cases and others indicating a less intensive
approach [12–16]. Therefore, in spite of advances, the issue of
postnatal diagnostic management of antenatal hydronephro-
sis remains a challenging problem [17, 18].

RPD can be an early sonographic sign of urinary tract
obstruction or as a marker of other abnormalities such as
renal duplication or VUR, which cannot be easily identified
by US during pregnancy. Therefore, the patient is now pre-
senting to the urologist or pediatric nephrologist before the
baby is even born, with a presumptive diagnosis rather than
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a symptom [19]. Consequently, infants diagnosed with PNH
routinely undergo postnatal imaging evaluation. Classically,
the prenatal diagnosis of hydronephrosis leads to postnatal
investigations, including sonography, VCUG, and isotopic
renography [17, 20]. Postnatal investigation has themajor aim
at detecting infants with severe urinary tract obstruction and
clinically significant congenital anomalies of the kidney and
urinary tract (CAKUT) among the heterogeneous universe
of patients. Imaging techniques clearly contribute to this
purpose. However, some of these exams are invasive and very
expensive. Furthermore, sometimes imaging techniques are
not sufficient to precisely define the indication of surgical
approach as well as to determine the prognosis [21].

Biomarkers have recently become a focus of clinical
research as potentially useful diagnostic tools in pediatric
urological diseases [22]. Biomarkers are any tests that help
distinguishing between two or more biological states and
guide further clinical decision making [23]. In this regard,
Muller et al. have reported that fetal serum ss2-microglobulin
and cystatin C are good markers for postnatal renal function
in bilateral renal hypoplasia and dysplasia [24].More recently,
Mersobian et al. [25] searched for specific proteins altered in
UPJO by urinary proteome analysis and found a statistically
significant difference in the expression of a number of urinary
proteins and polypeptides between patients with UPJO and
controls. These differences persisted at presentation and
through time, although the profile of the candidate biomark-
ers varied according to the age of the patient. Further studies
are needed to identify, among this group of proteins and
polypeptides, which potential biomarker can help clinical
decisions [25]. For instance, preliminary investigations look-
ing at the urinary concentrations of transforming growth
factor-beta (TGF-𝛽) have suggested that this cytokine might
be useful in detecting urinary tract obstruction and clinically
relevant urinary tract anomalies among the heterogeneous
universe of patients [26].

The obstructive nephropathy is not a simple result of
mechanical impairment to urine flow but a complex syn-
drome resulting in alterations of both glomerular hemody-
namics and tubular function caused by the interaction of a
variety of vasoactive factors and cytokines that are activated
in response to obstruction. The cytokines play a role in the
development andprogression of fibrotic and sclerotic changes
in the obstructed kidney [27]. A large number of factors can
initiate apoptosis, several of which may be related to obstruc-
tive nephropathy, such as hypoxia, ischemia, cytokines,
growth factors, angiotensin II, endothelin-1, thromboxane,
prostaglandins, and mechanical stretch [28–30]. However,
it should be pointed that the biochemical, cellular, and
molecular mechanisms of the obstructive uropathies are still
largely unknown [28, 31]. The understanding of this process
will certainly help in themanagement of fetal hydronephrosis
and in the detection of patients at high risk for chronic
kidney disease (CKD). In this regard, recent studies suggest
a role for cytokines and chemokines in the pathophysiology
of fetal hydronephrosis [28, 31, 32]. Indeed, we believe that
the evaluation of these inflammatory mediators might help
the management of CAKUT. The aim of this paper is to
revise general aspects of cytokines and the link between

cytokines, CAKUT, and CKD by including experimental
and clinical studies. For this purpose, we have searched for
articles at PubMed and Scopus by using the combination of
words: “UPJO,” “VUR,” or “CAKUT” and “chemokines” or
“cytokines.” After this first step, we have selected the papers
that evaluated cytokines as potential markers of clinical
course, urinary tract obstruction, and/or CKD in pediatric
patients. In that way, we have composed the list of papers
presented in this review.

2. Cytokines: General Concepts
and Characteristics

Cytokines are redundant secreted proteins with growth,
differentiation, and activation functions that regulate and
determine the nature of immune responses and control
the immune cell trafficking and the cellular arrangement
of immune organs. These mediators are involved in virtu-
ally every facet of immunity and inflammation, including
innate immunity, antigen presentation, bone marrow dif-
ferentiation, cellular recruitment and activation, and adhe-
sion molecule expression. A cascade of responses is trig-
gered in response to cytokines, and several cytokines acting
together are required to express their optimal function.
Numerous cytokines have proinflammatory properties such
as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-
𝛼), whereas others modulate the inflammatory response-like
Interleukin-10 (IL-10) and transforming growth factor beta
(TGF-𝛽) [33].

Chemokines constitute a large family of low molecular-
weight cytokines whose main action is the recruitment
and activation of leukocyte subsets in various models of
inflammation—the word “chemokine” is a contraction of
the terms “chemoattractant” and “cytokine” [34]. Tubu-
lar epithelial cells can be a rich source of inflammatory
chemokines including regulated on activation, normal T
expressed and secreted (CCL5/RANTES), monocyte chemo-
tactic protein-1 (CCL2/MCP-1), Macrophage inflammatory
protein 1 alfa (CCL3/MIP-1𝛼), CX3CL1/fractalkine, and
interleukin-8 (CKCL8/IL-8) [35]. Tubular epithelial cells are
also targets for chemokines, since these cells respond to
CCL2/MCP1 stimulation by releasing IL-6 and intracellular
adhesion molecule-1 [36]. Messenger RNA for chemokine
receptors can also be detected in podocytes and glomeruli
[34].

