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Abstract

HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins 

and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the 

Rev response element (RRE) RNA, forming a highly specific oligomeric ribonucleoprotein (RNP) 

that binds to the Crm1 host export factor. To understand how protein oligomerization generates 

cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 

2.5 Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped 

assembly to bind adjacent RNA sites, structurally coupling dimerization and RNA recognition. A 

second protein–protein interface arranges higher-order Rev oligomers to act as an adapter to the 

host export machinery, with viral RNA bound to one face and Crm1 to another, thereby using 

small, interconnected modules to physically arrange the RNP for efficient export.

Introduction

Retroviruses such as HIV are encoded in small RNA genomes that contain multiple splice 

sites. This poses a problem to virus replication because unspliced RNAs, including those 

that code for the viral structural proteins and genomic RNA, typically are retained in the 

nucleus1. To overcome the problem, HIV utilizes the Rev protein to bind to and oligomerize 

on the highly structured ~350 nt Rev response element (RRE) RNA located in viral introns, 

forming a large RNP that directs transport of fully and partially unspliced RNAs to the 

cytoplasm1,2. The assembled Rev–RRE ribonucleoprotein (RNP) binds to the host export 

factor Crm1 (Xpo1) and is shuttled through the nuclear pore complex, releasing the RRE 
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containing RNAs into the cytoplasm and allowing reimport of Rev into the nucleus for 

further rounds of nuclear export1–3.

Assembly of the Rev–RRE RNP, and thus progression through the viral life cycle, requires 

the cooperative addition of Rev monomers along the RRE in order to form a high-affinity 

complex4–6. The Rev homo-oligomer forms an exquisitely specific complex with the RRE 

by making multiple contacts between arginine rich motifs (ARMs) (Fig. 1A) of individual 

Rev monomers and several different binding sites within the RRE, resulting in a discrete, 

hexameric complex with 500-fold higher affinity than any monomeric Rev–RNA 

complex6,7. One well-characterized RNA site, known as stem IIB, is required for specific 

RRE recognition and initiates assembly of the oligomer8–13. This ARM–IIB interaction is 

understood at the molecular level from NMR studies14. Interestingly, the only other 

characterized binding site, known as stem IA, is recognized by a different surface of the α-

helical ARM, taking advantage of the inherent adaptability of this RNA-binding motif6. In 

fact, the RNA-binding ARM of Rev has been shown to bind to many different selected 

nucleic acid structures and sequences15–17, making it a mystery how such a promiscuous 

domain can be employed to recognize HIV RNA with such high specificity.

Protein–protein interactions between Rev monomers are crucial for Rev binding specificity 

and RNA export and are mediated by oligomerization domains that flank the ARM4. Indeed, 

a single point mutation in an oligomerization domain results in non-cooperative complex 

formation and lowers affinity by two orders of magnitude6, demonstrating the plausibility of 

Rev oligomerization as a target for HIV inhibitor design. On an extended IIB RNA, in which 

a helical disruption is oriented proximal to the primary IIB site, oligomerization mediates 

cooperative binding of a Rev dimer and increases specificity compared to the monomer–IIB 

interaction6,18. Detailed biochemical studies revealed that oligomerization relies on two 

distinct sets of hydrophobic amino acids; one set, including Leu18 and Ile55, is required to 

form a cooperative Rev–RNA dimer, and the other set, including Leu12 and Leu60, to form 

higher-order complexes19. A recent crystal structure of Rev bound to a monoclonal Fab 

fragment revealed the details of the higher-order oligomerization surface utilizing Leu12 and 

Leu60, but the cooperative dimerization surface was blocked by Fab binding20.

