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1  | INTRODUC TION

The recent global warming due to the increase of greenhouse 
gases caused by human activities is driving global species redis-
tributions (Hampe & Petit, 2005; Jackson & Sax, 2010; Pearson & 
Dawson, 2003). In response to global warming, many species have 
attempted to keep pace with climate change by adjusting their phe-
nology and physiology to match new climatic conditions (Walther 

et al., 2002), or shifting their distributions toward higher altitudes 
or latitudes to track suitable habitats (Chen et al., 2011; Hampe & 
Petit, 2005; Jarzyna et al., 2021; Jump & Penuelas, 2005; Tehrani 
et al., 2020; Walther et al., 2002). Unfortunately, those species that 
failed to shift their distribution lost a substantial proportion of their 
suitable habitats or have even became extinct globally (Flagmeier 
et al., 2014; Sproull et al., 2015). Furthermore, this situation may 
worsen under future climate change (Thomas et al., 2014; Warren 
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Abstract
Understanding and predicting how species will respond to climate change is crucial 
for biodiversity conservation. Here, we assessed future climate change impacts on 
the distribution of a rare and endangered plant species, Davidia involucrate in China, 
using the most recent global circulation models developed in the sixth Assessment 
Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the 
potential range shifts in this species by using an ensemble of species distribution 
models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested 
that the temperature annual range, annual mean temperature, and precipitation of 
the driest month are the most influential predictors in shaping distribution patterns 
of this species. The projections of the ensemble SDMs also suggested that D. involu-
crate is very vulnerable to future climate change, with at least one- third of its suitable 
range expected to be lost in all future climate change scenarios and will shift to the 
northward of high- latitude regions. Similarly, at least one- fifth of the overlap area of 
the current nature reserve networks and projected suitable habitat is also expected 
to be lost. These findings suggest that it is of great importance to ensure that adap-
tive conservation management strategies are in place to mitigate the impacts of cli-
mate change on D. involucrate.
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et al., 2013). Thus, in order to mitigate the negative effects of cli-
mate change on species, conservation strategies should be refined 
by modeling species distributions to identify to what extent they 
could be influenced by future climate change (Ramirez- Villegas 
et al., 2014; Thuiller et al., 2008).

In the past two decades, species distribution models (SDMs) have 
been widely used to assess the impacts of future climate change 
on species distributions and guide conservation planning (Kujala 
et al., 2013; Maggini et al., 2014; Wiens et al., 2009). However, SDMs 
may suffer from a lack of precision and portability due to the vari-
ation in covariate selections (Zhang & Zhang, 2012), type of SDM 
used (Hartley et al., 2006; Pearson et al., 2006; Thuiller et al., 2009; 
Wenger et al., 2013), and climate projections arising from different 
global circulation models (GCMs) and CO2 emission scenarios (Barry 
& Elith, 2006; Wenger et al., 2013), which can yield misleading or 
inconsistent outcomes, posing challenges for decision- making (Elith 
et al., 2006). Ensemble modeling approaches, which combined a se-
ries of SDMs, can produce consensus projections that may outper-
form single SDMs (Araújo & New, 2007; Marmion et al., 2009) and 
reduce the predictive uncertainty of single algorithm by combining 
their predictions (Tehrani et al., 2021; Thuiller et al., 2014). By using 
ensemble modeling approaches, more robust projections can be 
produced with reasonable interpretation (Araújo & Guisan, 2006). 
Consequently, these approaches have been widely used to estimate 
the distributions of species under future climate change scenarios for 
plants (Forester et al., 2013), amphibians (Zhang, Dong, et al., 2020; 
Zhang, Mammola, et al., 2020), insects (Marshall et al., 2018), and 
mammals (Ahmad et al., 2020; Yen et al., 2011).