3. Cytokines in Renal Diseases
Related to CAKUT

A number of studies have shown the relation between renal
diseases and cytokines production [28, 34, 37–40]. Indeed,
the measurement of urinary, plasma, and renal tissue levels
of cytokines has been used to monitor and diagnosis various
urological and kidney diseases [34, 40, 41]. In this section, we
reported studies that associated cytokines with relevant clin-
ical consequences of CAKUT such as acute pyelonephritis,
urinary tract obstruction, and renal scarring.
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Acute pyelonephritis is most commonly observed in
pediatric patients with CAKUT that resulted in urinary tract
obstruction. However, predictive factors of renal scarring in
patients with acute pyelonephritis remain unknown. In this
regard, Sheu et al. [38, 39] evaluated serum and urinary
levels of interleukin-1𝛽 (IL-1𝛽), IL-6, and CXCL8/IL-8 in
children with acute pyelonephritis. In the first study, these
authors reported that the levels of IL1-𝛽 were significantly
reduced in children with renal scarring, probably indicating
a protective function for this cytokine [38]. IL-1𝛽 is pri-
marily synthesized by cells of the mononuclear phagocyte
lineage, but endothelial cells and neutrophils also produce
this cytokine. The most important biological activity is its
ability to activate T lymphocytes and to augment B-cell
proliferation thus increasing immunoglobulin synthesis [33].
These effects might be responsible for a protection against
renal scarring in patients with acute pyelonephritis. On the
other hand, the same research group previously found that
there is a significant elevation of serum and urinary levels of
IL-6 and CXCL8/IL-8 in children with acute pyelonephritis
when compared to childrenwith lower urinary tract infection
[39]. This finding supports the hypothesis that the release
of IL-6 and of CXCL8/IL-8 from the urinary tract leads to
systemic host responses [39], since IL-6 is a proinflammatory
cytokine responsible for pyrexia and production of acute
phase proteins [33], whereas CXCL8/IL-8 is a chemokine
responsible for neutrophil infiltration into the urinary tract
with an important role in acute inflammation [39]. In addi-
tion, gene polymorphisms of CXCL8/IL-8 seem to increase
the susceptibility for acute pyelonephritis. For instance, the
presence of the IL-8-251A allele in the genotype of children
with urinary tract infection without vesicoureteral reflux has
increased the risk of pyelonephritis [42].

In relation to renal scarring, TGF-𝛽 is a fibrogenic
cytokine that stimulates extracellular matrix proteins depo-
sition and scarring formation in kidney parenchyma. On the
other hand, concerning immune system regulation, TGF-𝛽
exerts anti-inflammatory effects by inhibiting the prolifera-
tion of many different cell types [33]. Besides renal scarring,
TGF-𝛽 also seems to be related to urinary tract obstruction.
In this regard, Monga et al. [43] have studied 17 men with
bladder outlet obstruction and 6 nonobstructed subjects and
showed that, in the obstructed ones, the urinary levels of
TGF- 𝛽 were significantly higher than in non-obstructed.

4. Cytokines in CAKUT: Experimental Studies

Animal models have been frequently used to understand
histopathological changes, mechanisms, and therapeutic
approaches of obstructive nephropathies [41, 44–46]. The
majority of the reported animalmodels utilized rats andmice,
but rabbits, pigs, and sheep were also used [31].

Models of experimental postnatal unilateral ureteral
obstruction have been developed in newborn rat pups that
continue to exhibit active nephrogenesis in the postnatal
period [31]. A partial unilateral ureteral obstruction was sur-
gically created by entrapping the ureter in the animal psoas
muscle, whereas the complete obstruction was produced by

surgically clamping and occluding the ureter [31]. In rats,
the major part of nephrogenesis occurs within 7 to 10 days
after birth [47, 48]. Some models have used animals with
congenital uropathies, while others have evaluated animals
submitted to surgery after birth [47].

The induction of ureteral obstruction in newborn rats
clearly interferes with ongoing nephrogenesis and this proce-
dure usually leads to substantial renal damage [47].This kind
of experimental model mimics human ureteral obstruction
at the second and third trimesters of pregnancy; however,
significant renal damage is less common in infants [49].
The main features found in obstructive models are tubular
cell apoptosis, mesenchymal myocyte transformation, and
decreased glomerular endowment and glomerular injury
[28, 48, 50]. The understanding of the pathophysiological
mechanisms and the molecular events is important to define
the moment of intervention [31]. Figure 1 shows the main
mechanisms involved in models of obstructive uropathies.

Obstructed kidneys exhibited an elevation in angiotensin
II activity, which, in turn, decreases renal blood and causes
ischemia and kidney growth arrest. Although renal blood
flow usually normalizes 6 weeks after the relief of temporary
obstruction, renal growth remains altered, suggesting that
other factors are responsible for growth impairment [47]
such as the reduction in cell proliferation, the increase in cell
apoptosis, and the progression of interstitial fibrosis [48].

