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Automatic and accurate segmentation of ground glass opacity (GGO) nodules still remains challenging due to inhomogeneous
interiors, irregular shapes, and blurred boundaries from different patients. Despite successful applications in the image processing
domains, the random walk has some limitations for segmentation of GGO pulmonary nodules. In this paper, an improved
randomwalker method is proposed for the segmentation of GGO nodules. To calculate a new affinitymatrix, intensity, spatial, and
texture features are incorporated. It strengthens discriminative power between two adjacent nodes on the graph. To address the
problem of robustness in seed acquisition, the geodesic distance is introduced and a novel local search strategy is presented to
automatically acquire reliable seeds. For segmentation, a label constraint term is introduced to the energy function of original
randomwalker, which alleviates the accumulation of errors caused by the initial seeds acquisition.Massive experiments conducted
on Lung Images Dataset Consortium (LIDC) demonstrate that the proposed method achieves visually satisfactory results without
user interactions. Both qualitative and quantitative evaluations also demonstrate that the proposed method obtains better
performance compared with conventional random walker method and state-of-the-art segmentation methods in terms of the
overlap score and F-measure.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
among both men and women. Lung cancer accounts for
approximately 27% of all cancer deaths because its diagnosis
occurs at the advanced stages of the disease. Lung cancer is
controllable if it is timely diagnosed and appropriately
treated in an early stage. Currently, only 15% of all lung
cancers are diagnosed at an early stage, which causes a five-
year survival rate of only 16%. )erefore, lung cancer di-
agnosis is of importance to increase the chances of survival
and reduce the mortality rate in an early stage, when
treatment options are better. Lung cancer potentially
manifests itself as pulmonary nodules [1]. Computed to-
mography (CT) is one of the most prevalent modalities for
early inspection and analysis of pulmonary nodules. In
recent years, medical image processing research has been
underway for detection and segmentation of pulmonary

nodules in CT images. In particular, segmentation of pul-
monary nodules is a worthy task for subsequent planning of
treatment strategies, monitoring of disease progression, and
prediction of treatment outcome, because some key indi-
cators can be readily calculated in segmented pulmonary
nodules, such as volume [2, 3] and size [4]. In clinical
routine, segmentation of pulmonary nodules is manually
delineated in a slice-by-slice manner under the guidance of
radiologists. However, manual segmentation is time-con-
suming and subjective in larger studies.)erefore, automatic
segmentation of pulmonary nodules is highly desirable to
relieve radiologist workload.

Based on position of pulmonary nodules in the lung
parenchyma and proximity to other anatomical structures,
five types of nodules are identified: well-circumscribed,
juxta-vascular, juxta-pleural, cavitary pulmonary nodules,
and ground glass opacities (GGO). Over the last decades, a
lot of efforts have been devoted to studying the segmentation
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of pulmonary nodules. However, most of nodule segmen-
tation methods that have been previously published focus on
well-circumscribed pulmonary nodule segmentation. )ere
have been limited literature on segmentation of GGO
pulmonary nodules. Unfortunately, GGO pulmonary nod-
ules have a higher malignancy rate than other solitary
nodules [5]. )erefore, an accurate and efficient method is
urgently demanded for segmentation of GGO nodules,
which is the focus of our paper.

Segmentation of GGO pulmonary nodules still remains
challenging due to inhomogeneous interiors, blurred
boundaries, and irregular shapes from different patients. In
this paper, an improved random walker-based method is
proposed for segmentation of GGO pulmonary nodules.)e
random walker was firstly introduced by Grady [6] for in-
teractive image segmentation. )e initialization of random
walker model requires user inputs to guide the segmentation
process. )e user provides some seeds that indicate certain
pixels as the object itself and few others as the background.
For each pixel, it is necessary to compute the probability that
a random walker leaving the pixel will first arrive at each
seed. Many models of random walker have been widely
applied in many image segmentation processing tasks [7–9].

Random walker model needs the user to specify object and
background seed points. However, it is extremely sensitive to
the locations and quantity of seeds. Once the locations of seeds
are not precise and the quantity of seeds is not sufficient for
accurate pulmonary nodule segmentation, unlabeled pixels can
be assigned the wrong labels. )is may lead to degrading the
quality of segmentation. )erefore, the user needs frequently
select seed points that could improve the segmentation per-
formance. However, this process is considerably tedious and
the computational cost is extremely expensive. In addition, user
interaction seriously restricts the applications of random
walker method. In clinical practices, most clinicians would
benefit from automated methods. )is motivates us to present
an alternative solution strategy for automatic seeds acquisition.
Please see Section 3.1 for more details.

In addition, the random walker method might be prone to
get stuck at a local minimum in the energy landscape. At
present, some existing randomwalkermethods have attempted
to exploit some prior knowledge to address this shortcoming.
For instance, T. Messay et al. [10] proposed the guided random
walk method for left ventricle segmentation. )e authors in-
corporated prior knowledge into the energy function of the
random walks. However, the sensitivity of seeds location and
quantity has not been addressed under guided random walk
framework. Mi et al. [11] proposed an iterative method based
on random walkers for tumor segmentation. )e authors took
into account prior knowledge of the influence of tumor growth
prediction. In this paper, an improved random walker method
is proposed for segmentation of pulmonary nodules. A con-
straint term is introduced by extending the fundamental energy
function of the random walker. )e main contributions of the
proposed method are summarized as follows:

(1) Introducing an alternative solution strategy for au-
tomatic seeds acquisition. Different from many
random walker methods, we propose a fully

automatic method for segmentation of GGO pul-
monary nodules. An automatic solution strategy is
proposed to locate nodule and background seeds.
Subsequently, the acquired seeds are further fed to
the random walker.

(2) Constructing a new affinity matrix that measures the
similarity between a pair of neighboring nodes in
some predefined feature space. )e affinity entry is
composed of two components: an adjacency com-
ponent and a feature-based component. )e adja-
cency component is defined based on the spatial
distance to enforce the spatial coherence. )e fea-
ture-based component is defined based on intensity
and texture features. Finally, two components are
combined by a point-wise multiplication operation.

(3) Defining a novel energy function for segmentation of
GGO nodules. A label constraint term is introduced
to the fundamental energy function of the random
walker, which alleviates the accumulation of errors
caused by the acquired seeds.

)e remainder of the paper is organized as follows.
Section 2 briefly reviews the relevant literature for seg-
mentation of pulmonary nodules. )e details of the pro-
posed method are described in Section 3. Extensive
experimental evaluations are conducted on the LIDC dataset
and experimental results are given, which show excellent
performance of the proposed method in comparison with
traditional random walker and several other previously
published methods. )e overlap score, F-measure, and ex-
ecutive time are discussed in Section 4. Discussions are given
in Section 5. Finally, conclusions and future work are
provided in Section 6.