To understand how the organization of monomers within the Rev oligomer facilitates highly 

specific recognition of HIV RNA and export complex assembly, we solved the crystal 

structure of a Rev dimer that cooperatively binds the RRE, and additionally observed 

higher-order oligomerization of dimers in the crystal. This structure allows us to complete 

the model of the Rev oligomer, showing how protein oligomerization is physically coupled 

to cooperative RNA recognition. Burial of the hydrophobic oligomerization domains upon 

dimerization determines the orientation of extended ARMs toward RNA, imparting Rev 

with the spatial specificity needed to recognize the RRE and augment the broad specificity 

of the individual ARMs. Higher-order oligomerization of Rev dimers also serves to create a 

nuclear export adaptor, where the viral RNA binds to one side of the oligomer and Crm1 to 

the other.
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Results

Structure determination and overview

To obtain high-quality crystals of a Rev dimer capable of binding cooperatively to RNA, we 

partially disrupted the higher-order oligomerization surface that otherwise leads to protein 

aggregation by mutating positions 12 and 60, and also removed 46 residues from the 

disordered C-terminus7,21 (Fig. 1a). The resulting protein, termed Rev70-Dimer, binds to a 

stem IIB RNA long enough to accommodate two Rev monomers with cooperativity and 

high affinity (Fig. 1b). The protein retains a strong oligomerization interface, behaving as a 

dimer even in the absence of RNA (Fig. 1c).

The Rev70-Dimer structure was solved using multi-wavelength anomalous diffraction (MAD) 

to a final resolution of 2.5 Å (Table 1 and Supplementary Fig. 1). The asymmetric unit 

contains two copies of the Rev dimer arranged front to back (Fig. 2a). Each monomer adopts 

an antiparallel helix-loop-helix structure, as anticipated by biochemical and recent 

crystallographic studies19–21, with a nearly parallel orientation of helices that comprise the 

oligomerization domains (Figs. 2a–b). All four monomers in the asymmetric unit are nearly 

superimposable, with a well-folded core domain (residues 9–63) in all cases (Fig. 2b). The 

two monomers in each dimer are arranged face to face in a V-shaped topology, with the base 

of the V forming a central interface comprised of four helical oligomerization domains that 

buries residues known to be essential for dimerization19, and the RNA-binding ARMs 

extending out at an angle of ~120° relative to each other (Fig. 2a).

Conservation of the Rev monomer fold

The Rev monomer is stabilized by a conserved network of hydrophobic and polar residues 

that form intramolecular contacts across the two oligomerization domains. Four branched 

nonpolar residues (Ile19, Leu22, Ile52, and Ile59) form the hydrophobic core of the 

monomer (Fig. 2a) and are crucial for RRE binding19. Each monomer contains a hydrogen 

bonding network in which the sidechain of Asn26 is held between the guanidinium group of 

Arg48 and the carbonyl of the Gln49 sidechain, precisely aligning the C-terminal end of 

helix 1 (Asn26) with the C-terminal end of the ARM in the middle of helix 2 (Figs. 2b–c). 

Additional hydrogen bonds between the side chains of Tyr23 and His53 and between the 

indole nitrogen of Trp45 and the backbone carbonyl of Asn26 stabilize this helical packing 

and help constrain the proline-rich loop connecting helix 1 and helix 2 (Fig. 2c). Residues 

that participate in this network of interactions are highly conserved among all HIV-1 isolates 

(Fig. 1a and 2b), indicating the importance of maintaining the oligomerization domains in 

proper register. Interestingly, Trp45, Arg48, and Gln49 are not strictly part of the 

oligomerization domains but rather reside in the ARM, and mutation of these residues 

disrupts assembly of higher order Rev RRE complexes6,19, underscoring the functional, as 

well as physical, coupling of oligomerization and RNA binding.