Chevalier et al. [48] have studied neonatal rats submitted
to unilateral ureteral obstruction or sham operation at one
day of age, with relief five days later. In additional groups of
neonatal rats, the operation was at 14 days, with relief at 19
days [48].Three months following relief of unilateral ureteral
obstruction during days 14 to 19, renal growth was decreased
by 50%, compared to a 30% reduction following relief of
unilateral ureteral obstruction during days 1 to 5.The number
of glomeruli was reduced by approximately 50% regardless of
the timing of obstruction, but glomerular size was reduced
only in rats with unilateral ureteral obstruction from days
14 to 19 [48]. This study shows that, in the period imme-
diately following nephrogenesis, the kidney is particularly
susceptible to long-term injury from temporary unilateral
obstruction. This suggests that a delay in relief of significant
ureteral obstruction should be avoided if diagnosed in the
perinatal or neonatal period [48]. The same group has also
evaluated neonatal rats that underwent unilateral ureteral
obstruction at one day of age whose obstruction was released
at days 1, 2, 3, or 5 following the operation [51]. The growth
of the obstructed kidney decreased linearly according to
the duration of ureteral obstruction, while the contralateral
kidney developed compensatory hypertrophy [51]. Indeed,
contralateral renal hypertrophy should be considered as an
important sign of advanced obstructive uropathy [52]. In
summary, these animal models reveal that renal growth and
function are impaired in proportion to the severity and
duration of obstruction.

The microscopic alterations of obstructed kidneys are,
initially, increased of tubular diameter secondary to tubular
cell proliferation and dilatation. Next begins the apoptosis of
tubular cell followed by the apoptosis of interstitial compart-
ment [53]. There is a gradual, but continuous, apoptosis and
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Figure 1: Potential mechanisms involved in obstructive uropathies.

proliferation of fibroblasts and inflammatory cells [53, 54].
Tubular cell apoptosis contributes to renal growth impair-
ment [53], whereas proliferation of interstitial fibroblasts with
myofibroblast transformation leads to excess deposition of
the extracellular matrix and renal fibrosis [50]. Phenotypic
transition of resident renal tubular cells, endothelial cells, and
pericytes has also been implicated in this process.

A variety of intrarenal factors lead to progressive inter-
stitial fibrosis, including growth factors and cytokines, such
as angiotensin II, MCP-1, TGF-𝛽, and adhesion molecules,
which are produced by the hydronephrotic kidney [28].
Altered renal expression of growth factors and cytokines
modulate cell death by apoptosis or phenotypic transition
of glomerular, tubular, and vascular cells. Mediators of
cellular injury include hypoxia, ischemia, and reactive oxygen
species, while fibroblasts undergo myofibroblast transfor-
mation with increased deposition of extracellular matrix.
On the other hand, a number of endogenous antifibrotic
counter-regulatory molecules have been identified, opening
the possibility of enhancing the kidney’s own defenses against
progressive fibrosis [28, 55].

Cytokines as TGF-𝛽 and TNF-𝛼 and chemokines like
CCL2/MCP-1, CCL5/RANTES, macrophage inflammatory
protein-2 (MIP-2), and 𝛾-interferon-inducible protein (IP-10)
have been evaluated in experimental hydronephrosis [27, 28,
31, 32].

TGF-𝛽 is highly involved in tubulointerstitial fibrosis.
This cytokine increasesmatrix synthesis, collagen deposition,
and tubular apoptosis, upregulates the integrin-matrix adhe-
sion, and inhibits matrix degradation [32, 45, 56]. Resident
renal tubular cells and interstitial cells may be responsi-
ble for TGF-𝛽 production; however, interstitial fibroblast

cells seem to be the major source of TGF-𝛽 during the
process of interstitial fibrosis [57]. In this regard, Mizuno
et al. [58] found that the increased expression of TGF-𝛽
was correlated to fibrotic changes of interstitial regions in
kidneys of mice subjected to unilateral ureteral obstruction.
Accordingly, Seseke et al. [50] also detected the association
between interstitial fibrosis and increased renal expression
of TGF-𝛽 mRNA in an inbred strain of rats with congenital
hydronephrosis. In addition, Zhou et al. [52] reported a
marked elevation of renal TGF-𝛽 level in parallel to fibrotic
changes of congenital and surgical ureteral obstruction in
rats. Indeed, TGF-𝛽 expression increased significantly after
completing nephrogenesis [47].

The role of TGF-𝛽 in obstructive nephropathies was also
evidenced in other animal species. Seremetis andMaizels [56]
have studied rabbit pups submitted to left partial ureteral
constriction and human specimens of renal pelvis and ureter
derived from cases of isolated renal obstruction managed
by pyeloplasty and nephrectomy or of isolated vesicoureteral
reflux managed by ureteral reimplantation. These authors
have detected significantly higher expression of TGF-𝛽
mRNA in obstructed pelvis than in nonobstructed ones.
This elevation in TGF-𝛽 mRNA expression was correlated
to muscle hypertrophy and increased collagen deposition,
both representing the process of renal pelvis remodeling in
response to obstruction. The lower level of TGF-𝛽 mRNA
expression may be a sign of less remodeling due to a
steady state of obstruction. The expression of TGF-𝛽 mRNA
emerges as a good predictor of early obstruction [56].