2. Related Works

Over the past decade, a lot of efforts have been devoted to the
segmentation of pulmonary nodules. )ese methods can be
broadly categorized as either intensity-based or shape-based
and deep learning methods. )e former separates pulmo-
nary nodules from the surrounding background by using
purely intensity information, such as thresholding [12, 13],
pixels classification [14], region growing [15, 16], clustering
[17–19], and mathematical morphology [20, 21]. Some
hybrid methods have been applied in pulmonary nodule
segmentation. Dehmeshi et al. [16] incorporated the
thresholding and region growing methods for the seg-
mentation of the pulmonary nodules. )e mathematical
morphology-based methods also have been applied to
segmentation of pulmonary nodules. )e main difficulty
with these methods is to decide a suitable size of structuring
elements to segment all different kinds of pulmonary
nodules. Shape-based methods [22, 23] for segmentation of
pulmonary nodules have been well studied. )is category
yields better segmentation results than the former, since it
takes into account the nodule-specific geometrical con-
straints for segmentation of pulmonary nodules. Strictly
speaking, these geometrical assumptions are not valid by
ground glass opacity (GGO) nodules because these types of
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pulmonary nodules show the large variability of the
morphology.

Deformable models [24–27] have been attracting more
and more attention for segmentation of pulmonary nodules.
Deformable models are flexible to cope with topological
variability. )ey have been shown to achieve very good
segmentation results. Although these deformable models
have achieved satisfactory segmentation of pulmonary
nodules with strong boundaries, they are highly sensitive to
noise and are also dependent on the location of the initial
contour. Meanwhile, deformable models demand the high
computational burden due to the use of a huge number of
iterations.

Deep learning techniques [28–35] have been used ex-
tensively in segmentation of pulmonary nodules. Compared
with traditional segmentation methods, deep learning uses
the deep neural network models to train a large number of
images. According to the data, deep learning actively learns
the low-level features of nodules and forms more abstract
high-level features, so as to achieve a better segmentation.
Although these deep learning models have achieved satis-
factory segmentation of pulmonary nodules, deep learning
needs the setting of hyperparameters in the network model,
and the challenges are still not very well understood. Dif-
ferent from these models, our proposed method performs
simply and efficiently and obtains the segmentation results
by solving a linear system. In addition, the proposed method
is more robust against intensity variations and noise than
deformable models, since the random walkers capture the
spatial connectivity much better than deformable models.
)e details of the proposed method are described in the
following section.

3. Method

In this section, an improved random walker method is
proposed for segmentation of GGO pulmonary nodules,
which consists of four main steps: acquisition of seeds,
construction of undirected weighted graph, designation of
the energy function, and optimization of the energy

function. )e flowchart of the proposed method for GGO
nodule segmentation is shown in Figure 1. )e details of
each step are described in the following sections. Before the
improved random walker method is presented, the de-
scription of some basic notations is firstly given in this
section.

3.1. Acquisition of Seeds. After segmenting the GGO pul-
monary nodules by the provided random walk method,
nodule and background seed points should be first acquired.
In this section, an efficient local search strategy is presented
for acquiring the reliable seeds, which is often unattainable
for most of the existing studies of random walker methods.

)e preprocessing stage is essential within a lung CT
image before pulmonary nodules segmentation. )e co-
herence filter is adopted to remove the effect of the image
noise while preserving the nodule boundaries very well. )e
random walk segmentation method strongly depends on the
initial seed acquisition. )e user needs to frequently acquire
seed points until the satisfactory segmentation results are
achieved. However, the process is considerably tedious and
time-consuming for large-scale images. )erefore, auto-
matic acquisition of seed points is essential for the next step.
We will focus on presenting an effective method to make the
manual seed acquisition automatically which reduces user
interaction. Firstly, the adaptive threshold method [12] is
adopted to find a global threshold. )e pixels are roughly
identified as a part of pulmonary nodule, whose intensities
are greater than the global threshold. )e remaining pixels
are considered as the background pixels. Figures 2 and 3
show an example of the nodule and background seeds ac-
quired using the proposed method as red and blue spots,
respectively. Figure 2(b) shows the binary image in the
filtered CT image. As observed from Figure 2(b), the
adaptive threshold can roughly separate the nodule from the
background. )e morphological open operation is used to
eliminate small holes and noises and connection component
analysis is employed to remove the undesired regions. Fi-
nally, an initial segmentation result O is obtained.

Input image data

Seeds automatic acquisition
(local search strategy and

geodesic distance)

Weighted graph construction
(Intensity feature
Texture feature

Spatial distance)

Improved energy function
(the smoothness term

the label constrain term)

The energy function minimization

Output segmentation results of
GGO nodules

Figure 1: )e flowchart of the improved random walker for GGO nodule segmentation.
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Secondly, a small region O0 is created based on geodesic
distance [36] from the initial segmentation result O. O0 is the
largest connected component within M and M − T, where M

is the maximum geodesic distance value starting from the
boundary •O to the center of O and T is a predefined pa-
rameter.)e pixels in theO0 region are identified as the nodule
seeds. Noticeably, nodule seeds may be restricted to a ho-
mogeneous part of the nodule. Figure 2(c) shows the nodule
seeds marked with red spots. However, it is also well known
that GGO pulmonary nodules are often inhomogeneous. )e
accuracy of GGO nodule seed acquisition could be further
improved if more nodule seeds are available. We need to
acquire the nodule seeds as uniformly as possible for accurate
segmentation of GGO pulmonary nodules. Hence, we intro-
duce a local search strategy to acquire the other nodule seeds.
)e pixels of •O are used as the initial pixels to search the other
nodule seeds. If pixels are close to the boundary •O of O and
have features similar to those of pixels in the O0 region, they
will be identified as the nodule seeds.

In GGO pulmonary nodules with intensity inhomoge-
neity, the use of intensity feature alone will not be sufficient.
Texture feature provides complementary information of
intensity feature. Texture feature gives a measure of the
variation in the intensities at pixels of interest, which has
been proved to be extremely effective for pulmonary nodule
detection [37–40]. For calculating texture feature, gray-level
cooccurrence matrix (GLCM) [40] and Gabor filter are used
in this paper. )e GLCM is generated by counting the
occurrences of intensity pairs between the current and
neighbor pixels of l-gray-level image.)e normalized GLCM
is calculated in the following equation:

P(i, j) �
N(i, j)

􏽐
l− 1
m�0􏽐

l− 1
n�0N(m, n)

, (1)

where i and j are intensity values in the l-gray level. N(i, j) is
the relative frequency matrix given in the following
equation:

N(i, j) � num

mx, my􏼐 􏼑, nx, ny􏼐 􏼑 ∈ Vx × Vy􏼐 􏼑 × Vx × Vy􏼐 􏼑􏼐 􏼑

max mx − nx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, my − ny

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤d

Il− gray mx, my􏼐 􏼑 � i, Il− gray nx, ny􏼐 􏼑 � j

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(2)

where Vx and Vy are the x-axis and y-axis spatial domains,
respectively. (mx, my) and (nx, ny) are pixel positions. Il− gray
is the l-gray level. Gabor transformation [41] is another
commonly used texture feature extraction method. A Gabor
filter is the multiplication of a Gaussian distribution by a
harmonic, which is formulated as follows:

ψ(x, y) � exp
− x

2
+ cy

2

2σ2
􏼠 􏼡 · cos 2x ·

x′
λ

+ φ􏼠 􏼡, (3)

x′ � x cos θ + y sin θ,

y′ � − x sin θ + y cos θ,
(4)

where σ denotes the standard deviation of 2D Gaussian
envelope. λ and θ are wavelength and orientation, respec-
tively. φ and c are phase shift and spatial aspect ratio, re-
spectively. In this paper, eight orientations
θ � 0, π/8, . . . , 7π/8, two wavelengths λ � 1, 2, and two
standard deviations σ � 1, 2 are employed to extract texture
features. )e magnitude map of Gabor filter is calculated to
describe the local texture features in this paper. )e cor-
responding maximum amplitude is defined in the following
equation:

(a) (b) (c)

Figure 2: Acquisition of nodule seeds. (a) A GGO nodule in a coherence filtered lung image, highlighted by a red rectangle. (b) Initial
segmentation O by adaptive thresholding method. (c) A binary region O by morphological open operation and connection component
analysis.