Dimerization is physically coupled to binding cooperativity

The Rev dimer is formed by the packing of hydrophobic residues between monomers, 

creating an extensive interface that buries over 1500 Å2 of the solvent accessible area of the 

dimer and totaling nearly 20% of the total protein surface area (Figs. 3a–b). Leu18 and 
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Ile55, which form symmetric contacts between monomers, and Phe21, which packs into a 

groove between the helices of the opposing monomer (Fig. 3c), are key residues at the 

dimerization interface and are highly conserved and essential for cooperative RNA binding 

and export6,19,22. The conserved structural and functional roles of these residues, as well as 

kinetic studies suggesting the dimer is an early intermediate in RNP assembly13, make the 

dimerization surface a plausible target for inhibitor design. It is especially interesting that 

hydrophobic residues important in the monomer structure, particularly Leu22 and Ile59, 

simultaneously contribute to the dimer interface by being buried in the groove formed 

between the helices of the partner monomer (Fig. 3d). In the absence of dimerization, these 

residues would be nearly 50% solvent exposed, thus tightly linking the hydrophobic 

interfaces in the monomer and dimer. The burial of hydrophobic surfaces of the monomers 

is estimated to stabilize the dimer by >22 kcal/mol23, providing one structural explanation 

for cooperative RNA binding and suggesting that a fundamental building block of the Rev 

RRE complex is a protein dimer.

An even more important structural explanation for cooperative RNA binding arises from the 

orientation of the ARMs specified by the dimer interface. Previous studies have shown that 

an extended stem IIB RNA can cooperatively bind two Rev monomers only if protein 

oligomerization is intact and the RNA sites are properly positioned relative to each other6,18. 

The dimer structure provides a structural rationale for these results, revealing that the 

quaternary fold defines the angle and position of the RNA-binding surfaces (Fig. 3e), with 

the two ARMs arranged to reach out from the body of the dimer and grasp RNA, much like 

two human arms are positioned to grip objects. Such an orientation of ARMs would specify 

the organization of RNA sites required for cooperative complex formation. Indeed, placing 

the IIB RNA hairpin from the NMR structure of the ARM peptide-RNA complex14 (labeled 

IIB34) into the crystal structure, and extending the RNA by four additional base pairs to 

accommodate a second Rev monomer6, demonstrates how bipartite RNA binding would 

stabilize Rev dimerization (Fig. 3e). The arrangement of this complex is consistent with the 

molecular envelope of a similar Rev dimer–RNA complex determined by small angle X-ray 

scattering (SAXS)7. Most interestingly, we also can infer that different faces of the helical 

ARM are positioned to contact the RNA from each monomer, consistent with the 

observation that different amino acids are used to recognize stem IIB and stem IA sites6. In 

our model, the first ARM utilizes Asn40 (yellow) on the ‘inner face’ of the helix to contact 

IIB14, leaving the end of IIB available for binding by the ‘outer face’ of the second ARM 

(Fig. 3e) and explaining how oligomerization pairs the binding adaptability of the ARM to 

the spatial organization of binding sites in the RRE. This arrangement leads to cooperative 

RNP formation and provides the structural rationale for how Rev distinguishes RRE-

containing viral RNAs from host RNAs using the promiscuous ARM RNA-binding motif.

A model for Rev RRE export complex assembly

The crystal structure also indicates how higher order complexes assemble from Rev dimer 

building blocks. The protein that crystallized contains two mutations (L12S and L60R) 

meant to weaken the higher-order oligomerization interface19, and indeed behaves 

biochemically as a dimer (Fig. 1). However, in the asymmetric unit and throughout the 

crystal lattice (Supplementary Figs. 2–4), we observe packing of dimers using the expected 
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higher-order surface containing residues 12, 16, and 6019. The higher-order arrangement of 

Rev dimers observed between asymmetric units in our crystal is nearly identical to that 

recently observed in a monoclonal Fab-Rev complex (Figs. 4a and Supplementary Fig. 4), 

where the Fab blocks the dimerization surface20. These data, and our recent finding that six 

Rev monomers assemble on the RRE7, permit us to model a Rev hexamer (Fig. 4b) and to 

propose an arrangement for the export-competent RNP (Fig. 4c). The disordered nuclear 

export sequences (NESs; residues 73–83)7,21 that interact with Crm1 are not present in our 

crystal structure but originate at the end of helix 2 and thus are predicted to project away 

from the ARMs of the Rev hexamer, like six tentacles of a jellyfish. The arrangement of this 