The molecular pathways for TGF-𝛽 receptor-mediated
effects were also evaluated in experimental hydronephrosis
[31]. In this context, Smad 3 is a protein responsible for
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signaling downstream of the TGF-𝛽 receptors [59]. Sato et
al. [60] have studied mice with genetic deletion of Smad3
and the wild type controls. The right proximal ureter was
exposed and double ligated at 6–8 weeks of age. In the
absence of Smad3, the formation of fibroblasts was blocked,
clearly indicating a connection between fibrosis and TGF-𝛽
in obstructive uropathies [60]. In our point of view, animal
models of CAKUT support the role of TGF-𝛽 as a potential
biomarker for urinary tract obstruction. We also believe that
translational studies should be done in order to establish
the role of TGF-𝛽 in human CAKUT pathogenesis and to
search for alternative pharmacological targets by inhibiting
this cytokine.

TNF-𝛼 may play a role in initiating tubulointerstitial
injury in obstructed kidney [28]. TNF-𝛼 stimulates the
production of chemotactic factors by resident cells and
upregulates CCL2/MCP-1 in humanmesangial cells [28].The
increase of TNF-𝛼 at early stages of obstruction stimulates
the production of chemoattractants for monocytes, which
in turn contributes to leukocyte infiltration in obstructed
kidneys [28]. Misseri et al. [61] have studied the expression
of TNF-𝛼 mRNA in rats submitted to progressive degrees
of left ureteral obstruction. Renal cortical TNF-𝛼 mRNA
expression and protein production reached a peak at 3 days
of ureteral obstruction. The TNF-𝛼 production, localized
primarily to renal cortical cells, was not associated with
significant inflammatory cell infiltrate [61]. Indeed, TNF-
𝛼 might participate in initiating tubulointerstitial injury in
the obstructed kidney by upregulating chemoattractants for
monocytes and by producing leukocytes infiltration [32].
The data evaluating TNF-𝛼 are still very limited. How-
ever, considering that TNF-𝛼 has proinflammatory prop-
erties, it seems reasonable to investigate the role of this
cytokine on the pathways linking tubulointerstitial injuries to
CKD.

In relation to chemokines, Vielhauer et al. [62] found an
increased expression of the CC chemokines, CCL2/MCP-1,
and CCL5/RANTES, at sites of progressive tubulointerstitial
damage in murine obstructive nephropathy model. It was
also observed an interstitial infiltration of macrophages and
T lymphocytes, which differentially expressed the CCR2
receptors. These data suggest that CCR2- and CCR5-positive
monocytes and CCR5-positive lymphocytes are attracted
by locally released CCL2/MCP-1 and CCL5/RANTES,
resulting in chronic interstitial inflammation [62]. Indeed,
CCL2/MCP-1 is an inflammatory chemokine that attracts
and activates monocytes, T cells, and natural killer cells
[33, 34]. In this regard, Stephan et al. [49] produced partial
or complete ureteral obstruction in 28-day-old Wistar
rats. These authors found that mRNA expression for
CCL2/MCP-1 was moderately increased in partial ureteral
obstruction, whereas kidneys without significant damage did
not show any upregulation [49]. The study qualifies MCP-1
mRNA expression as a prognostic marker of partial ureteral
obstruction [49]. On the other hand, Crisman et al. [63]
detected the expression of CCL2/MCP-1, CCL5/RANTES,
and IP-10 at 1 day of unilateral ureteral obstruction in
mice, and, at 7 days, RANTES became the most abundant
chemokine in the obstructed kidney [63]. Therefore, more

studies still need to clearly define the role of CC chemokines
in obstructive uropathies.

Other cytokines had also been associated to experi-
mental models of CAKUT. For example, 75% of transgenic
animals with overexpression of IL-9 developed congenital
hydronephrosis, and the alteration was dependent on the
presence of IL-4 and IL-13 [64]. In addition, Madsen [65]
found significantly lower levels of IL-10 in renal parenchyma
and urine of acute unilateral obstructed animals, while renal
levels of IL-1𝛽, IL-6, and TNF-𝛼 were increased to sham-
operated animals.

The study of cytokines in hydronephrosis might provide
new insights for the treatment or novel ways to blunt renal
damage in obstructive uropathies. For instance, animals with
right ureter obstruction treated with spironolactona exhib-
ited less fibrosis than control group [46]. Since angiotensin
II contributes at least in part to the increased expression
of TNF-𝛼 mRNA in obstructed kidney [28], the use of
angiotensin converting enzyme inhibitors emerges as an
effective way in preventing renal fibrosis [44]. The use of
statins also emerged as potential treatments. In this regard,
the administration of atorvastatin ameliorated the tissue
damaged of obstructed ureters in an experimental model
[66]. The expression of TGF-𝛽1 and of the proinflammatory
cytokines IL-1𝛽, IL-6, and TNF-𝛼 was decreased following
atorvastain treatment [66]. Another rational approach to
blunt renal fibrosis is to block growth factors effects. In this
regard, Isaka et al. [57] showed that interstitial fibrosis could
be blocked by TGF-𝛽1 antisense oligodeoxynucleotides.

Additionally, the modulation of nitric oxide, epidermal
growth factor (EGF), and hepatocyte growth factor seems to
be a good strategy to treat obstructive nephropathy in the
future [55, 58, 67]. In summary, there are very few studies on
the role of immune markers as therapeutic targets in experi-
mental CAKUT. However, the inhibition of proinflammatory
and fibrogenic cytokines seems to be a reasonable strategy to
preserve renal function.