Davidia involucrata Baill., commonly known as dove tree or 
handkerchief tree, is a rare and endangered species listed in the 
China Plant Red Data Book under first- grade state protection (Liu 
et al., 2019). It is also a Tertiary relict plant endemic to China (Fu & 
Jin, 1992), currently ranges approximately from 98– 110°E, 26– 32°N 
in southwestern and south- central China, including Yunnan, Guizhou, 
Sichuan, southern Shaanxi, southern Gansu, Chongqing, Hubei, and 
Hunan Provinces (Li, 1954; Liu et al., 2019; Takhtajan, 1980; Tang 
et al., 2017). Its populations are often found in subtropical evergreen 
broad- leaved forests or in mixed forests of temperate deciduous 
broad- leaved trees at altitudes of between1100 and 2,600 m (He 
et al., 2004). Owing to the highly strict ecotope and recruitment 
limitation (i.e., low reproduction rate and limited dispersal ability), 
the population age structure of D. involucrate is declining (Wang Yu- 
sheng et al., 2019). In addition, the increasing intensity of human 
activities (e.g., logging) has led to a sharp decrease of its remaining 
habitats (Wang Yu- sheng et al., 2019). Despite its threatened status, 
few studies have explored the vulnerability of D. involucrate to cli-
mate change (Tang et al., 2017; Wang Yu- sheng et al., 2019). By using 
ecological niche models (ENMs) (Boria et al., 2014; Peterson, 2006), 
Tang et al. (2017) projected the potential suitable habitats of this 
species under past, current, and future climatic conditions. In their 
work, the obsolete CMIP5 climate models were used to simulate fu-
ture climate conditions (Tang et al., 2017). However, many studies 
have shown that the most recent CMIP6 climate models perform 

better in the simulation of future climate conditions compared to the 
CMIP5 climate models (Fan et al., 2020; Xin et al., 2020). Therefore, a 
rigorous analysis combined ensemble modeling approaches and the 
CMIP6 climate models investigating potential impacts of future cli-
mate change on the distribution of D. involucrate is of great urgency 
and significance.

In this study, we aim to (a) assess the vulnerability of D. involucrate 
to climate change (i.e., whether the suitable habitats of D. involucrate 
will suffer great lost under future climate change), and (b) evaluate 
the conservation effectiveness of current nature reserve networks in 
protecting D. involucrate under climate change. To this end, we com-
piled a large dataset on spatially explicit species presence records of 
the D. involucrate and environmental data (bioclimatic variables) cov-
ering China and subsequently used ensemble modeling approaches 
to project the potential suitable habitats of D. involucrate under cur-
rent and future climatic conditions. According to our knowledge, our 
study is one of the first studies to investigate how D. involucrate will 
response to future climate change by using ensemble modeling ap-
proaches and the most recent CMIP6 global circulation models.

2  | MATERIAL AND METHODS

2.1 | Study area and species occurrence data

According to previous studies on the suitable habitat of D. involu-
crate, we chose the whole China as the study area (Figure 1). As 
a Tertiary relict plant endemic to China, D. involucrate has been 
widely studied and long- term national observation records are 
available in China (Tang et al., 2017; Wang Yu- sheng et al., 2019), 
which makes China immensely suitable for assessing the potential 
effects of climate change on the geographical distribution of D. in-
volucrate. Here, we assembled an database of occurrence records 
of D. involucrate in China from multiple data sources, including 
Chinese Virtual Herbarium (CVH, http://www.cvh.ac.cn), National 
Specimen Information Infrastructure (NSII, www.nsii.org.cn), Global 
Biodiversity Information Facility (GBIF, https://www.gbif.org), and 
other publications (e.g., Wang Yu- sheng et al., 2019). These occur-
rence records were mainly collected from field surveys, which were 
carried out between the years 1971 and 2017. Overall, 793 occur-
rence records of D. involucrate were collected. These occurrence re-
cords were mainly distributed in 198 nature reserves (the Ministry 
of Environmental Protection, http://www.mep.gov.cn/stbh/zrbhq/ 
qgzrb hqml/). As our climate data were from the years 1979– 2013 
(see below), we excluded the occurrence records that were not col-
lected from this time period. Furthermore, to reduce potential errors 
in species' geographic locations of occurrence data, we only include 
species occurrence records with geographic locations. Finally, to 
ensure that all occurrence records were in the species' native geo-
graphic locations, we also excluded the species occurrence records 
collected in manual intervention areas, such as parks and experimen-
tal forests. From this process, we had 337 occurrence records avail-
able to use (Figure 1).

http://www.cvh.ac.cn
http://www.nsii.org.cn
https://www.gbif.org
http://www.mep.gov.cn/stbh/zrbhq/qgzrbhqml/
http://www.mep.gov.cn/stbh/zrbhq/qgzrbhqml/
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In order to reduce the high uncertainty in geographic coordinates 
of the occurrence records and minimize the sampling bias effect in 
the occurrence records dataset, all the 337 occurrence records were 
compiled at a spatial resolution of 10 × 10 km grids cell. After remov-
ing duplicate records within each gird cell, we obtained 324 presence 
records to model ecological niches for D. involucrate.