Rev–RRE RNP positions the NESs for Crm1 binding but is unlikely to accommodate more 

than one or two Crm1–RanGTP complexes (Fig. 4c), consistent with the hypothesis that Rev 

oligomerization is needed to enhance RNA-binding affinity and not necessarily to recruit 

additional Crm1 complexes6. This model suggests that Rev functions as a molecular adapter, 

with RNA bound to one face of the oligomer and Crm1 to the opposite face, providing a 

simple architecture to facilitate interactions with the nuclear pore and promote RNA export.

Discussion

The switch from early to late stages of HIV replication is facilitated by Rev-mediated export 

of unspliced viral RNAs. Rev assembles on the RRE with surprising complexity, utilizing a 

promiscuous RNA-binding ARM to recognize multiple different RNA sites cooperatively in 

a process that is dependent on protein oligomerization6. The high-resolution Rev oligomer 

structure presented in this work reveals the physical details to explain how oligomerization 

mediates specific, cooperative RRE binding and export complex formation. The functional 

link between cooperativity and RNA export can be viewed as a direct product of the 

physical coupling between oligomerization and RNA binding (Fig. 5). RNP assembly is 

initiated by binding of a Rev monomer to the stem IIB site, employing the RNA-binding 

ARM to recognize the nucleotide sequence and backbone structure of the IIB element14 

(Fig. 5, left). This single interaction alone, however, is not sufficient to mediate export, and 

further specificity conferred by cooperative oligomerization is required for Rev function4–6. 

Cooperativity and an additional level of spatial specificity are added to RNP assembly by 

utilizing a composite binding site for the second Rev monomer which is formed by a 

secondary RNA site and the exposed dimerization interface (Fig. 5, middle). The structure 

reveals that cooperative assembly of the Rev dimer will proceed only if the spacing and 

orientation of the ARMs match the RNA binding sites, providing a rationale for previous 

biochemical results6,18, and reminiscent of the intricate interdependencies of cooperative 

ribosomal assembly24. Such an organization allows Rev to ‘measure’ the distance between 

RNA sites, thus augmenting the promiscuous binding specificity that has been described 

previously for the arginine-rich RNA-binding domain15–17. Further cooperativity and 

affinity are gained as the size of the RNP grows6, mediated by the higher order 

oligomerization interface and additional ARM-RNA contacts and allowing Rev to 

increasingly distinguish the RRE from other RNAs (Fig. 5, bottom). Given that the RRE 

specifies the size of the Rev oligomer in the RNP7, it will be interesting to determine at a 

structural level if RNA caps the ends of the Rev hexamer to block further subunit addition or 

affects the packing arrangement between Rev subunits. The discrete architecture of the 
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assembled hexameric Rev–RRE RNP, with its exposed NESs on one face of the oligomer 

and the viral RNA tethered to the other, is thus organized for efficient nuclear export.

The use of a promiscuous RNA-binding motif in the context of a homo-oligomer may 

facilitate Rev–RRE evolution in a rapidly changing virus such as HIV. The specificity 

achieved by orientating RNA sites within the RRE may allow more relaxed specificity at the 

level of the individual ARM–RNA interactions, providing a means both to evolve and 

escape functionally deleterious mutations within a given binding site. The framework of the 

oligomerization domains may likewise play a role; in some ways, the fold of the Rev 

oligomer resembles DNA-binding transcription factors that organize pairs of recognition 

helices to assemble on adjoining DNA sites25–27, but the Rev oligomerization interfaces 

utilize a rather obtuse helical crossing angle, reminiscent of α-helical packing in globin 

proteins, to set the geometry of the two recognition helices. Analyses of the globin fold have 

suggested that such crossing angles might be primed to adapt during evolution, with 

substitutions allowed as long as they preserve the packing between the hydrophobic ridges 

of one helix and the grooves of the other helices28. The flexibility to evolve Rev 

oligomerization interfaces may couple to the adaptability of the RNA-binding ARMs 

themselves, allowing Rev to simultaneously optimize contacts between each ARM and its 

individual RRE-binding site, such as those in stems IIB and IA6,14, and the spatial 

arrangements between sites. Thus, the numerous adaptable interaction surfaces of the Rev–