5. Cytokines in CAKUT: Clinical Studies

It should be pointed that few data about the role of cytokines
in CAKUTwere provided by clinical studies and themajority
of them evaluated ureteropelvic junction obstruction (UPJO)
and vesicoureteral reflux (VUR).

5.1. Ureteropelvic Junction Obstruction. UPJO is the most
common cause of severe hydronephrosis in children [68].
UPJO is unilateral in 90% of cases and may result from
intrinsic narrowing at the junction between ureter and renal
pelvis or extrinsic compression by an accessory lower pole
artery of the kidney [21]. The degrees of hydronephrosis vary
among patients with UPJO. The histological changes may
vary from the absence of abnormalities to renal dysplasia
with glomerulosclerosis and extensive interstitial fibrosis and
tubular atrophy [69]. The UPJO area is consistently inflamed
and has varying degrees of fibrosis andmuscular hypertrophy
[69].
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Postnatal differentiation between obstructive and non-
obstructive hydronephrosis is quite difficult. Several studies
have been made in patients with UPJO in order to find out
noninvasive biomarkers to allow the diagnosis and treatment
of these patients. In this regard, cytokines and growth factors
have been studied in UPJO [41]. The most relevant results
were obtained with MCP-1, EGF, and TGF-𝛽.

Healthy children presented high expression of EGF
mRNA in renal tissue, whereas CCL2/MCP-1 mRNA was
normally undetectable. On the other hand, in UPJO patients,
CCL2/MCP-1 gene expression was strikingly increased at
the tubulointerstitial level, while the EGF gene expression
was markedly reduced. The interstitial mononuclear cell
infiltrate in UPJO patients was strictly correlated with the
degree of tubulointerstitial damage [70, 71]. Accordingly,
the urinary concentrations of EGF were reduced in UPJO
patients, whereas the CCL2/MCP-1 levels were increased
[70, 72]. After surgical correction, there was a significant
reduction in urinary levels of CCL2/MCP-1 accompanied by
a marked increase in EGF concentration. Therefore, these
two cytokines could be useful for the followup of obstructed
patients [70]. In a prospective study, Madsen reported that
urinary concentrations of EGF and of CCL2/MCP-1 were
significantly increased in preoperative samples collected in
UPJO patients before surgical procedure in comparison to
urine from healthy children [65]. At this same study, the
concentrations of CCL2/MCP-1,MIP-1𝛼, IP-10, andRANTES
were increased in urine from the obstructed kidney com-
pared to urine from the contralateral nonobstructed kidney
[65]. These urine samples were collected during the surgical
procedure. One year after surgery, the concentrations of
EGF, CCL2/MCP-1, MIP-1𝛼, IP-10, and CCL5/RANTES were
decreased to levels comparable to healthy controls [65, 73].

Taranta-Janusz compared obstructed PNH cases (who
underwent surgery) with nonsurgically managed cases and
with healthy subjects (control group). These authors found
that urinary levels of CCL2/MCP-1 from voided urine before
and after surgery and from the affected pelvis were signifi-
cantly higher than nonsurgically managed cases as well than
control group [74]. The authors also studied the level of
osteopontin (OPN) and CCL5/RANTES in urine samples.
Urinary levels of OPN were significantly higher in surgical
cases than in nonsurgically managed patients [74]. Urinary
levels of CCL5/RANTES were significantly higher in urine
samples from affected pelvis collected during surgery than
in voided urine before pyeloplasty [74]. Three months after
surgery, the urinary levels of these three biomarkers did not
return to control values [74].

Palmer et al. [75] have studied patients who undergoing
pyeloplasty (UPJO patients), ureteral reimplantation (VUR
patients), or circumcision/orchiopexy and measured urinary
levels of TGF-𝛽1 collected in bladder and pelvis. TGF-𝛽1
concentrationswere detected in all groupswithout significant
differences in bladder samples. In contrast, the level of this
cytokine was significantly elevated in the renal pelvis of
children with UPJO when compared to the level obtained
in the bladder of control group, of VUR group, and of
UPJO patients [75]. More recently, Furness et al. [76] have
measured urinary levels of TGF-𝛽1 collected in the bladder

and renal pelvis of patients with UPJO. Urinary levels of
TGF-𝛽1 in children with UPJO were 4-fold higher than in
healthy controls, and samples obtained in renal pelvis had a
2-fold increase in cytokine concentrations when compared to
bladder samples. In addition, if a cut-off point of 61 pg/mg
creatinine was considered, a 92% of sensitivity was obtained
for the urinary measurement of TGF-𝛽1 in bladder [76]. The
main concern of this study was the lack of correlation to
patients with dilated nonobstructed uropathy conservatively
managed. In a case-control study where 19 patients under-
went pyeloplasty, Sager et al. found that when TGF-𝛽1 levels
were above 39.75 pg/mL, the patients have a 4.25-fold relative
risk of having obstructive hydronephrosis compared with
levels below 39.75 pg/mL [77].