(a) (b) (c)

Figure 3: Acquisition of nodule and background seeds. (a) )e final nodule seeds by using a local search strategy, marked by red spots. (b)
An enlarged mask of nodule seeds. (c) )e background seeds by using local search strategy, marked by blue spots.
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I′(x, y) � max
k

I
G
k (x, y), (5)

where IG
k (x, y) is the filtered image by the set of Gabor

filters. k is the number of Gabor filters with different ori-
entation θ. After the intensity and texture features are
extracted, a local search strategy is introduced to acquire the
other nodule and background seeds. Let Ω be a boundary
Lipschitz domain and let I: Ω ⊂ R2⟶ I be defined as
gray-level image function. )e similarity between a pixel i in
•O and its adjacent pixel j is calculated as follows:

S(i, j) � Ti − Tj

�����

�����
2

× e
Ii− Ij

����
����
2

j ∈ Ni,
(6)

where Ii and Ij denote the intensity values at pixel i and its
adjacent pixel j, respectively. Eight-neighbor connections at
a pixel are used in this paper. Ti and Tj denote the texture
values at pixels i and j, respectively. ‖ · ‖ denotes the L2 norm
to measure the feature difference between two adjacent
pixels. Ni is a neighborhood system of a pixel i. Herein, the
exponential function is used to stress the importance of
intensity feature. If the similarity satisfies [34] the rule in (7),
we will add pixels to the nodule seed set VF

M.

V
F
M � V

F
M ∪ j􏼈 􏼉if S(i, j)< κ,

S(j, k)< κ, i ∈ •O, k ∈ O0, j ∈ Ni,
(7)

where κ is a predefined threshold. We empirically set κ � 10,
which works well in our method. )e rule is very simple and
effective. )e local search strategy is iteratively implemented
and the iteration stops when all pixels of •O undergo the
boundary. )e new identified nodule seeds are added to
obtain the final nodule seeds set VF

M. Figure 3(a) shows the
final nodule seeds marked with red spots. Figure 3(b) shows
the zoomed-in region of Figure 3(a).

After the nodule seeds are acquired, we will automati-
cally acquire the background seeds. If pixels are close to the
boundary •O of O and have a large feature difference with
the pixels of the region O0, they will be identified as the
background seeds. If the similarity satisfies the following
rule, we will add pixels to the background seed set VB

M. )e
rule is defined in (8).

VB
M � VB

M ∪ j, j′􏼈 􏼉if S(i, j)> η and S(j, k)> η,
i ∈ •O , k ∈ O0, j ∈ Ob/O0.

S(i, j′)> η and S(j′, k)> η.

j′ ∈ N(j), (8)

where Ob is a region that the distance of two pixel positions
from the center of the pulmonary nodule region to pixels
outside the region O satisfies a predefined threshold T1. )e
background seed set VB

M will be updated and the iteration
stops when there are no new pixels of the region Ob to be
added to the background seed set VB

M. Figure 3(c) shows the
background seeds marked with blue spots.

3.2. Undirected Weighted Graph Construction. )e con-
struction of the suitable graph is inevitable. )e key step on
the graph construction is to define a discriminative affinity

matrix. An unreasonable affinity weight potentially captures
erroneous spatial relationship between two adjacent pixels,
resulting in accumulating the erroneous information. Fur-
ther, errors are conveyed into the subsequent step of the
energy function of random walker.

)e input image I is represented as an undirected
weighted graph G � (V, E, W), where V is a set of nodes and
E is a set of edges. )e image consists of n pixels. A node
vi ∈ V represents the ith pixel of the input image. An edge
eij ∈ E connects a pair of neighboring nodes vi and vj. Edges
are weighted by the nonnegative weighted function
W � [wij], where wij: E⟶ IR+ ∪ 0{ } on edge eij reflects
the similarity between two neighboring nodes vi and vj. Note
that wij � 0 is considered nonrelevant relation between a
pair of nodes vi and vj. In addition, the edge weights are
symmetric; that is, wij � wji in an undirected graph. )e
nodule seed set VF

M along with the background seed set VB
M

will constitute the overall seed set VM � VF
M ∪VB

M. )e
remaining unlabeled pixels are denoted as VU ⊂ V, such that
VM ∪VU � V and VM ∩VU � ϕ.

3.3. Definition of an Affinity Matrix. )e success of random
walker depends on how accurately the relationships between
two neighboring nodes of the weighted graph represent the
pulmonary nodule and background. In other words, the
nodes belonging to pulmonary nodules should have the high
affinity among them. )e nodes belonging to background
should also have the high affinity among them. )e key step
of the graph construction is to define an affinity matrix
W � [wij], which measures the similarity between two
neighboring nodes in some predefined feature space. Ap-
parently, intensity feature alone is insufficient for segmen-
tation of GGO pulmonary nodules. In general, different
features describe an object characteristic from different
views and provide complementary information to each
other, such as texture feature, Haar feature, and histogram of
gradient (HOG) feature.We havemanaged to exploit texture
feature and spatial distance to define an affinity matrix.
Texture descriptor can be a characterized property of object
surface, such as contrast, regularity, coarseness, and struc-
tural arrangement. Recently, the efficiency of texture feature
has been proved [43, 44]. Distinct from [43, 44], we integrate
local binary pattern (LBP) [45–47] and Gabor filter [48] to
extract texture features. In addition, the spatial distance is
employed to control the spatial influence between two ad-
jacent nodes. In other words, the closer two nodes are in
spatial distance, the more likely they are to influence each
other.