RRE complex both provide a means to evolve and retain function in a rapidly evolving virus 

and enable HIV to generate an exquisitely specific, cooperative, and robust RNP export 

complex using small, interconnected sequence motifs.

Methods

Protein expression and purification

To facilitate crystallization, the disordered C-terminal 46 residues of Rev were removed7,21 

and oligomerization domain mutations, L12S and L60R, were introduced to partially disrupt 

higher-order oligomerization19. The resulting Rev70-Dimer protein was expressed in E. coli 

strain BL21/DE3 from a pHGB1-derived vector with an N-terminal His6 tagged GB1 

domain followed by a TEV protease cleavage site6. Cells were grown in SBMX, a 

phosphate-based medium (described in Supplementary Methods) and expression was 

induced with 1 mM isopropyl-b-D-thiogalactopyranoside for 4 h at 37°C.

Rev was purified using Ni-NTA affinity chromatography as previously described7 and 

dialyzed overnight at 4°C against crystallization buffer [40 mM Tris pH 8.0, 200 mM NaCl, 

100 mM Na2SO4, 400 mM (NH4)2SO4] containing 2 mM β-mercaptoethanol. To remove the 

GB1 domain, TEV protease was added and incubated at room temperature for 1 2 h and the 

reaction was loaded onto Ni-NTA resin equilibrated with crystallization buffer containing 20 

mM imidazole. Rev70-Dimer was collected in the flow through and concentrated to 14 mg 

ml−1 in crystallization buffer containing 2 mM dithiothreitol.
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RNA binding gel shift assays

In vitro transcription, radiolabeling, and electrophoretic mobility shift assays with IIB42 (5′-

GGAGGUAUAUGGGCGCAGCGCAAGCUGACGGUACAGGCCUCC-3′) were 

performed as described6. To prevent aggregation in low sulfate conditions, Rev70-Dimer was 

supplemented with equimolar amounts of yeast tRNA before serial dilution in buffer (5 mM 

Tris pH 8.0, 20 mM NaCl, and 200 μg ml−1 bovine serum albumin). Binding constants were 

calculated by measuring the fraction of all bound RNA species compared to total RNA, and 

tting the data to binding curves using Kaleidagraph software (Synergy Software, Reading, 

PA) using three replicates.

SEC and MALS

SEC/MALS data were collected using an Ettan LC system (GE Life Sciences) with a silica 

gel KW803 column (Shodex) equilibrated in crystallization buffer at a flow rate of 0.35 ml 

min−1. The system was coupled on-line to an 18-angle MALS detector and a differential 

refractometer (DAWN HELEOS II and Optilab rEX, Wyatt Technology). Molar mass 

determination was calculated with ASTRA 5.3.1.5 software.

Crystallization

Initial crystallization attempts with the dimeric Rev–IIB complex (Fig. 1b) yielded 

promising hits in ammonium sulfate conditions. It was subsequently determined that the 

crystals contained only protein, consistent with previous observations that ammonium 

sulfate stabilizes the protein in the absence of RNA7 and thereafter the protein was purified 

in the presence of ammonium sulfate. Crystals were obtained by hanging drop vapor 

diffusion by mixing 1 μl protein at 10–14 mg ml−1 in crystallization buffer and 1 μl reservoir 

solution containing 100 mM Tris pH 8.0, 50–100 mM NaCl, 1.45–1.55 M (NH4)2SO4, and 

3% (w/v) PEG 1000. After 10–14 days, cryoprotectant containing 1.8 M sodium malonate, 

100 mM Tris pH 8.0, 500 mM NaBr and 250 mM Na2SO4 was added incrementally and 

crystals were transferred to a drop containing cryoprotectant only, allowed to equilibrate for 

15–60 minutes and flash frozen in liquid nitrogen. Crystals used for MAD phasing were 

treated identically utilizing a cryoprotectant containing Na2SeO4 instead of Na2SO4.