El-Sherbiny et al. [78] have compared urinary TGF-
𝛽 levels between obstructed and nonobstructed patients
with grade 3 hydronephrosis. In obstructed patients, urinary
concentrations of TGF-𝛽 measured in renal pelvis were 4-
fold higher than the measurements in the bladder, which
were, in turn, 3-fold higher than in healthy controls samples.
There was also a trend in decreasing bladder TGF-𝛽 levels 3
months after surgical correction of obstruction. Furthermore,
the measurement of urinary levels of TGF-𝛽1 had 80% of
sensibility and 82% of specificity for the recognition of
obstruction [78]. At the same hospital in Egypt, Taha et
al. [79] have evaluated 35 children with UPJO submitted
to pyeloplasty who had grade 3 or higher hydronephrosis.
These authors have found significantly elevated levels of
TGF-𝛽 in UPJO group compared to healthy controls. The
presence of high baseline urinary levels of TGF-𝛽 in younger
children significantly increased the diagnostic accuracy of
this measurement. In addition, there was a decrease of TGF-
𝛽 concentration 1 month after of pyeloplasty that reached
statistical significance 1 year after surgery [79].The difference
in the results obtained in both Egyptian studies might be due
to time-point of the measurements: 3 versus 12 months after
pyeloplasty.

Zieg et al. reported that urinary levels of TGF-𝛽1 were
significantly higher in patients with obstructive uropathies
than in patients with nonobstructive hydronephrosis and
healthy controls [80]. A positive correlation between urinary
TGF-𝛽1 levels and proteinuria was found in obstructive
uropathies [80].

Older children normally have lower urinary levels of
TGF-𝛽1 in the bladder probably due to the reduction or
the steady-state production of this cytokine in long-term
obstruction [76, 78, 79]. In Canada, Almodhen et al. [26] have
evaluated the role of TGF-𝛽 in the diagnosis and longitudinal
followup of a homogeneous group of newborns with prenatal
unilateral hydronephrosis. These authors showed that in the
conservatively managed group the decrease in hydronephro-
sis grade through time was associated with a similar decrease
in urinary concentrations of TGF-𝛽1 [26]. This result indi-
cates the utility of urinary measurement of TGF-𝛽1 for
monitoring patients with congenital hydronephrosis. In the
surgical-treated group, urinary concentrations of TGF-𝛽1 sig-
nificantly decreased after pyeloplasty during amean followup
of 7 months. At a cut-off point of 17 pg/mmol of creatinine,
the measurement of urinary TGF-𝛽1 in the first 3 months of
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Table 1: Studies on urinary cytokines in patients with UPJO.

Author Year Ref. Age of patients Cytokine Study/control
group (𝑁) Sensitivity Specificity Conclusions

Palmer et al. 1997 [75]
4.6 years (1
month to 11

years)
TGF-𝛽1

13/VUR (11) and
healthy children

(19)
— —

Pelvic urinary TGF-𝛽1
levels are elevated
compared to the control
group

Furness et al. 1999 [76] Median: 2.1
years TGF-𝛽1

30/healthy
children (19) 92% —

Bladder urinary TGF-𝛽1
levels are significantly
elevated

Grandaliano et
al. 2000 [70] 1 months to 13

years MCP-1; EGF 24/healthy
children (15) — —

Bladder urinary EGF
levels are reduced in
UPJO, while MCP-1
levels are elevated

El-Sherbiny et
al. 2002 [78] 5.2 ± 4.7 years TGF-𝛽1

15/dilated non
obstructed
kidneys (11)

80% 82%
Elevated bladder urinary
TGF-𝛽1 levels in
obstructed kidneys
decreased after surgery

Taha et al. 2007 [79] Median: 5.9
years TGF-𝛽1; EGF

35/healthy
children (30) 100% (TGF-𝛽1) 80% (TGF-𝛽1)

Bladder urinary TGF-𝛽1
levels are significantly
elevated, while no
significant differences
are detected in EGF
levels

Almodhen et al. 2009 [26] 14 ± 6 months TGF-𝛽1 42/— 82% 86%
Bladder urinary TGF-𝛽1
levels can predict the
need for surgery

Sager et al. 2009 [77] 6.7 years ± 5.6 TGF-𝛽1
19/no renal

pathology (19) — —

Bladder urinary TGF-𝛽1
levels in obstructed
patients were higher
than in controls, and
renal pelvic urinary
levels of TGF-𝛽1 in the
hydronephrotic kidney
were higher than
preoperative bladder
urine sample
Postoperative TGF-𝛽1
concentration was
significantly lower than
preoperative

Bartoli et al. 2011 [72]

Functional
UPJO: 55 (34)

months;
obstructive

UPJO: 34 (28)
months;

underwent
pyeloplasty
group 80 (52)

months;
control 31 (23)

months

MCP-1; EGF 76/30 healthy — —

Obstructive UPJO
patients showed
increased urinary levels
of MCP-1 and decreased
urine concentration of
EGF. The urine
EGF/urine MCP-1 and
urine EGF/urine 𝛽2M
ratios were significantly
downregulated in
untreated UPJO groups
compared with control
group, as well in the
comparison between
obstructive versus
functional UPJO
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Table 1: Continued.