)e affinity entry between a pixel and its neighbors is
calculated by incorporating texture feature and spatial
distance. It is composed of two components: an adjacency
component and a feature-based component. )e adjacency
component is defined based on the spatial distance. )e
closer two nodes are, the stronger the penalty imposing the
similar labels is. In other words, increasing the spatial
distance will decrease the affinity entry. )e feature-based
component is defined based on intensity and texture fea-
tures. We adopt Gaussian kernel function with affinity
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measurement for simplicity. Euclidean distances of features
between two neighboring nodes are associated with the
edges of the weighted graph. Consequently, two components
are combined by a point-wise multiplication operation.
Hence, the affinity entry wij from a node i to its neighboring
node j is calculated in the following equation:

wij � exp − zi − zj

�����

�����2
􏼒 􏼓exp − ‖I(i) − I(j)‖2( 􏼁

· exp − ‖T(i) − T(j)‖2( 􏼁,

(9)

where zi and zj denote the spatial coordinates of nodes i and
j, respectively. ‖ . ‖2 denotes the L2 norm to measure the
distance between a pair of adjacent nodes on each feature
space. )e higher affinity entry wij indicates the higher
discriminative power of the representative features. As a
result, they are assigned the same label. Meanwhile, the
smaller affinity entry wij indicates that feature differences
between two neighboring nodes will be the larger; thus the
guided random walker tends to cross these edges. With the
help of the discriminative affinity matrix, it can make seg-
mentation results of pulmonary nodules more accurate and
efficient. After the affinity matrix is constructed, we will
discuss how to design a new energy function for accurate
GGO pulmonary nodule segmentation, which is described in
more details in Section 3.3.

3.4. 6e Energy Function Designation. )e random walker
segmentation method is formulated as an energy function
minimization problem. )e fundamental energy function of
the random walk imposes the consistency in the labels of
neighboring pairs. In other words, the labels will be assigned
the same in a neighborhood system, when their corre-
sponding features are similar. How to adequately use the
acquired seeds is crucial for accurate segmentation of GGO
pulmonary nodules. Note that it is not always possible to
accurately initialize seeds from the segmented pulmonary
nodule regions. Once the initial segmentation results are not
precise, the label assignment inevitably shows the potential
errors.)e accumulation of errors can degrade the quality of
segmentation. To address this problem, a label constraint
term is added to the fundamental energy function of the
random walk by incorporating the prior knowledge of seeds.
)en, a weight function of the label constraint term is based
on fuzzy membership value, which is discussed below.

)e fuzzy membership is the degree of membership of a
node belonging to the foreground or background. In this
paper, we build a foreground Gaussian Mixture Model
(denoted as GMMF) and a background Gaussian Mixture
Model (denoted as GMMB) as the global guidance for
segmentation of GGO pulmonary nodules, where Gaussian
Mixture Model (GMM) is generated from the acquired
seeds. Fuzzy membership value is calculated based on the
posterior probability of Gaussian Mixture Model (GMM).
)e intensity and texture features are incorporated to
construct an augmented feature vector h � [I, T]. An
indexing function F: Ω⟶L is defined, where L indi-
cates that the probabilities of the nodes are assigned a node i.
F(i) � 1 indicates the assignment of a node i to the

foreground and F(i) � − 1 indicates the assignment of a
node i to the background. PGMM(h(i), 1) represents the
posterior probability of a node i to belong to nodules and
PGMM(h(i), − 1) represents the posterior probability func-
tion of a node i to belong to background. )e higher value
PGMM(h(i), 1) has, the higher the probability that node i

belongs to VF
M. A similar expression is applicable to

PGMM(h(i), − 1). )e weight function will be assigned to a
large value when the predefined label and the calculated label
are similar during the energy minimization. To obtain a
desired probability vector F � [F(i)]N×1, the energy
function is defined in the following equation:

E(F) �
1
2

􏽘
eij∈E

wij(F(i) − F(j))
2

+
1
2
α 􏽘

VM| |

i�1
ui(F(i) − b(i))

2⎛⎜⎝ ⎞⎟⎠,

(10)

whereF(i) andF(j) represent the probabilities on nodes i

and j and ui is the membership function on a node i. α is a
tradeoff parameter and |VM| is the number of seeds. b(i) is
the preassigned label on a node i, which is defined as follows:

b(i) �
− 1, if i ∈ V

B
M,

1, if i ∈ V
F
M,

⎧⎨

⎩ (11)

and ui is calculated as follows:

ui � e
− log PGMM(h(i),b(i))( )/log PGMM(h(i),1)( )+log PGMM(h(i),− 1)( ).

(12)

)e label constraint term enforces the consistency be-
tween the calculated probability and the preassigned
probability after the energy minimization, which reflects the
information of seeds. After the energy function is defined,
we will discuss the minimization of the energy function in
Section 3.4.

3.5.6e Energy FunctionMinimization. )e energy function
is minimized by expanding (10) and (13) is in the matrix
form.

E(F) �
1
2

􏽘
eij∈E

wij(F(i) − F(j))
2

+
1
2
α 􏽘

VM| |

i�1
ui(F(i) − b(i))

2⎛⎜⎝ ⎞⎟⎠

�
1
2

􏽘
i,j∈N

wij F(i)
2

− 2F(i)F(j) + F(j)
2

􏼐 􏼑

+
1
2
α 􏽘

VM| |

i�1
ui F(i)

2
− 2F(i)b(i) + b(i)

2
􏼐 􏼑

�
1
2
F

T
(D − W)F +

1
2
α(F − b)

T
U(F − b),

(13)

where U ∈ RN×N is a diagonal matrix denoted as
U � diag u1, u2, . . . , uN􏼈 􏼉. b � [bi]N×1 is an N-dimensional
indicating vector. )e degree matrix D is a diagonal matrix
with degrees of the node in main diagonal, denoted as
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D � diag d1, d2, . . . , dN􏼈 􏼉. )en every pixel is identified
uniquely by a node in our undirected graph, where the
degree of each vertex is computed as di � 􏽐jwijfor all the
edges that incident on the vertex.L is the Laplacian graph
matrix, which is denoted as L � D − W. )e parameter α is a
positive constant which controls the tradeoff between two
terms.

By the partial derivatives with respect toF, the following
system of the linear equations is solved for each seed to
obtain the probabilities of the unlabeled nodes in the fol-
lowing equation:

F � (D − W + λU)
− 1αUb, (14)

and after the probabilities of unlabeled nodes are solved,
a node i can be assigned to the foreground label “+1” if the
probability F(i)≥ 0. Otherwise, it is assigned to the back-
ground label “− 1” if the probability F(i)< 0.

4. Experimental Setup and Results

In this section, the experimental results of the improved
random walker are shown and the performances are vali-
dated on the LIDC dataset. )e visual results of extensive
experiments and the results of quantitative analysis in terms
of overlap score and F-measure are shown. We also validate
the sensitivity of the improved randomwalker by varying the
number of background seeds in Section 4.5 and the ro-
bustness of running time in Section 4.6, respectively.

Experimental results have demonstrated that the im-
proved random walker is capable of segmenting GGO
pulmonary nodules without user interaction. Quantitative
and qualitative evaluations on the LIDC dataset also show
that the improved random walker significantly improves
segmentation performance of GGO pulmonary nodules. All
tests are performed on a Windows platform using MATLB
R2013a and under the same computer configuration: Intel
(R) CPU E3-1225 v5 @3.30GHz with 4.0GB RAM.