Data collection and structure determination

Data sets were collected at the Advanced Light Source beamline 8.3.1 on crystals 

maintained at 100K. The sodium malonate cryoprotectant, together with NaBr, reduced the 

c-axis of the unit cell from as long as 330 Å down to 81 Å and increased the symmetry of 

the crystals (Daugherty and Frankel, unpublished). Such changes, while unexpected, may be 

explained by the contacts within and between asymmetric units that appear to be mediated 

by Br− and malonate ions. Diffraction data were processed and scaled with the HKL-2000 

package32. Using MAD data on SeO4-soaked crystals, Se atoms were located using SOLVE 

(see Supplementary Fig. 1) and initial models were built with RESOLVE33 within 

PHENIX34.

Initially, loose non-crystallographic symmetry (NCS) restraints were applied to build the 

four monomers in the asymmetric unit using REFMAC535. Subsequent iterative model 
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building and refinement were carried out using COOT36 and PHENIX34 without NCS 

restraints. The refined structure from the experimentally phased SeO4 data was used as a 

molecular replacement model for the native data set using PHASER37. Thirteen Br atoms 

were located with PHASER using molecular replacement and SAD data from the Br edge. 

Excellent electron density can be seen for residues 9–63 in all four monomers, with variable 

ends to the electron density of each chain. Sidechains for which electron density was weak 

or lacking were not modeled. Data collection and refinement statistics are summarized in 

Table 1. All monomers had good stereochemistry and showed no Ramachandran outliers38. 

Solvent accessible areas were calculated using AREAIMOL in the CCP4 suite39. Graphic 

figures were generated using PyMOL40.

A structural model of the Rev dimer with stem IIB was generated using the NMR structure 

of a stem IIB–ARM peptide complex14 (PDB code 1ETF). The Rev ARM from the NMR 

structure was aligned with the ARM of one Rev monomer in the crystal structure (backbone 

r.m.s.d. = 1.0 Å), unambiguously placing the RNA relative to the Rev dimer. Four basepairs 

of A-form RNA with idealized geometry were added to the end of the IIB element to extend 

the RNA from the 34 nt in the NMR structure to the 42 nt RNA that cooperatively binds the 

Rev dimer (Fig. 1b).

To model RNA bound to the Rev hexamer, we began by docking a 42 nt RNA to one Rev 

dimer in the same way as above. Previous work with model RNAs suggests that further 

extending the stem IIB RNA (to 64 nt) facilitates binding of more than one Rev dimer18. We 

therefore extended the modeled 42 nt an additional 9 base pairs of A-form helix to contact 

the second Rev dimer in the hexamer. Additional A-form RNA would not contact the third 

Rev dimer, consistent with the many stem-loops and stem-junctions in the RRE, so the third 

dimer was modeled to bind RNA similar to the first dimer. We expect that the complex 

folding of the RRE will adopt a different structure than that shown, but that the proximity 

and orientation of binding sites will be retained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rev domain structure and protein dimerization. (a) Domain structure of the Rev protein, 

including the disordered C-terminal region containing the nuclear export sequence (NES). 

