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Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment
approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-
based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass
spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity
measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral
similarity measures, cosine correlation, Pearson’s correlation, Spearman’s correlation, partial correlation, and part correlation, and
examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral
similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the
partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from
complex biological samples.

1. Introduction

Metabolomics is the systematic study of metabolites found
within cells and biological systems. It has emerged as the
latest of the “omics” disciplines to decipher the complex time-
related concentration, activity, and flux of metabolites in
biological or clinical samples, offering a path to a wealth of
information about a person’s health.

Multiple analytical platforms such as liquid chromatog-
raphy-mass spectrometry (LC-MS), gas chromatography-
mass spectrometry (GC-MS), and nuclear magnetic reso-
nance spectroscopy (NMR) have been used inmetabolomics.
Of these analytical platforms, the comprehensive two-
dimensional gas chromatography coupled with mass spec-
trometry (GC×GC-MS) is a promising analytical platform
in metabolomics for disease biomarker discovery [1–3]. This
approach uses a short column as the second dimension
GC column after the first dimension GC column which is
the main analytical column. In general, these two columns

have different stationary phases, and the first dimension
column is operated at a lower temperature than the second
dimension column. The difference of column temperature
and the chromatography matrix enables the compounds
coeluted from the first dimension column to be further
separated in the second dimnsion column. The compounds
separated in the second dimension column are directed to
a mass spectrometry system for detection. The GC×GC-
MS platform offers several advantages for analysis of com-
plex samples, such as an order-of-magnitude increase in
separation capacity, significant increase in signal-to-noise
ratio and dynamic range, and improvement of mass spectral
deconvolution and similarity matches [4, 5], providing more
and accurate information about metabolite retention times
and mass spectra.

In disease biomarker discovery, multiple samples from
each biological cohort (disease or control) are usually col-
lected to increase the statistical power, and each of these
samples is preprocessed and analyzed on a high throughput
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analytical platform such as GC×GC-MS. Metabolic pro-
files obtained from these samples must then be aligned to
compare the difference of abundance level of each com-
pound between/among sample cohorts. The purpose of peak
alignment is to recognize molecular features of the same
metabolite occurring in different samples. Two alignment
approaches have been developed: profile alignment and
peak matching. The profile alignment uses the entire chro-
matographic data, that is, the raw instrumental data [6–9].
However, this approach aligns the GC×GC-MS data based
on retention time alone, although the mass spectrum of
fragment ions is readily available in the raw instrument
data. Aligning metabolic profiles based on both retention
time and mass spectrum can decrease the rate of false-
positive alignment. In order to account for this fact, the peak
matching approachwas introduced.The raw instrument data,
in this case, are first reduced into compound peak list, and
the peak lists of multiple samples are then employed for
alignment [10–15]. In this study, we examined the effects of
mass spectral similarity measures on the performance of the
peak matching-based alignment approach.

Several peak matching-based alignment algorithms have
been developed, such as MSort [10], DISCO [11], mSPA
[12], SWPA [13], and MbPA [14]. MSort is a two-step peak
alignment using a distance window, while DISCO is a two-
step peak alignment using a mass spectral similarity window.
The algorithm mSPA employs a mixture similarity score to
simultaneously evaluate both the retention time distance and
the mass spectral similarity. SWPA performs peak alignment
using Smith-Waterman local alignment algorithm. Of these
methods, MbPA is the only model-based approach, which
uses an empirical Bayes model and the posterior distribution
for peak alignment.DISCO, SWPA, andMbPAcan be applied
to both homogeneous and heterogeneous data, while MSort
and mSPA are able to align only for homogeneous data.
The homogeneous data mean that all samples were analyzed
under the identical GC×GC-MS experiment conditions,
while the heterogeneous data refer to that experiment data
were acquired under different experiment conditions. Most
recently, Jeong et al. [15] proposed a post hoc analysis for
peak alignment by incorporating the results of compound
identification.

The retention time distance measure and the mass spec-
tral similarity measure play a critical role in peak matching-
based alignment. As for the retention time distance measure,
MSort and DISCO use the Euclidean distance, while SWPA
andMbPA use the rank of the Euclidean distance. In particu-
lar, mSPA investigated the effect of the four different distance
measures, including Euclidean distance, Maximum (also
known as Chebyshev) distance, Manhattan distance, and
Canberra distance, on peak alignment and concluded that the
Canberra distance is a promising distance measure for peak
alignment. In case of the mass spectral similarity measure,
MSort, DISCO, and SWPA use Pearson’s correlation, while
mSPA and MbPA use the cosine correlation (also known as
dot product).