2.2 | Climatic variable

19 bioclimatic variables (BIO1- BIO19; Appendix S1) for the time pe-
riod 1979– 2013 were obtained from CHELSA (http://chels a- clima 
te.org; Booth et al., 2014; Busby, 1988; Karger et al., 2017), with a 
spatial resolution of 30 arc- seconds (~1 km). The future 19 bioclimatic 
variables with a 2.5 arc- minutes resolution for two time periods, 
2050s (2041– 2060) and 2070s (2061– 2080), under two representa-
tive concentration pathways (RCPs) scenarios, RCP2.6 and RCP8.5, 
from six widely used global circulation models (GCMs): CNRM- 
CM6- 1, CNRM- ESM2- 1, CanESM5, IPSL- CM6A- LR, MIROC- ES2L, 
and MIROC6, were extracted directly from the WorldClim Version 
2.1 dataset (Fick & Hijmans, 2017). For each time period, each GCM 
and for each RCP scenarios, we projected all maps of current and 
future climate variables onto the same 10- km equal area grid as used 
for fitting the distribution models, using a bilinear interpolation.

The 19 climate variables used in this study are usually strongly 
correlated (Marshall et al., 2018). To minimize multicollinearity 
among variables, we used Pearson's correlations and variance infla-
tion factors (VIFs) to exclude highly correlated variables. Variables 
with a Pearson correlation >0.70 were considered highly correlated 
(Dormann et al., 2013), and a VIF >5 was used as a signal that a model 

had collinearity issues (Rogerson, 2010). Finally, six climate variables 
were selected for modeling species distributions, including annual 
mean temperature (BIO1), isothermality (BIO3), temperature annual 
range (BIO7), precipitation of the driest month (BIO14), precipita-
tion seasonality (BIO15), and precipitation of the warmest quarter 
(BIO18) (Appendix S2).

2.3 | Species distribution modeling

An ensemble of species distribution models (Araújo & Guisan, 2006) 
was used to model potential suitable habitat for D. involucrata using 
the biomod2 package in the R platform (v. 4.0.4; http://cran.r- proje 
ct.org). We chose the ensemble modeling approach because of its 
ability to create a consensus of the predictions of multiple algorithms 
and reduce the predictive uncertainty of single algorithm (Kanagaraj 
et al., 2019; Thuiller et al., 2014; Zhang, Dong, et al., 2020; Zhang, 
Mammola, et al., 2020). Ten algorithms were considered in the 
ensemble model: artificial neural network (ANN; Ripley, 1996), 
classification tree analysis (CTA; Breiman et al., 1984), flexible 
discriminant analysis (FDA; Hastie et al., 1994), generalized addi-
tive model (GAM; Hastie & Tibshirani, 1990), generalized boosting 
model (GBM; Ridgeway, 1999), generalized linear model (GLM; 
McCullagh & Nelder, 1989), multiple adaptive regression splines 
(MARS; Friedman, 1991), maximum entropy (MAXENT; Phillips 
et al., 2006), random forest (RF; Breiman, 2001), and surface range 
envelope (SRE; Busby, 1991). For algorithms requiring species ab-
sence records, we generated 10,000 pseudo- absence points with 
the equal number as the occupied grids for GAM, GBM, GLM, and RF 
and 10,000 background points for MAXENT by randomly sampling 

F I G U R E  1   Potential suitable (blue) 
and unsuitable (gray) habitats suitability 
of Davidia involucrata Baill. under 
current climatic conditions in China. Red 
points represent occurrence records of 
D. involucrata

http://chelsa-climate.org
http://chelsa-climate.org
http://cran.r-project.org
http://cran.r-project.org
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without replacement. To avoid model over- fitting, the selection of 
pseudo- absence or background points was limited to biological rel-
evance combinations occupied by the species' range map.