Below is a consensus alignment of the first 70 residues of Rev from reference subtypes (Los 

Alamos HIV sequence database (http://www.hiv.lanl.gov/)) represented using the ClustalW 

program29. The top sequence is the one used for crystallization, with oligomerization 

mutants L12S and L60R indicated by daggers, and above is the predicted secondary 

structure30. Regions predicted to be helical are indicated by wavy lines and coiled regions 

by dashed lines. Highlighted are residues shown in the Rev dimer structure to be important 

for Rev monomer stability and folding (blue), Rev dimer formation (yellow), or both 

(green)19. Residues in red are the highly conserved residues of the ARM. (b) Representative 

gel shift assay data using purified Rev70-Dimer at the concentrations indicated and 

radiolabeled IIB42 RNA. The species indicated are: F, Free RNA; M, Rev monomer; D, Rev 

dimer. The dissociation constant (KD = 14 ± 6.7 nM) and Hill coefficient (η = 1.1 ± 0.027) 

were calculated using the equation: FractionBound = [Rev]η/(KD
η+[Rev]η). Data are 

presented as the mean ± s.d. from three replicates. (c) Measured multi-angle light scattering 

(MALS) (dashed lines, left axis) and calculated molar masses (solid line, right axis) 

determined from the major peak from size exclusion chromatography (SEC) of 250 μM 

Rev70-Dimer protein in crystallization buffer containing 0.5 M SO4. The measured mass of 

17 kDa corresponds to two Rev monomers (8.5 kDa each).
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Figure 2. 
Overall structure of the Rev dimer and monomer. (a) Two views of a surface representation 

of the Rev dimer, with the two monomers shown as ribbons (dark and light blue) and the 

crossing angle indicated. (b) Each of the four Rev monomers has a folded core from 

residues 9–63 as shown, with structural and functional regions and amino acid numberings 

indicated. All monomer structures are highly similar, with a root mean squared deviation 

(r.m.s.d.) of 0.5–1 Å for all pairwise alignments of backbone atoms from residues 9–63, and 

a backbone r.m.s.d of ≤1.0 Å when aligned to the recent Fab-bound Rev structure20. Amino 

acid conservation among 1201 HIV-1 isolates in the Los Alamos HIV sequence database is 
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indicated on the ribbon diagram, ranging from lowest conservation (26%, green) to highest 

(100%, red). Hydrophobic and polar residues that stabilize the monomer structure are shown 

as spheres and sticks and are colored by sequence conservation. (c) Stereo view of a σA-

weighted 2Fobs–Fcalc map contoured at 2.0σ of the hydrogen bonding network stabilizing the 

Rev monomer structure. Distances between hydrogen-bonding donor and acceptor atoms are 

indicated (Å).
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Figure 3. 
The Rev dimer interface mediates cooperative RNA recognition. (a) Cutaway of the dimer 

interface showing the surface of one monomer (blue), and the predicted solvent accessible 

surface area buried upon dimerization (orange) with the second monomer (light blue 

ribbon). (b) The five critical hydrophobic residues that comprise the dimer interface, shown 

as sticks in one monomer projecting onto the surface of the second. (c) Three hydrophobic 

residues mediate symmetric interactions at the dimerization interface. Individual monomers 

are colored in light and dark blue. (d) Residues that form the core of the monomer structure 

(Leu22 and Ile55) are buried further upon dimerization. Nonpolar surface area of these 

residues is partially buried in the monomer (blue) and additionally buried in the dimer 

(orange). (e) Two views of the Rev dimer (blue) modeled with the 34 nt stem IIB (labeled 

IIB34; red) from the NMR structure of an ARM peptide–RNA complex14. The peptide helix 

was aligned with ARM1 (r.m.s.d = 1.0 Å), and four additional base pairs of idealized A-

form RNA were appended to the end of the RNA (red). The 42 nt RNA that binds the Rev 

dimer cooperatively (Fig. 1) contains bulged nucleotides that are missing from this model, 

but the trajectory and length of the helix should be similar. The positions of Asn40 are 

shown for each monomer (yellow), showing how the ‘inner face’ of ARM1 positions Asn40 

to contact stem IIB while the ‘outer face’ of ARM2 (without Asn40) is positioned to contact 

the adjacent RNA site.
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Figure 4. 
Arrangement of the Rev oligomer and model of the Rev–RRE RNP and Crm1 interaction. 