The mass spectral similarity measure is the key to
compound identification in metabolomics, and is fulfilled

by matching experimental mass spectra to mass spectra
stored in a reference library. Various mass spectral similarity
measures have been developed including cosine correlation
[16], composite similarity [16], probability-based matching
system [17], Hertz et al. similarity index [18], normalized
Euclidean distance [19], absolute value distance [19], and
wavelet and Fourier transforms-based composite measures
[20]. Later, Kim et al. [21] developed partial and semipartial
correlation-based similarity measures and showed that their
similarity measures perform better than the dot product
and its composite versions, including wavelet and Fourier
transforms-based composite measures.

Although both the compound identification and the peak
alignment use mass spectra and the effect of mass spectral
similarity measures on compound identification has been
studied, the effect of the different mass spectral similarity
measures on the performance of peak alignment still remains
unknown. Therefore, the objective of this work was to
compare the effects of five mass spectral similarity measures,
cosine correlation, Pearson’s correlation, Spearman’s correla-
tion, partial correlation, and part (also known as semipartial)
correlation, on peak alignment. For ease of comparison, we
selected the peak alignment algorithmmSPA since it includes
various peak alignment approaches and the homogeneous
data are more practically applicable.

The remaining of the paper is organized as follows.
Section 2 contains a review of mSPA and a detailed descrip-
tion of five mass spectral similarity measures. In Section 3,
the selected mass spectral similarity measures were applied
to experimental GC×GC-MS data to investigate the effect
of the mass spectral similarity measures on peak alignment
using mSPA. Finally, Section 4 provides some discussion and
is closed with conclusions.

2. Method and Material

Let 𝑅 = {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑚
} be the peak list of a reference

chromatogram and 𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
} the peak list of a

target chromatogram, where 𝑟
𝑖
and 𝑡
𝑗
(1 ≤ 𝑖 ≤ 𝑚, 1 ≤
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) and (𝑡
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, 𝑡
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as its mass spectrum, 𝑋
𝑟𝑖
and 𝑋
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, respectively. Note that the

mass spectrum𝑋
𝑎
is a vector of intensities for the peak 𝑎, such

as𝑋
𝑎
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑔
), where 𝑔 is the total number of mass-

to-charge ratio (m/z). We call each peak in the reference peak
list a reference peak and a peak in the target peak list a target
peak. The distance and the similarity refer to the retention
times and the mass spectral information, respectively. All the
statistical analyses and simulations were performed using a
statistical package R (R Development Core Team).

2.1. Review of mSPA. The peak alignment R package mSPA
[12] provides five peak alignment algorithms for users
(http://mrr.sourceforge.net/). The five peak alignment algo-
rithms are PAD, PAS, SW-PAD, DW-PAS, and PAM. Here
PAD is a peak alignment procedure using solely the peak
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distance without window, and PAS performs the peak align-
ment based on the spectral similarity without window. SW-
PAD and DW-PAS are window-based peak alignments. SW-
PAD stands for the peak alignment with a similarity-based
window, and DW-PAS aligns peaks using a distance-based
window. Kim et al. [12] further developed amixture similarity
measure (𝑀

𝑑
). That is, the mixture similarity score between

a target peak 𝑡
𝑗
and a reference peak 𝑟

ℎ
is defined by

𝑀
𝑑
(𝑡
𝑗
, 𝑟
𝑖
) =

𝑤

1 + 𝐷
𝑑
(𝑡
𝑗
, 𝑟
𝑖
)

+ (1 − 𝑤) ⋅ 𝑆 (𝑡
𝑗
, 𝑟
𝑖
) , (1)

where 𝑤 (0 ≤ 𝑤 ≤ 1) is a mixture weight factor, 𝑆(𝑡, 𝑟) and
𝐷
𝑑
(𝑡, 𝑟) are a spectral similarity score and a distance measure

between two peaks 𝑡 and 𝑟, respectively. PAM is the peak
alignment method using this mixture similarity without any
window. The main difference of PAM over other approaches
is the ability to use both the retention time distance and the
mass spectral similarity at the same time without window. In
addition, an optimization-based peak alignment, OP-PAM, is
also incorporated in mSPA. OP-PAM is the optimal version
of PAM and optimizes the mixture weight w and the distance
measure. For further details refer to Kim et al. [12].

mSPA uses the cosine correlation as the main mass
spectral similarity measure, although a user can choose
Pearson’s correlation coefficient as an option. mSPA also
includes four distance measures, such as Euclidean (𝐷

1
),

Maximum (𝐷
2
), Manhattan (𝐷

3
), and Canberra (𝐷

4
). Kim

et al. [12] showed that Canberra distance performs the best
among them. However, it still remains unknown which
similarity measure performs better for peak alignment.