To evaluate the accuracy of each algorithm, we performed 
cross- validation on each algorithm using bootstrap approach, where 
random subsets of 80% of each dataset for training data and the re-
maining 20% for testing algorithm performance using the area under 
the receiver operating characteristics curve (AUC) and true skill sta-
tistics (TSS). This procedure was repeated 10 times to create predic-
tions independent of the training data. Algorithms with AUC >0.90 
and TSS >0.80 were considered to have good predictive perfor-
mance (Allouche et al., 2006; Gallien et al., 2012; Swets, 1988) and 
were thus kept in the final ensemble model. Based on the selected 
algorithms in the final ensemble model, we evaluated the relative 
importance of predictor variables in determining the geographical 
distribution of D. involucrate by calculating the change in correlation 
between the covariates and the response with and without the se-
lected variable (Thuiller et al., 2015). The final ensemble model was 
then projected to current and future climatic conditions by using all 
occurrence and pseudo- absence data. Finally, these habitat suitabil-
ity maps were converted to binary presence absence maps using a 
threshold that maximums model sensitivity plus specificity, which 
has been shown generally to perform well (Lawson et al., 2014; Liu 
et al., 2013; Thuiller et al., 2015).

2.4 | Statistical analysis

Analyses were conducted on the ensemble model map projections 
of binary presence absence maps. Firstly, to assess potential impacts 
of climate change on species ranges, following Zhang et al. (2015), 
we used two metrics to quantify species' vulnerability: the relative 
change in total area of suitable habitat (CSH) and the loss of current 
suitable habitat (LSH). The first metric assumes unlimited dispersal 
into the projected entire suitable habitats in the future time periods 
and can be calculated using the following equation:

where AREAfuture and AREAcurrent are the area of current and future 
suitable habitats. The second metric assumes no dispersal into the pro-
jected suitable habitats out of the current suitable habitats and can be 
calculated using the following equation:

LSH=

(

1−
Overlap

(

AREAfuture, AREAcurrent

)

AREAcurrent

)

×100.

Secondly, to detect the direction and distance of species range 
shifts under future conditions, we determined the centroids of cur-
rent and future binary presence absence maps using the R package 
“rgeos” with the “gCentroid” function.

Finally, to explore the conservation effectiveness of current 
nature reserve networks in protecting D. involucrate under climate 
change, we also calculated the area of the current and projected 

suitable habitat overlapped with the current nature reserve net-
works, respectively.

3  | RESULTS

3.1 | Model performance and variable contribution

The AUC and TSS measures provided highly consistent estimates of 
the model performance of the 10 modeling algorithms (Table 1). As 
the mean AUC and TSS values of the 10 modeling algorithms ex-
cept SRE are all above 0.9 and 0.8, respectively, we removed SRE 
from the final ensemble model. The AUC and TSS value of the final 
ensemble model is 0.975 and 0.898, respectively, which is higher 
than that of the individual modeling algorithms. Among the six se-
lected predictor variables, the temperature annual range is the most 
influential variable, followed by annual mean temperature, precipi-
tation of the driest month, isothermality, precipitation seasonality, 
and precipitation of the warmest quarter (Table 2). The response 
curves of the above six selected predictor variables indicate that 

CSH= (AREAfuture−AREAcurrent)∕AREAcurrent×100,

TA B L E  1   Performance of 10 modeling algorithms used to 
predict habitat suitability of Davidia involucrate

Modeling algorithms AUC TSS

Artificial neural networka  0.944 ± 0.006 0.841 ± 0.020

Classification tree analysisa  0.926 ± 0.015 0.840 ± 0.026

Flexible discriminant analysisa  0.945 ± 0.005 0.822 ± 0.017

Generalized additive modela  0.958 ± 0.005 0.858 ± 0.016

Generalized boosting modela  0.961 ± 0.007 0.849 ± 0.021

Generalized linear modela  0.952 ± 0.003 0.847 ± 0.013

Multiple adaptive regression 
splinesa 

0.954 ± 0.006 0.846 ± 0.012

MAXENT. Phillipsa  0.964 ± 0.005 0.851 ± 0.020

Random foresta  0.966 ± 0.005 0.870 ± 0.016

Surface range envelope 0.849 ± 0.011 0.697 ± 0.023

Note: Results are shown as mean ± SE.
Abbreviations: AUC, area under the receiver operating characteristic 
curve; TSS, true skill statistics.
aModels were selected to develop the ensemble model.