4.1. LIDC Dataset. All experiments are conducted on the
LIDC dataset. )e Lung Images Dataset Consortium (LIDC)
[49] is a web accessible international pulmonary nodule
dataset for the evaluation of pulmonary nodule segmenta-
tion methods, which contains 1018 CT scans and associated
XML files that record the nodule information of a two-phase
reading process performed by four board-certified thoracic
radiologists. Lung images were acquired by several CT

scanners with different manufacturers and pulmonary
nodules were judged by four board-certified radiologists.
Figure 4 shows an example result of ground truth generation
through the annotations of CT slice. As shown in
Figure 4(b), the outlines of the pulmonary nodules were
drawn manually by four radiologists. For the visualization
purpose, four different colors of the outlines indicate four
different segmentation results of the pulmonary nodules
obtained by four radiologists. )e aquamarine, yellow, blue,
and purple colors indicate segmentation results of the
pulmonary nodules obtained by four radiologists.
Figure 4(c) shows the corresponding ground truth used in
this paper. A 50% consensus criterion [14] is used to produce
the outline of ground truth in this paper. We randomly
selected 100 CT images with GGO nodules from the LIDC
database, which provide different shapes, sizes, and texture
information. )eir diameters range from 3mm to 30mm
(average 9.80mm). All slices used in the experiments are
intensity-normalized with gray level from 0 to 255.

4.2. Parameter Setting. In the seed acquisition step, there are
four parameters that control the location and quantity of the
seeds.)e parameter T is introduced to determine the size of
O0. In this paper, T is set a large range from 0.5 to 3.5, which
is based on nodule size. One validation metric for seg-
mentation performance is the overlap score, which measures
the overlapping area between the segmentation results and
ground truth. )e overlap score is formulated in the fol-
lowing equation:

Overlap score �
SA ∩ SM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

SA ∪ SM

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, (15)

where SA and SM are the segmentation result and the ground
truth, respectively. |SA ∩ SM| represents the number of pixels
in both SA and SM, and |SA ∪ SM| is the number of pixels in
either SA or SM, or both. )e value of overlap score ranging
from 0 to 1 indicates the degree of the accuracy. A high value
of overlap score indicates the better segmentation perfor-
mance. On the contrary, the overlap score has a low value
when the segmentation result and the ground truth are
inconsistent.

)e quantity of background seeds is controlled by the
parameter T1. It is also well known that the random walk
method depends on the initial nodule and foreground
seeds. We validate how sensitive the improved random

(a) (b) (c)

Figure 4: Generating ground truth through the annotations of CTslice. (a) Original CT 2D slice. )e pulmonary nodule is displayed with a
red rectangle. (b))e outlines of the pulmonary nodule drawn by four radiologists. (c) Ground truth obtained by a 50% consensus criterion.
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walker is to the number of background seeds. First, we run
the codes of the proposed method on 10 different cases
using the different number of background seeds. )e
number of background seeds is in the range of [10, 100],
where the step length is 20. Table 1 shows the overlap score
results for ten different cases with ten different numbers of
background seeds. To better verify the effectiveness of the
proposed method, 538 CT images with GGO pulmonary
nodules are randomly selected from the LIDC dataset to
perform the experiment. Overlap scores slightly increase
as the number of background seeds increases. Ultimately,
it will remain stable to some extent. )e parameter T1 �

100 produces considerably good results for the
experiments.

In the energy function designation step, the parameter α
in (8) is introduced to control the tradeoff between two
terms. When the value of parameter α is zero, the seg-
mentation is based on the conventional random walk. )e
impact of the label constraint term increases as the value of α
increases. We vary the values of the parameter α from 10 to
104 for each CT image to obtain different segmentation
results. Figure 5 shows the segmentation results of the
improved random walker with varying parameter α. From
left to right are the segmentation results obtained with

α � 10, 102, 103, and 104, respectively. Table 2 shows the
overlap scores of 10 cases using four different α. As shown in
Figure 5 and Table 2, there are not significant changes when
α is a large positive number. In all experiments, the pa-
rameter α is set to 102. Similarly, we set κ � 10 and η � 5 in
the local search strategy process.

4.3. Experimental Tests. In this section, the visual analysis of
massive experiments is available to validate the improved

Table 1: Overlap scores of 10 cases using ten different numbers of background seeds.

ID 20 40 60 80 100
1 0.8426 0.8675 0.8749 0.9057 0.9159
2 0 9058 0.9058 0.9103 0.9134 0.9147
3 0.8029 0.8574 0.8584 0.8828 0.8925
4 0 8142 0.8182 0.8448 0.8645 0.8828
5 0.0059 0.0059 0.8043 0.8429 0.9050
6 0.8067 0.8067 0.8352. 0.8578 0.8638
7 0.0034 0.0034 0 7952 0.8049 0.8472
8 0.8829 0.8879 0.9042 0.9089 0.9121
9 0.0074 0.0198 0.8520 0.8743 0.8829
10 0.8142 0.8488 0.8649 0.9024 0.9112

(a) (b) (c) (d)

Figure 5: Qualitative comparisons of segmentation results with different values of parameter α from 10 to 104. (a)α � 10. (b)α � 102.
(c)α � 103. (d)α � 104.

Table 2: Overlap scores of 10 cases using four different α.

ID 10 102 103 104

1 0.8468 0.8642 0.8437 0.8429
2 0.9215 0.9430 0.9104 0.9175
3 0.8522 0.8846 0.8577 0.8782
4 0.9369 0.9642 0.9013 0.9040
5 0.8434 0.8658 0.8529 0.8514
6 0.9400 0.9708 0.9230 0.9255
7 0.9061 0.9391 0.9116 0.9164
8 0.8849 0.9072 0.9042 0.9022
9 0.9216 0.9300 0.9253 0.9108
10 0.9242 0.9588 0.9562 0.9424

8 Journal of Healthcare Engineering



random walker. )e LIDC dataset is used to conduct all
experiments. To verify the effectiveness of the acquired
nodule seeds, we conduct a comparison experiment between
the improved randomwalker with the acquired nodule seeds
and the improved random walker without the acquired
nodule seeds. For a fair comparison, the same background
seeds are employed in this experiment to reduce the in-
fluence of background seeds.

Figure 6 shows the acquired nodule seeds. Figure 6(b)
shows the nodule seeds obtained by user and Figure 6(c)
shows the nodule seeds obtained by geodesic distance and a
local search strategy. Red spots specify the nodule seeds.
Figure 7 shows segmentation results by the improved random

walker with the acquired nodule seeds and the improved
randomwalker without the acquired nodule seeds. Figure 7(a)
shows the background seeds obtained by a local search
strategy. Blue spots specify the background seeds. Figure 7(b)
shows the segmentation results by the improved random
walker without the acquired nodule seeds and Figure 7(c)
shows the improved random walker with the acquired nodule
seeds. As shown in Figure 7(b), many pixels belonging to the
nodule region cannot be accurately segmented. From
Figure 7(c), we can see that the improved randomwalker with
the acquired nodule seeds improves a GGO pulmonary
nodule segmentation. )erefore, the experimental result in-
dicates the benefits of the acquired nodule seeds.

(a) (b) (c)

Figure 6: )e acquired nodule seeds and improved random walker without the acquired nodule seeds. (a) An original CT lung image. (b)
)e nodule seeds by user selection. (c) )e nodule seeds by geodesic distance and a local search strategy.

(a) (b) (c)

Figure 7: Comparison of segmentation results between improved random walker with the acquired nodule seeds and improved random
walker without the acquired nodule seeds. (a) )e background seeds by a local search strategy. (b) )e segmentation result by the improved
random walker without the acquired nodule seeds. (c) )e segmentation result of the improved random walker with the acquired nodule
seeds.