2.2. Similarity Measures. In this study, we selected five
similarity measures, cosine correlation, Pearson’s correlation,
Spearman’s correlation, partial correlation, and part correla-
tion. Since all the existing peak matching-based approaches
use either the cosine correlation or Pearson’s correlation, we
chose these two mass spectral similarity measures. Spear-
man’s correlation was considered because it is a nonpara-
metric measure. The partial and the part correlations were
selected because of their best performance in compound
identification [21].

2.2.1. Cosine Correlation (Dot Product). The cosine correla-
tion [16], which is also known as the dot product, is used
to obtain the cosine of the angle between two sequences of
intensities, 𝑋 = (𝑥

𝑖
)
𝑖=1,...,𝑔

and 𝑌 = (𝑦
𝑖
)
𝑖=1,...,𝑔

, where 𝑔 is the
total number ofm/z values. It is defined as

𝑐
𝑋𝑌

= 𝐶 (𝑋, 𝑌) =
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, (2)

where 𝑋 ∘ 𝑌 = ∑
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𝑖=1
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𝑥
2

𝑖
. Note that 𝑐
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ranges between −1 and 1, and it is always nonnegative if𝑋 and
𝑌 are nonnegative intensities.

2.2.2. Pearson’s and Spearman’s Correlations. Pearson’s corre-
lation between two sequences of intensities, 𝑋 = (𝑥

𝑖
)
𝑖=1,...,𝑔

and 𝑌 = (𝑦
𝑖
)
𝑖=1,...,𝑔

, is the covariance of the two sequences
divided by the product of the standard deviations and is
defined by

𝑟
𝑋𝑌

= Corr(𝑋, 𝑌) = Cov(𝑋, 𝑌)
√Var(𝑋)√Var(𝑌)

, (3)

where Cov(𝑋, 𝑌) is the covariance between 𝑋 and 𝑌 and
Var(𝑋) is the variance of 𝑋. Spearman’s correlation between
𝑋 and 𝑌, 𝜌

𝑋𝑌
, is a nonparametric version of Pearson’s

correlation and is defined as Pearson correlation coefficient
between the ranks of two sequences of intensities.

2.2.3. Partial and Part (Semipartial) Correlations. The partial
correlation is the association between two random vari-
ables after removing the effect of other random variables,
while the part correlation removes the effect of other ran-
dom variables only for one random variable [21]. Con-
sider a partitioned random vector (𝑋, 𝑌) where 𝑋 and
𝑌 = (𝑌

1
, 𝑌
2
, . . . , 𝑌

ℎ
) are one-dimensional random variables

and an ℎ-dimensional random vector, respectively. Then
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In general, 𝑟
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of 𝑌(𝑖), all the three correlations, Pearson’s, partial, and part
correlations, are theoretically exactly similar to each other,
that is, 𝑟

𝑋𝑌𝑖
= 𝑟
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(𝑖) = 𝑟
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)
. In the context of peak

alignment, 𝑋 is the mass spectrum of a target peak and 𝑌 is
the vector of all the mass spectra of the reference peak list.

It is known that the partial correlation can be derived by
the inverse of the covariance matrix [22], so does the part
correlation. In the context of partial and part correlations,
each peak represents a random variable and the intensities of
eachm/z value correspond to the observed samples, resulting
in the number of peaks being equal to the number of variables
and the number ofm/z values being equal to the sample size.
However, the number of peaks often exceeds the number of
m/z values in case of real biological data, resulting in a high-
dimensionality problem. This causes the singularity of the
inverse covariance matrices between two peak lists. To avoid
the singularity problem, we adopted the two-step approach
developed by Kim et al. [21]. Namely, we first reduced the
number of peaks for the calculation of the partial and the part
correlations by considering only the peaks that have the first
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𝑞 highest similarity scores obtained by Pearson’s correlation.
Then the partial and the part correlationswere computed only
for these 𝑞 peaks. Given the rank 𝑞, the two-step partial and
part correlations are defined by, respectively,