TA B L E  2   Relative contributions of the nine selected predictor 
variables in the ensemble model of habitat suitability for Davidia 
involucrate Ball

Predictor variables
Relative 
importance

Annual mean temperature (BIO1) 0.344 ± 0.009

Isothermality (BIO3) 0.091 ± 0.003

Temperature annual range (BIO7) 0.834 ± 0.017

Precipitation of the driest month (BIO14) 0.138 ± 0.002

Precipitation seasonality (BIO15) 0.013 ± 0.001

Precipitation of the warmest quarter (BIO18) 0.006 ± 0.001
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F I G U R E  2   Changes in suitable ranges of Davidia involucrata Baill. projected by ensemble SMDs under each GCMs and RCP scenario 
in: (a) 2050s and (b) 2070s. Four trajectories were assigned to each grid cell by comparing habitat suitability under current and future 
climatic conditions: “absence,” a grid that is unsuitable for this species under current climatic conditions remain unsuitable under future 
climatic conditions; “gain,” a grid that is unsuitable for this species under current climatic conditions become suitable under future climatic 
conditions; “lost,” a grid that is suitable for this species under current climatic conditions become unsuitable under future climatic conditions; 
“persistence,” a grid that is suitable for this species under current climatic conditions remain suitable under future climatic conditions. The 
black lines are the boundaries of the current nature reserves
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D. involucrate occurs mainly in areas with annual mean temperature 
ranging from approximately −0.7 to 19.5℃, isothermality ranging 
from approximately 6.9– 38.2, temperature annual range ranging 
from approximately 21.9– 31.9℃, precipitation of the driest month 
between about 0.1 and 58 mm, precipitation seasonality between 
about 39 and 134 mm, and precipitation of the warmest quarter be-
tween about 106 and 2,356 mm (Appendices S3– S11).

3.2 | Species' range shifts under future 
climatic conditions

Under the current conditions, the potential suitable area for D. in-
volucrate in China was 959,700 km2. Current suitable habitat for 
D. involucrate is mainly distributed in Yunnan, Guizhou, Sichuan, 
southern Shaanxi, southern Gansu, eastern Tibet, Chongqing, 
Hubei, and Hunan Provinces (Figure 1). Besides, small areas 
in Guangxi, Guangdong, Fujian, Jiangxi, Zhejiang, Jiangsu, and 
Shandong provinces are also predicted to be suitable for D. involu-
crate. The projections of future habitat suitability for D. involucrate 
predicted severe range contraction under all scenarios (Figures 2 

and 3). Specifically, by assuming global dispersal, the proportion 
of current suitable habitats of this species projected to be lost 
ranged from 28.08% (under IPSL- CM6A- LR climate model and 
RCP 2.6 scenario) to 53.08% (under CanESM5 climate model and 
RCP 8.5 scenario) by the 2050s, and from 33.27% (under CNRM- 
ESM2- 1 climate model and RCP 2.6 scenario) to 68.86% (under 
CNRM- CM6- 1 climate model and RCP 8.5 scenario) by the 2070s 
(Figures 2 and 3a, b). The loss of potential suitable habitats under 
zero dispersal is more severe than those under global dispersal 
(Figures 2 and 3c,d), despite having a similar trend in predicted 
species range size. However, projections indicated that a small part 
of Gansu, Shaanxi, and Tibet provinces will probably become suit-
able for D. involucrate in the future (Figure 2).