Author Year Ref. Age of patients Cytokine Study/control
group (𝑁) Sensitivity Specificity Conclusions

Madsen,
Madsen et al. 2013 2012 [65, 73]

8.1 (3.5–15)
years at time of

surgery

EGF, IP-10,
MCP-1,
MIP-1𝛼,
RANTES

28/13 healthy
children — —

EGF and MCP-1 were
significantly increased in
preoperative UPJO
samples. Concentration
of MCP-1, MIP-1𝛼, IP-10,
and RANTES were
increased in obstructed
kidney and decreased
one year after surgery

Taranta-Janusz
et al. 2012 [74]

1.03 (0.08–14)
years—surgical

cases; 8
(0.75–17)
years—

conservative
cases; 3
(0.33–16)

years—control
group

MCP-1, OPN,
RANTES

15 surgical
cases/21

conservative
cases/19 control

group

Only urinary MCP-1 has
good diagnostic
accuracy in identifying
children with abnormal
differential renal
function (AUC 0.862)
and in detecting kidney
injury (AUC 0.704).
MCP-1 levels from
voided urine before and
after surgery and from
the affected pelvis were
significantly higher than
nonoperated patients
and controls. Urinary
levels of OPN were
significantly higher in
surgical cases than in
nonoperated patients.
Urinary RANTES was
significantly higher in
samples from affected
pelvis during surgery
than in voided urine
before pyeloplasty. Three
months after surgery, no
significant changes were
detected

Ref.: reference number.

life had 82% of sensibility and 86% of specificity in predicting
surgery [26]. Besides different methodologies and timing of
urine collection, TGF-𝛽1 is the marker more investigated and
promising in discriminating obstructive fromnonobstructive
CAKUT (Table 1).

5.2. Vesicoureteral Reflux. VUR is a congenital anomaly that
increases the risk of repeated pyelonephritis and, conse-
quently, can result in renal scarring, renin-mediated hyper-
tension, and, in some cases, renal insufficiency [81, 82].
VUR is a heterogeneous condition that can be primary or
associated with multicystic kidney, hypodysplastic kidneys,
renal agenesia, and renal or ureteral ectopia. Kidneys with
reflux nephropathy have disjointed glomeruli from proximal
tubules, interstitial infiltration with chronic inflammatory
cells, and periglomerular fibrosis. Dysplatsic feature is one

of the characteristics of congenital reflux nephropathy. The
main findings are areas of mesenchymal tissue containing
primitive tubules [83].

Associations between gene polymorphisms of TNF-𝛼,
TGF-𝛽 and of VEGF with VUR were found [92–96]. Some
of these polymorphisms were also associated to reflux
nephropathy and progressive renal damage [94, 95]. Hussein
et al. showed that specific variants in the promoter regions of
the genes encodingTGF𝛽 (−509T allele) andVEGF (−406CC
genotype) were associated with an increased risk for the
development of renal scarring [96]. These associations could
help in understanding themechanisms of reflux nephropathy
and could allow the detection of patients at risk of CKD.

TNF-𝛼 and TGF-𝛽 are abundant in the smooth muscle
cell of the ureter of VUR patients [97]. On the other hand,
patients without VUR have higher expression of growth
promoting factors like insulin growth factor-1 (IGF-1), nerve
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Table 2: Studies on urinary cytokines in patients with vesicoureteral reflux (VUR).

Author Year Ref. Age of patients Cytokine Study/control group
(𝑁) Sensitivity Specificity Conclusions

Haraoka et al. 1996 [84] Mean age 6.7
years IL-8 32/— — —

Levels of IL-8 are
elevated in patients
with VUR or renal
scarring

Ninan et al. 1999 [85] 5 months to
13.33 years IL-6; TNF-𝛼 17/healthy children

(15) — —

Levels of IL-6 and
TNF-𝛼 receptor-1 are
elevated in reflux
associated with renal
damage

Wang et al. 2001 [86] Mean age 14.6
years IL-6 66/healthy children

(28)

Levels of IL-6 are
elevated in severe
bilateral renal
scarring

Galanakis et al. 2006 [87] 1 month to 2
years IL-8

24/ITU+/VUR−
(14);

ITU−/VUR− (21)
88% 69%

Levels of IL-8 are
elevated in VUR
patients

Sabasiñska et al. 2008 [88] 6.23 ± 4.15 years TGF-𝛽1
54/healthy children

(27) — —

Highest urinary
concentrations of
TGF-𝛽1 are detected
in grades IV and V
reflux

Gokce et al. 2010 [89] 1 month 16 years IL-6; IL-8 87/healthy children
(27) — —

IL-6 levels are
elevated in VUR and
IL-8 levels in renal
scarring

Merrikhi et al. 2012 [90]

ITU+/RVU+:
4.3 ± 2.9;

ITU+/RVU−: 4
± 2.6; control
group: 4 ± 2.1

IL-8
28 (ITU+/VUR+);
28 (ITU+/VUR−);

28 healthy

71.4% (cutoff
point:

3 pg/𝜇moL)

58.9% (cutoff
point:

3 pg/𝜇moL)

IL-8 levels were
significantly higher in
patients with RVU. At
the cutoff point of
3 pg/𝜇moL, IL-8 was
accurate in detecting
VUR

Tramma et al. 2012 [91] 71 ± 42.5
months IL-6; IL-8

50/history of
pyelonephritis (23
RS+/VUR+; 10
RS+/VUR−; 13
RS−/VUR−;
4RS−/VUR+)

— —

Urinary levels of IL-8
were undetectable in
all samples. There
were no differences
between urinary IL-6
levels in children with
or without VUR. The
levels of IL-6 were
directly correlated
with the grade of
renal scars

Ref.: reference number.

growth factor (NGF), and vascular endothelial growth factor
(VEGF) than those with VUR [97]. In this regard, Chertin
et al. [83] have showed that the reduced production of
EGF associated with high expression of CCL2/MCP-1 might
cause an overproduction of proinflammatory and profibrotic
cytokines that trigger apoptosis, ultimately leading to tubular
atrophy and renal dysfunction in reflux nephropathy [83].