𝑟
𝑋𝑌𝑖|𝑌

(𝑖,𝑞) = Corr (𝑅
𝑋|𝑌
(𝑖,𝑞) , 𝑅
𝑌𝑖|𝑌
(𝑖,𝑞)) ,

𝑟
𝑋(𝑌𝑖|𝑌

(𝑖,𝑞)
)
= Corr (𝑋, 𝑅

𝑌𝑖|𝑌
(𝑖,𝑞)) ,

(6)

where 𝑌
(𝑖,𝑞)

= {𝑌
𝑗

| Rank(𝑟
𝑋𝑌𝑗

) ≤ 𝑞, 𝑌
𝑗

∈ 𝑌
(𝑖)
}

and Rank(𝑟
𝑋𝑌𝑗

) is the rank of the similarity score 𝑟
𝑋𝑌𝑗

in
descending order. In this study, (4) and (5) were applied to
a mixture of 76 compound standards, and a biological data
set employed (6) to avoid the singularity of the covariance
matrix. We used 10 different ranks between 3 and 100 for
𝑞, which are 3, 5, 7, 10, 15, 20, 30, 50, 70, and 100. The R
package ppcor was used to compute the partial and the part
correlations.

2.3. GC×GCData Sets. For a fair comparison with mSPA, we
used the same data as those of mSPA, which are a mixture of
76 compound standards and a set of real biological samples
extracted from rat plasma. A mixture of 76 compound stan-
dards is composed of 10 GC×GC-MS data sets (S1–S10), and
the rat plasma sample consists of five GC×GC-MS data sets
(P1–P5). For a more detailed description of the data, please
refer to Wang et al. [11]. We call the mixture of 76 compound
standards Data I, which has 10 data sets, and the rat plasma
data set Data II, which has 5 data sets. Theoretically, one
peak should be generated for each compound after peak
picking. Multiple peaks, however, are usually detected for
one compound by the spectral deconvolution software such
as ChromaTOF, which will generate a set of peak lists.
Therefore, we merged the multiple peaks by peak area. In
other words, we selected the peak with the largest peak
area among the multiple peaks having the same compound
name. The number of peaks before and after peak merging is
summarized in Table 1.The chromatograms and the densities
of the first and the second dimension retention times of Data
I and Data II are depicted in Figure 1. Note that the data and
source code are available at http://mrr.sourceforge.net/.

2.4. Performance Criteria. The true positive rate (TPR),
the false positive rate (FPR), the positive predictive value
(PPV), the F1 score, and the area under receiver operating
characteristic (ROC) curve are used to compare the perfor-
mance of each similarity measure in peak alignment. Let
𝑅 = {𝑟

1
, 𝑟
2
, . . . 𝑟
𝑠
, 𝑟
𝑠+1

, . . . , 𝑟
𝑚
} be the peak list of a reference

chromatogram and𝑇 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑠
, 𝑡
𝑠+1

, . . . , 𝑡
𝑛
} the peak list

of a target chromatogram. Suppose there are 𝑠 true peak pairs
{(𝑟
1
, 𝑡
1
), (𝑟
2
, 𝑡
2
), . . . , (𝑟

𝑠
, 𝑡
𝑠
)} and 𝑢 peak pairs are matched by

a certain peak alignment, where 𝑠, 𝑢 ≤ min(𝑛,𝑚). Define the
number of true positive (TP) as the number of true positive
peak pairs, which is less than or equal to min(𝑠, 𝑢). Then the
number of false positive (FP) becomes 𝑢−TP, the number of
false negative (FN) becomes 𝑠−TP, and the number of true

negative (TN) becomes𝑚 ⋅ 𝑛 − 𝑠 − FP. As a result, TPR, FPR,
PPV, and F1 score are defined by

TPR =

TP
TP + FN

=

TP
𝑠

,

FPR =

FP
TN + FP

=

𝑢 − TP
𝑚 ⋅ 𝑛 − 𝑠

,

PPV =

TP
TP + FP

=

TP
𝑢

,

𝐹
1
=

2 ⋅ TPR ⋅ PPV
TPR + PPV

=

2TP
𝑠 + 𝑢

.

(7)

The area under ROC curve (AUC) was further calculated
after ROC was created by plotting between TPR and FPR
according to given cut-off values using the methods in [23,
24].