Under future climate conditions, centroids of potential suitable 
habitats of D. involucrate under most scenarios were projected to 
shift north- east (Figure 4). The exception is that this species was 
projected to experience north- west shifts under CanESM5 and 
IPSL- CM6A- LR climatic models and RCP 8.5 scenario, respectively 
(Figure 4c,d). The magnitude of species' range shifts varied greatly 
under different GCMs, different RCPs, and different assumptions of 
species' dispersal ability (Figure 4). The species would need move 

F I G U R E  3   The projected range size changes of Davidia involucrate Ball. in 2050s and 2070s. The range size changes (%) are relative to the 
predicted suitable areas of D. involucrate under the current climate conditions. (a)– (d), projections of range size changes of Davidia involucrate 
were obtained from the ensemble models under the unlimited dispersal ((a), (b)) and no dispersal ((c), (d)) scenarios using multiple future 
climate projections for two time periods from the selected nine GCMs, and under the representative concentration pathway RCP2.6 ((a), (c)) 
and RCP8.5 ((c), (d)). 48 ensemble models were built for D. involucrate. The bars indicate the median value
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from 165.01 km (under the MIROC- ES2L climate model and RCP 8.5 
scenario by the 2070s) to 419.10 km (under the CanESM5 climate 
model and RCP 8.5 scenario by the 2070s) under global dispersal 
and from 88.83 km (under the CNRM- ESM2- 1 climate model and 
RCP 8.5 scenario by the 2070s) to 175.07 km (under the CNRM- 
CM6- 1 climate model and RCP 8.5 scenario by the 2070s) under zero 
dispersal (Figure 4).

3.3 | The Effectiveness of current nature 
reserve networks

The current nature reserve networks protect 63.18% (628,000 km2) 
of current suitable habitat. However, the overlap area of the cur-
rent nature reserve networks and projected suitable habitat would 
decrease severely under all scenarios (Figure 5). Specifically, by as-
suming global dispersal, the projected changes of the overlap area of 
the current nature reserve networks and projected suitable habitat 
ranged from 33.28% (under CanESM5 climate model and RCP 8.5 
scenario) to 47.45% (under IPSL- CM6- LR climate model and RCP 2.6 
scenario) by the 2050s and from 19.11% (under IPSL- CM6A- LR cli-
mate model and RCP 8.5 scenario) to 57.21% (under MIROC- ES2L 
climate model and RCP 8.5 scenario) by the 2070s (Figure 5a,b). 
Similarly, the overlap area of the current nature reserve networks 
and projected suitable habitat under zero dispersal is larger than 
those under global dispersal (Figure 5c,d).

4  | DISCUSSION

Understanding and predicting how species will response to future cli-
mate change is crucial for biodiversity conservation (Wiens et al., 2009) 
and has required novel approaches with high predictive performance 
and low predictive uncertainty (Elith et al., 2006; Thuiller et al., 2014). 
In this study, by using ensemble SDMs and the CMIP6 GCMs, we 
projected the distribution of suitable habitats of D. involucrate under 
current and future climatic conditions. The results suggest that D. invo-
lucrate is extremely vulnerability of to future climate change and future 
climate change would negate the conservation effectiveness of the 
current nature reserves networks. These findings should inform the 
dialogue determining where climate change fits into broader picture 
of conservation for D. involucrate and thus have important implications 
for guiding future conservation planning.

Previous studies have reported that potential suitable habi-
tats of D. involucrate were mainly distributed in mountainous areas 
with narrow annual temperature range and high precipitation (Liu 
et al., 2019; Su & Zhang, 1999), reflecting this species cold intoler-
ance (Su & Zhang, 1999). Consistent with these previous studies, our 
results show that, among the selected six climate variables, tempera-
ture annual range, annual mean temperature, and precipitation of 
the driest month were the three most important predictors of the 
distribution of D. involucrate. Therefore, broad temperature annual 
range, extreme high and/or low temperature, together with low pre-
cipitation events in future time periods, could lead to the loss of suit-
able habitats for this species.