(a) (b) (c) (d)

Figure 8: Comparison of segmentation between conventional random walker and improved random walker. (a) Original CT images. (b)
)e segmentation results by conventional random walker with our seeds. (c))e segmentation results by the improved random walker with
our seeds. (d) )e ground truth.
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To verify the effectiveness of the proposed energy
function, we will conduct a quantitative comparison ex-
periment between the improved random walker and the
conventional random walk and discuss the comparison results
of the conventional random walk. To run random walker, the
source codes from the author’s homepage were downloaded.
)e results by the improved random walker are displayed in
Figure 8(b).)e results by the conventional randomwalker are
displayed in Figure 8(a) for comparison. As shown in
Figure 8(a), the conventional random walk yields seriously the
oversegmentation phenomenon. It is because conventional
random walk has high sensitivity that some nonnodule pixels
are labeled as nodule seeds inevitably in the initial nodule seeds
acquisition step. In contrast, the improved random walker
completely removes the part of oversegmentation. As observed
from Figure 8(b), it can be clear that the improved random
walker achieves a better segmentation result than the con-
ventional random walk. )e outlines of pulmonary nodule
segmentation by the improved random walker are more close
to the ground truth than conventional random walk, which is
shown in Figure 8(d).

Although the conventional random walker can segment
out the most part of pulmonary nodules from surrounding
pulmonary parenchyma, the pulmonary nodule pixels are
more or less leaked into pulmonary parenchyma incorrectly.
)e improved random walker considers the consistency be-
tween the redefined labels and the calculated labels in the new
energy function optimization to alleviate the disturbance of
seeds to some extent.)erefore, the segmentation performance
will be further improved by encouraging the label consistency

according to the energy optimization. After adding the label
constraint term of the energy function, our method performs
well for segmentation of GGOpulmonary nodules, as shown in
Figure 8(d). )is segmentation improvement may be because
the local search strategy of seed acquisition yields the reliable
seeds to guide the segmentation.

4.4. Quantitative Results

4.4.1. Quantitative Results Using Overlap Score. To verify the
effectiveness of the improved random walker, we perform a
quantitative comparison between the improved random
walker, the conventional random walker with the acquired
seeds, and the conventional random walker without the
acquired seeds by using the overlap score. 23 CT images with
GGO pulmonary nodules are randomly selected from the
LIDC dataset, which provide different shapes, sizes, and
texture information. In the experiment, the parameter T is
set to 2, κ is set to 10, and η is set to 5 in the local search
strategy process. )e parameter T1 is set to 100 in back-
ground seed acquisition. )e parameter α is set to 100 in the
energy function designation step.

)e comparison results of overlap scores are shown in
Table 2. )e mean value and variance of overlap scores are
then calculated in Table 3. )e first column shows the case
ID numbers. )e third column shows the overlap scores
calculated by the improved random walker. )e fourth and
fifth columns show the overlap scores calculated by the
conventional random walk with our seeds and the

Table 3: Overlap scores of 23 CT images obtained using the improved random walker and the conventional random walk. See the text for
more details.

ID )e number of seeds )e improved RW RW with our seeds RW without our seeds Times
1 276 0.9193 0.7727 0.7452 1.2500
2 235 0.8903 0.9291 0.8434 1.2650
3 297 0.9203 0.8024 0.7634 1.2521
4 349 0.8231 0.7054 0.6901 1.3190
5 216 0.9321 0.9193 0.9025 1.4760
6 197 0.8929 0.7544 0.7146 1.3440
7 302 0.8340 0.7053 0.7568 1.3280
8 189 0.8853 0.7619 0.7023 1.6310
9 243 0.8727 0.8820 0.7823 1.3440
10 379 0.9341 0.8319 0.8726 1.3260
11 197 0.8290 0.8920 0.8340 1.6950
12 264 0.8631 0.8631 0.7920 1.2810
13 375 0.8498 0.8012 0.7034 1.3520
14 294 0.8920 0.8290 0.8401 1.2970
15 176 0.9352 0.8031 0.7432 1.4230
16 276 0.8860 0.8460 0.6931 1.4690
17 307 0.7964 0.7254 0.7350 1.3130
18 238 0.9453 0.8015 0.7031 1.4220
19 398 0.8624 0.8106 0.8326 1.2190
20 289 0.9540 0.8342 0.7920 1.2820
21 208 0.7786 0.7326 0.7021 1.3550
22 178 0.7695 0.7690 0.7431 1.3130
23 267 0.8442 0.6524 0.6014 1.2340
Mean std. 0.8743 0.8011 0.7604 1.3561

0.0529 0.0708 0.0710 0.1165
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conventional random walk without our seeds, respectively.
As shown in Table 3, the improved randomwalker generated
higher average overlap score than the conventional random
walk with our seeds, which proves that a label constraint
term of energy function can obtain better prior infor-
mation and further improves the segmentation result.
Except for the advantage of the improved energy function
process, the comparison between the conventional ran-
dom walker with our seeds and the conventional random
walker without with our seeds also shows the necessity of
the acquired seeds. As shown in the fourth and fifth
columns of Table 3, the conventional random walk with
the acquired seeds obtains the average of 0.8011, and the
conventional random walk without the acquired seeds
obtains the average of 0.7604. )e conventional random
walk with the acquired seeds slightly outperforms the
conventional random walk without the acquired seeds by
less than 0.04 on average. To better verify the effectiveness
of the acquired seeds, 538 CT images with GGO pul-
monary nodules are randomly selected from the LIDC
dataset; the conventional random walk with the acquired
seeds obtains the average of 0.8354, and the conventional
random walk without the acquired seeds obtains the
average of 0.7849. )e experimental results show that the
acquired seeds are effective.

Hence, the acquired seeds can improve segmentation
performance. )e improved random walker appears to be
more stable, in that it has smaller standard deviation of 0.0529.
)e results demonstrate that the improved random walker has
a higher degree of accuracy in terms of the highest average
overlap scores and has a higher degree of robustness in terms of
the lowest standard deviations of overlap scores. To better
verify the effectiveness of the proposedmethod, 849 CT images
with GGO pulmonary nodules are randomly selected from the
LIDC dataset, the proposed method obtains the average of
0.8649, and the conventional random walk obtains the average
of 0.7937. )e experimental results show that the proposed
method outperforms the conventional random walk.

Overall, the improved random walker outperforms the
conventional random walk. To validate the effectiveness of
the proposed method, an execution time comparison ex-
periment of the proposed method with two other methods
was implemented. )e conventional random walk without
the acquired seeds obtains the average of 3.8497 and the
standard deviation of 1.2478.)e conventional randomwalk
with the acquired seeds obtains the average of 2.6462 and the
standard deviation of 0.8394. )e improved random walker
obtains the smaller average of 1.3536 and the standard
deviation of 0.1165. )e results demonstrate that the im-
proved random walker has a smaller execution time.