(a) Comparison of the higher-order oligomerization interface seen between asymmetric units 

in the crystal (blue and green cartoon) and a recent structure of Rev with a monoclonal Fab 

bound to the dimer interface20 (grey cylinders) (backbone r.m.s.d = 1.9 A). (b) A Rev 

hexamer generated using the arrangement of three Rev dimers in the crystal (blue, green and 

light blue cartoons). (c) Two views of a jellyfish model of the Rev hexamer bound to RNA 

and its interaction with Crm1. RNA was docked onto one dimer of the Rev hexamer as in 

Fig. 2e, and extended an additional 9 base pairs of A-form helix to contact the second dimer 

(seen in the right panel, green dimer) based on previous studies with model RNAs18. An 

additional fragment of RNA was docked in the same manner as in Fig. 2e to the third dimer 

(light blue) to model complete binding of the Rev hexamer to the RRE (see Methods). The 

disordered C-termini containing the NES (residues 73–83; orange) were modeled as random 

coil extensions and are seen to project away from the RNA-binding ARMs. The NES 

sequences were fit into the NES binding site (cyan) of Crm1 based on the structure of a 

Crm1–RanGTP complex (dark and light grey surfaces, respectively) with Snurportin1 bound 

at the NES site31. Two Crm1 complexes are shown for scale and suggest that no more than 

two are likely to be accommodated in this arrangement.
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Figure 5. 
Model for oligomerization-mediated cooperative assembly. Binding of Rev (top left, blue 

cartoon) to the RRE (grey) is initiated at the stem IIB site13 (red). The resulting complex 

(top middle) exposes the dimerization interface (blue dashed oval) for binding by a second 

Rev monomer. Only when a second Rev-binding RNA site (red dashed oval) is properly 

oriented relative to the stem IIB site will the second Rev monomer be able to cooperatively 

assemble into the RNP using this composite protein–protein and protein–RNA interaction 

surface. Further oligomerization and protein–RNA interactions will likewise facilitate 

cooperative assembly of the complete hexameric Rev–RRE RNP (bottom). At this point, the 

complex is organized for nuclear export, with the NESs of the Rev subunits projecting 

downward (as in Fig. 4c) for interaction with Crm1 and the viral RNA bound to opposite 

face of the Rev oligomer.
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Table 1

Crystallographic data collection and refinement statistics.

Native SeO4–MAD Br–SAD

Data collection

Space group P6422 P6422 P6422

Cell dimensions

 a, b, c (Å) 115.8, 115.8, 81.2 115.9, 115.9, 81.4 115.9, 115.9, 81.1

 α, β, γ(°) 90.0, 90.0, 120.0 90.0, 90.0, 120.0 90.0, 90.0, 120.0

Peak Remote Peak

Wavelength 1.1159 0.9792 0.9715 0.9202

Resolution (Å) 50.0–2.5 50.0–2.8 50.0–2.8 50.0–3.2

Rmerge 5.1 (50.7) 6.0 (36.7) 5.7 (33.7) 13.2 (56.6)

I/σI 35.2 (3.4) 29.9 (3.9) 32.5 (4.8) 14.9 (3.3)

Completeness (%) 99.7 (99.0) 100 (99.9) 100 (99.9) 100 (100)

Redundancy 7.6 (6.1) 14.3 (11.1) 14.8 (12.2) 12.2 (12.8)

Refinement

Resolution (Å) 47.1–2.50

No. reflections 11031

Rwork/Rfree 0.226/0.261

No. atoms

 Protein 1868

 Ligands/ions 37

 Water 59

B-factors

 Protein 62.7

 Ligand/ion 84.0

 Water 54.1

R.m.s deviations

 Bond lengths (Å) 0.004

 Bond angles (°) 0.677

A single crystal was used to collect each of the native, multi-wavelength anomalous diffraction (MAD) and single-wavelength anomalous 
diffraction (SAD) datasets. Values in parentheses are for the highest-resolution shell.
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