F I G U R E  4   Centroid changes between current distributions of Davidia involucrate Ball. and projected distributions by ensemble species 
distribution model under future changing climate conditions: (a) under RCP 2.6 scenario in 2050s, (b) under RCP 8.5 scenario in 2050s, 
(c) under RCP 2.6 scenario in 2070s, and (d) under RCP 8.5 scenario in 2070s. The arrow in each map shows direction and distance between 
present and future distribution centroids. The start of arrow represents centroid of projected suitable area of D. involucrate under present 
climate conditions, while the end coincides with the position of the centroid under future climate scenarios. The real and dashed lines 
represent global dispersal and no dispersal, respectively
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It is often assumed that more complex and more up- to- date mod-
els will perform better and/or produce more robust projections than 
previous- generation models (USGCRP, 2017). Consistent with previ-
ous studies (Elith et al., 2006; Thuiller et al., 2014), our results showed 
that the ensemble SDMs have higher predictive ability than individual 
SDMs. Furthermore, our future projection suggested that a large pro-
portion of suitable habitats will be lost under future climate change, 
which has provided useful dialogue informing conservation strategies 
for D. involucrate. Our results revealed that the loss of the suitable 
habitat of D. involucrate would affect the conservation effectiveness 
of the current nature reserve networks, which does not protect the 
current suitable habitat of D. involucrate adequately, nor will they 
protect future potential suitable habitat. These findings also inform a 
critical initial step in implementing the adaptation planning processes 
for protecting D. involucrate (Yu et al., 2017; Zhang et al., 2017). On 
one hand, some nature reserves located in Sichuan Basin would suf-
fer the greatest loss of suitable habitat under future climate change 
(Figure 2). These nature reserves are urgent need to be reevaluated 
under the background of climate change (Bellard et al., 2012; Hansen 
et al., 2010), and coping strategies to deal with these potential threats 

require further in- depth study; on the other hand, a part of Sichuan, 
Gansu, Shaanxi, and Tibet provinces were identified to be the poten-
tial climatic refuges (i.e., unchanged and new gained suitability habi-
tat; Ashcroft, 2010) for D. involucrate (Figure 2). It is urgent needs to 
design these regions as priority for conservation and to establish new 
nature reserves in the currently unprotected areas (e.g., southern 
Shaanxi and southern Gansu) in these regions.

Despite the predictive power of their ensemble modeling of 
D. involucrate, an important limitation in the present study is that we 
assessed future habitat suitability under two extreme dispersal as-
sumptions (i.e., no dispersal and unlimited dispersal), which ignores 
the realistic rates and modes of dispersal of this species (Saupe 
et al., 2012). These assumptions are likely inaccurate, which could 
lead to overestimation of suitable habitat under the unlimited dis-
persal assumption or underestimation under the zero- dispersal as-
sumption (Engler & Guisan, 2009; Viana, 2017; Zanatta et al., 2020). 
For instance, Engler and Guisan (2009) assessed the potential im-
pacts of climate change on habitat suitability of 287 mountain plants 
under four dispersal scenarios (unlimited dispersal, zero dispersal, 
realistic dispersal, and realistic dispersal with long- distance dispersal 

F I G U R E  5   The projected changes of the overlap area of current nature reserve networks and potential suitable habitat of 
Davidia involucrate Ball. in 2050s and 2070s. The overlap area changes (%) are relative to the overlap area of the predicted suitable areas 
of D. involucrate under the current climate conditions and current nature reserve networks. (a)– (d), projections of overlap area changes 
of D. involucrate were obtained from the ensemble models under the unlimited dispersal ((a), (b)) and no dispersal ((c), (d)) scenarios using 
multiple future climate projections for two time periods from the selected nine GCMs, and under the representative concentration pathway 
RCP2.6 ((a), (c)) and RCP8.5 ((c), (d))
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events). Their result showed that the projected future distributions 
under realistic dispersal were significantly different from those of 
other dispersal scenarios. However, regardless of dispersal scenario, 
our results highlight the high vulnerability of D. involucrate to climate 
change and provide the bounds to the magnitude of the change.

Overall, our research provides fundamental knowledge for un-
derstanding the potential impacts of climate change on the distribu-
tion of D. involucrate. This study also provides useful information for 
comprehending vegetation changes at global scales under climate 
change, especially for the climate- related range shifts of Tertiary rel-
ict plants (Tang et al., 2017). However, to effectively improve the 
predictive power of SDM projections, we recommend incorporat-
ing diverse ecological processes, such as morphology and dispersal 
strategies, into the future projections.
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