4.4.2. Quantitative Results Using F-Measure. To further
verify the performance of the improved random walker, we
adopt the second metric, F-measure. Precision is defined as
the ratio of the sum of intensities inside the nodule region to
the total intensities calculated in the CT imaging. Recall is
defined as the ratio of the total pixels captured inside nodule
region to the area of the user annotated window. F-measure

[51] is defined as the weighted harmonic mean between the
Precision and Recall values, which is formulated as follows:

F − measureβ �
(1 + β) · Precision · Recall

(β · Precision + Recall)
, (16)

where β is a tradeoff factor controlling the importance of
Precision and Recall. In our experiments, it is fixed to 0.3
empirically to weight Precision more than Recall.

In this experiment, 10 cases with GGO pulmonary
nodules are randomly selected from the LIDC dataset, which
provide different shapes, sizes, and texture information. For
each binary map of pulmonary nodules, the Precision,
Recall, and F-measure are calculated on ten different images.
)e results are shown in Table 4. As shown in Table 4, the
improved random walker obtains a high average F-measure
of 0.8951. To evaluate the proposed method’s efficiency, the
comparison is produced between the improved random
walker and the other two methods by F-measure. )e results
are shown in Table 5. As shown in Table 5, the improved
random walker obtains a high average F-measure of 0.8951.

Further, to evaluate the computational efficiency, the
comparison between the improved random walker and
Kubota’s method [14] in terms of the executive times is
shown in Table 6, which is measured in seconds on LIDC
dataset. )e improved random walker required 1.35 seconds
to segment each CT image on average, which was much
faster than Kubota’s method [14]. We expect that the exe-
cution time would be better.

4.5. Comparisons with Other State-of-the-Art Methods.
We evaluate the improved random walker with several state-
of-the-art methods, including Kostis’s method [3], Okada’s
method [23], Kuhnigk’s method [20], Kostis’s method [14],
Messay’s method [52], Ye’s method [33], andWang’s method
[34]. )ese methods employed the LIDC database to evaluate
the performance of pulmonary nodules segmentation and the
overlap scores have been calculated by the authors. For the
evaluation of nodule segmentation methods from the LIDC
dataset, deep learning network can obtain satisfactory seg-
mentation results, but it relies more on the data to train the
network. )ey cannot be guaranteed using the same cases.
)erefore, the evaluation results may have the variability for

Table 4: Quantitative results of 10 cases using F-measure.

ID CT scan Precision Recall F-measure
1 LIDC-IDRI-0260 0.9805 0.8653 0.9513
2 LIDC-IDRI-0195 0.9509 0.8369 0.9219
3 LIDC-IDRI-0060 0.9847 0.6898 0.8963
4 LIDC-IDRI-0045 0.9624 0.8209 0.9256
5 LIDC-IDRI-0044 0.9850 0.8845 0.9599
6 LIDC-IDRI-0003 0.9521 0.8407 0.9238
7 LIDC-IDRI-0186 0.9899 0.4624 0.7837
8 LIDC-IDRI-0087 0.8487 0.8197 0.8418
9 LIDC-IDRI-0884 0.9403 0.9214 0.9359
10 LIDC-IDRI-0052 0.8395 0.7260 0.8103
Mean std. 0.9434 0.7868 0.8951

0.0550 0.1333 0.0614
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different nodules to a certain degree. Despite these differences,
the performance comparison between the improved random
walker and the state-of-the-art methods is valuable. Table 7
summarizes the average and standard deviation of overlap
score values of five segmenting methods on the LIDC dataset.
In total, we obtained the average overlap score of 0.86. As we
can see, Okada’s method [23] presented an overlap score of
0.45 ± 0.21, which is relatively lower compared to other
methods due to the discrepancy between the ellipsoid model
and nonellipsoidal nodules, which did not well handle
nonellipsoidal GGO nodules. Kostis’s method [3] and Kuh-
nigk’s [20]method presented the overlap scores of 0.57 ± 0.20
and 0.56 ± 0.18, respectively. Kostis’s method potentially
assumed that pulmonary nodule is (usually) roughly spherical
or ellipsoidal shapes. So, it also did not well handle GGO
nodules. Kuhnigk’s method used morphological opening
processing for pulmonary nodule segmentation, which is
suitable for both small and regular nodules. However, for
GGO nodules with fuzzy and irregular boundary, the seg-
mentation results were unsatisfactory, since erosion operation
may remove a portion of the nodule. )erefore, this method
presented a relatively lower overlap score. Kubota’s method
[14] reported the overlap score of 0.66 ± 0.18, which has a
relatively high overlap score compared to the above three

methods. Kubota et al. employed competition-diffusion (CD)
method to obtain the foreground object and region growing
to obtain final segmentation results, which was also less robust
and accurate, resulting in undersegmentation results for GGO
nodules compared to our proposed method, especially for
GGO nodule with spiculations. Messay et al. [52] reported the
overlap score of 0.77 ± 0.09 for the hybrid method, which
obtained a higher value than those of the above-mentioned
methods. )e performance of segmentation has a consider-
able boost by using a regression neural network approach;
however, this method required carefully manual supplied
control points to improve the segmentation results. Ye’s
method [33] was used in AlexNet and GoogLeNet to detect
GGO pulmonary nodules and created the input image of the
three-dimensional features to train the deep network, which
obtained the overlap score of 0.81 ± 0.13. Ye’s method has a
relatively higher overlap score than the above-mentioned
methods. Wang’s method [34] built a cascade architecture
with both segmentation and classification networks for au-
tomatic GGO nodules segmentation and obtained the overlap
score of 0.84 ± 0.10. )e cascade model in the data level
performs better and is more stable than Ye’s method. Herein,
we achieved a relatively higher overlap score compared to
other methods, 0.86 ± 0.08, which is a boost in comparison to
the other methods. )e good performance of the proposed
method can be attributed to the powerful discriminating
affinity matrix and a label constraint term of the energy
function for handling the fuzzy and irregular GGO nodules.
In addition, the rapid training of large amounts of data and
the determination of hyperparameters are also problems to be
solved in the future of deep learning. )e existing network
model or network model combined with traditional methods
will become a popular trend.

5. Discussion

)e irregular shapes, fuzzy boundaries, and low contrasts
between the pulmonary nodule and surrounding back-
ground prohibit accurate GGO pulmonary nodule seg-
mentation using simple methods based on thresholding,
region grow, and morphological methods. It is clear that the
segmentation of GGO pulmonary nodules requires a spe-
cializedmethod.)e randomwalker has been paid more and

Table 5: Quantitative results of 10 cases using F-measure by the proposed method and the other two methods.

ID CT scan RW without our seeds RW with our seeds Proposed method
1 LIDC-IDRI-0260 0.9202 0.9314 0.9513
2 LIDC-IDRI-0195 0.9146 0.9279 0.9219
3 LIDC-IDRI-0060 0.8249 0.8435 0.8963
4 LIDC-IDRI-0045 0.8986 0.9014 0.9256
5 LIDC-IDRI-0044 0.9146 0.9271 0.9599
6 LIDC-IDRI-0003 0.8762 0.8920 0.9238
7 LIDC-IDRI-0186 0.6879 0.7249 0.7837
8 LIDC-IDRI-0087 0.7858 0.8171 0.8418
9 LIDC-IDRI-0884 0.8632 0.8969 0.9359
10 LIDC-IDRI-0052 0.7868 0.7935 0.8103
Mean std. 0.8473 0.8656 0.8951

0.0756 0.0690 0.0614

Table 6: Comparison of execution times of the improved random
walker and Kubota’s method.