The inflammatory process in VUR is ongoing despite
the occurrence or not of urinary tract infection (UTI). The
elevated urinary level of CXCL8/IL-8 in children with reflux
and without UTI might contribute to reflux nephropathy

[84, 87]. Haraoka et al. [84] have found a significant dif-
ference between urinary levels of IL-8 in children with and
without renal scarring and in patients with andwithout VUR.
Merrikhi et al. [90] also showed significantly higher levels of
IL-8 in patients with RVU than in those without RVU. This
finding suggests that urinary IL-8 measurements could be
useful to detect VUR patients with more pronounced renal
damage and who need strict followup [84]. Galanakis et al.
[87] proposed the use of IL-8 as a biomarker for the diagnosis
ofVUR.A cut-off concentration of 5 pg/𝜇mol has a sensitivity
of 88% and a specificity of 69% [87]. Our research group
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has recently reported a correlation between high urinary
levels of IL-8/CXCL8 and reduced glomerular filtration rate
in CAKUT patients, suggesting that this chemokine might be
associated to renal scarring and CKD [98].

IL-6 may also be involved in the pathogenesis of reflux
nephropathy. IL-6 induces B and T cells activation and
differentiation during inflammation [33]. Ninan et al. [85]
have detected a significant elevation of urinary IL-6 levels in
patients with VUR. In addition, Wang et al. [86] have found
that urinary IL-6 was significantly higher in children with
severe bilateral renal scarring than in thosewithmild scarring
and normal controls. Gokce et al. [89] have related high
urinary levels of IL-6 with the presence of VUR and increased
IL-8 concentrations with renal scarring. Concerning serum
measurements of cytokines, Jutley et al. [99] have detected
significant elevation of IL-6 and TNF-𝛼 in patients with
reflux nephropathy when compared to those without reflux
nephropathy or to healthy controls.

Since the main histological alteration in reflux nephropa-
thy is renal fibrosis, Sabasiñska et al. [88] have measured
urinary levels of TGF-𝛽 in patients with VUR.These authors
have found that urinary concentrations of TGF-𝛽 were
increased in high-grade reflux and in bilateral cases [88].
Our research group studied the urinary concentrations of
TGF-𝛽, IL-6, and TNF-𝛼 in three different groups: idiopathic
RPD, urinary tract anomalies, and dysplastic kidneys. TGF-
𝛽 levels tended to be higher in the hypodysplastic kidney
group compared to idiopathic RPD, while very similar values
for IL-6 and TNF-𝛼 were found in these groups. On the
other hand, urinary levels of TGF-𝛽were significantly higher
in patients with reduced dimercaptosuccinic acid (DMSA)
uptake on technetium-99m DMSA scintigraphy (AUC 0.67
[95%CI, 0.56–0.79]) [100]. A cut-off value of 2 pg/mL for
TGF-𝛽1 showed a sensitivity of 82.8% [95%CI, 64.2–94.1] and
a specificity of 47.9% [95%CI, 35.9–60.1] for identifying those
patients with reduced DMSA uptake [100]. Our findings also
support the general idea that TGF-𝛽 has a role in renal
fibrogenic processes.

Studies about renal scarring andVURpathogenic process
are still scarce making any powerful analysis very difficult.
On the other hand, based on the available data, we consider
that the proinflammatory cytokines (IL-6 and TNF-𝛼), the
chemokine, CXCL8/IL-8, and the fibrogenic cytokine, TGF-
𝛽, should bemore intensively evaluated as potential biomark-
ers for renal scarring and for the emergence of CKD in reflux
nephropathy (Table 2).

6. Concluding Remarks

CAKUT accounts for a great fraction of CKD in children
[101]. Genetic, inflammatory, fibrogenic, environmental, and
epigenetic factors responsible for these lesions are largely
unidentified, and attention has been focused on minimizing
obstructive renal injury and optimizing long-term outcomes
to avoid or, at least, delay the progression of CKD. The renal
response to urinary tract obstruction is complex and involves
a wide array of interactingmolecules in an early timing, being

surgical in utero interventions performed when renal lesions
were already irreversible [102].

New diagnostic approaches to and alternative therapies
for CAKUT are clearly necessary. In this context, research
into biomarkers has reached great importance. Clinical and
experimental lines of evidence leave no doubt about the role
of inflammation in renal diseases. Understanding the effects
of cytokines on the onset and progression of renal injury is
thus paramount, as new prognostic markers and maybe as
alternative therapeutic targets.

Therefore, urinemeasurements of cytokines seemed to be
useful in CAKUT as predictors of urinary tract obstruction
and renal scarring. The chemokine CCL2/MCP-1 and the
cytokine TGF-𝛽 have been frequently associatedwith urinary
tract obstruction in patientswithUPJO,whereas high urinary
levels of IL-6 and of CXCL8/IL-8were found inmany patients
with VUR and correlated to renal scarring and to renal
function deterioration.

Yet, in spite of great advances in our knowledge about
the pathophysiological mechanism linking the cytokines to
CAKUT and CKD, much remains to be elucidated.
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