Method Time (s)
Kubota’s method [14] 3.82 ± 4.91
Our method 1.35 ± 0.12

Table 7: Comparison results of overlap scores on LIDC dataset in
the state-of-the-art methods.

Method Overlap scores
Kostis et al. (2003) [3] 0.57 ± 0.20
Okada et al. (2005) [23] 0.45 ± 0.21
Kuhnigk et al. (2006) [20] 0.56 ± 0.18
Kubota et al. (2011) [14] 0.66 ± 0.18
Messay et al. (2015) [52] 0.77 ± 0.09
Ye et al. (2019) [33] 0.81 ± 0.13
Wang et al. (2021) [34] 0.84 ± 0.10
Our method 0.86 ± 0.08
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more attention for interactive image segmentation. It pro-
duces a good segmentation. )e intensity, texture, and
spatial features are incorporated to construct a new affinity
matrix. It strengthens discriminative power between two
adjacent nodes on the graph. To automatically acquire seeds,
the geodesic distance is introduced and a novel local search
strategy is presented to automatically select reliable seeds.
For segmentation, a label constraint term is introduced to
the energy function of original random walker, which al-
leviates the accumulation of errors caused by the initial seeds
acquisition. )e improved random walker requires no user
interaction.

)e differences in performance of the improved ran-
dom walker and the conventional random walker were
found to be statistically significant in terms of the overlap
score. Based on 23 cases consisting of different sizes,
shapes, and locations of pulmonary nodules, the improved
random walker method obtains a higher average overlap
score compared to the conventional random walker, which
is shown in Table 3. )is good segmentation performance
can probably be ascribed to the acquired seeds and the
energy function designation. To further verify the per-
formance of the improved random walker, we adopt the
second metric, F-measure. )e improved random walker
has a high average and a low standard deviation of
F-measure values. Dakua and Sahambi [53] proposed a
method of the automatic seed selection using cantilever
beam equation and a combined adaptive threshold tech-
nique and located the seeds on demand at different loca-
tions around LV boundary. )e proposed method adopted
the adaptive threshold method to roughly separate the
nodule from the background. )e pixels are roughly
identified as a part of pulmonary nodule, whose intensities
are greater compared to the global threshold. )e
remaining pixels are considered as the background pixels.
Geodesic distance was adopted to create a small region
from an initial segmentation result. To acquire the nodule
seeds as uniformly as possible, a local search strategy was
introduced to acquire the other nodule seeds.

6. Conclusions and Future Works

In this paper, we propose an improved random walker
method for segmentation of GGO pulmonary nodules. )is
algorithm is an extension of the previously proposed al-
gorithm [54]. )e automatic seeds acquisition is significant
when a massive CT dataset needs to be examined. )e
geodesic distance and a local search strategy are introduced
to automatically acquire GGO nodule and background
seeds. )e main advantage of the improved random walker
is to automatically and accurately segment GGO pulmo-
nary nodules without any user interaction and shape as-
sumption. )e proposed local search strategy incorporates
intensity and texture features to define a similarity rule,
which can assign the pixels to a nodule seed set or a
background seed set. )e proposed affinity matrix consists
of an adjacency component and a feature-based compo-
nent. )e adjacency component is defined based on the
spatial distance. )e feature-based component is defined

based on intensity and texture features. )e proposed
energy function adds a label constraint term, which alle-
viates the accumulation of errors caused by the initial seeds
acquisition. )e weight of the label constraint term is based
on fuzzy membership value, which is calculated by building
two GMM models. )e proposed method is implemented
efficiently and simply.

)e results have demonstrated the robustness and effi-
ciency of the proposed segmentation method for the seg-
mentation of GGO pulmonary nodules. )e proposed
energy function is minimized by solving a linear system.)e
experimental results have shown that the improved random
walker achieves satisfactory segmentation results by both
quantitative and qualitative performance assessment, espe-
cially in complex GGO pulmonary nodules.

In future work, we will improve the accuracy and effi-
ciency of the improved random walker for some complex
GGO nodules. We also will extend this method to segment
various pulmonary nodules. When we directly calculate the
inverse matrix in (14), the computation cost is expensive,
especially when the number of image pixels is very large.
)erefore, we will research how to speed up the computation
of the improved random walker.
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M. Pietikäinen, “Median robust extended local binary pattern
for texture classification,” IEEE Transactions on Image Pro-
cessing, vol. 25, no. 3, pp. 1368–1381, 2016.

[46] R. Rastghalam and H. Pourghassem, “Breast cancer detection
using MRF-based probable texture feature and decision-level
fusion-based classification using HMM on thermography
images,” Pattern Recognition, vol. 51, pp. 176–186, 2016.

[47] Z. Guo, X. Wang, J. Zhou, and J. You, “Robust texture image
representation by scale selective local binary patterns,” IEEE
Transactions on Image Processing, vol. 25, no. 2, pp. 687–699,
2016.

[48] F. Bianconi and A. Fernandez, “Evaluation of the effects of
Gabor filter parameters on texture classification,” Pattern
Recognition, vol. 40, no. 12, pp. 3325–3335, 2007.

[49] S. G. Armato, G. McLennan, L. Bidaut, and M. F. Mcnitt-
Gray, “)e lung image database Consortium, (LIDC) and
image database resource initiative (idri): a completed

reference database of lung nodules on CT scans,” Medical
Physics, vol. 38, no. 2, pp. 915–931, 2011.

[50] C. Jacobs, E. V. Rikxoort, T. Twellmann et al., “Automatic
detection of subsolid pulmonary nodules in thoracic com-
puted tomography images,” Medical Image Analysis, vol. 18,
no. 2, pp. 374–384, 2014.

[51] K. H. Zou, S. K. Warfield, B. Aditya et al., “Statistical vali-
dation of image segmentation quality based on a spatial
overlap index,” Academic Radiology, vol. 11, no. 2,
pp. 178–189, 2004.

[52] T. Messay, R. C. Hardie, and T. R. Tuinstra, “Segmentation of
pulmonary nodules in computed tomography using a re-
gression neural network approach and its application to the
Lung Image Database Consortium and Image Database Re-
source Initiative dataset,” Medical Image Analysis, vol. 22,
no. 1, pp. 48–62, 2015.

[53] S. P. Dakua and J. S. Sahambi, “Automatic left ventricular
contour extraction from cardiac magnetic resonance images
using cantilever beam and random walk approach,” Car-
diovascular Engineering, vol. 10, no. 1, pp. 30–43, 2010.

[54] X. X. Li and F. Liu, “Random walks with GMM statistical
inference algorithm for segmentation of ground glass opacity
pulmonary nodules,” 12th International Symposium on
Computational Intelligence and Design (ISCID), vol. 2,
pp. 225–228, 2019.

Journal of Healthcare Engineering 15