3. Results

Weevaluated the effect of the five spectral similaritymeasures
on peak alignment using mSPA. As mentioned before, mSPA
provides five different peak alignment methods including
an optimal version. In this study, we focused only on the
following four methods: PAS, DW-PAS, SW-PAD, and PAM,
since we were interested in the effect of the mass spectral
similarity measures. Therefore, these four peak matching
alignment approaches were applied to Data I and Data II
using mSPA, with the five different similarity measures, the
cosine correlation, Pearson’s correlation, Spearman’s correla-
tion, the partial correlation, and the part correlation.

Figure 2 displays the plots of PPV versus TPR and FPR
versus TPRwhenPASwas applied toData I and II. In the PPV
versus TPR plot, a method is better as it is closer to the point
(1,1), while the FPR versus TPR plot represents that a method
is better as it is close to the point (0,1). It is worth reminding
that PAS is a peak alignment solely based on themass spectral
similarity score without using the retention time distance.
Spearman’s correlation performs the worst for both Data I
(75.52%) and Data II (49.31%) in terms of F1 scores, while
the partial correlation performs the best (97.24% and 61.58%
for Data I and II, resp.), as can be seen in Tables 2 and 3.
Interestingly, the partial correlation performs better than the
part correlation.

The method DW-PAS is a peak alignment method with a
distance-based window. In this case, a user is required to set a
threshold for the distance-based window, which is the rank 𝑘
of the retention time distance.The five different ranks, 3, 5, 10,
15, and 20, were used.The plots of PPV versus TPR, F1 scores,
and FPR versus TPR (ROC) are shown in Figure 3. Likewise,
Spearman’s correlation performs the worst regardless of the
rank 𝑘 and the dataset. As the rank 𝑘 increases, the F1 scores
of the partial and the part correlations generally increase,
while the F1 scores of the cosine, Pearson’s, and Spearman’s
correlations decrease, in case of Data I (Figure 3(b)). On the
other hand, in case of Data II, the F1 scores of the cosine,
Pearson’s, the partial, and the part correlations increase as
the rank 𝑘 increases, while Spearman’s correlation decreases.
Overall, the partial correlation performs the best for both

http://mrr.sourceforge.net/
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Table 1: The summary of GC×GC/TOF-MS datasets. The numbers of peaks before and after peak merging are calculated for each dataset.

Run ID Data I S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

The number of peaks Before 180 186 161 151 151 145 172 163 168 174
After 78 76 76 75 74 73 74 76 77 75

Run ID Data II P1 P2 P3 P4 P5

The number of peaks Before 759 733 694 727 661
After 466 456 436 452 418
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Figure 1:The chromatogram of GC×GC/TOF-MS datasets.The estimated kernel density plots are of the first and second dimension retention
times for each of Data I (a) and Data II (b).

Data I (97.59%) and Data II (59.52%) in terms of F1 scores,
as shown in Tables 2 and 3.

Figure 4 shows the results of SW-PAD. This method
requires a mass spectral similarity-based window as well as
a cut-off value of the similarity (0 ≤ 𝜌 ≤ 1). In this study,
we used 13 values between 0.1 and 0.99 for 𝜌. The F1 scores
of the part and Spearman’s correlations are much sensitive to
the cut-off value 𝜌 than these of other correlations in Figures
4(b) and 4(e). In case of Data I, Pearson’s correlation (97.68%)
with Canberra distance performs the best among them in
terms of F1 score, while the F1 score (66.65%) of the partial
correlationwithManhattan distance is the highest whenData
II is applied, as can be seen in Tables 2 and 3.

The PAMaligns peak lists using amixture similarity score
of the retention time distance and themass spectral similarity.
In this case, a user needs to set up the mixture weight

(0 ≤ 𝑤 ≤ 1). If 𝑤 is close to zero, the mass spec-
tral similarity plays a much more important role in peak
alignment than the retention time distance does, while the
retention time distance drives the peak alignment if 𝑤

close to one, as can be seen in (1). We used 13 values
between 0.01 and 0.99 for 𝑤. Similar to the other peak
alignment approaches, Spearman’s correlation performs the
worst among them in terms of F1 scores, as shown in Figures
5(b) and 5(e). As for Data I, all the correlations except
for Spearman’s correlation are less sensitive to the mixture
weight 𝑤, while the F1 scores of all the correlations are
more sensitive to the weight 𝑤 in case of Data II. In Data
I, the highest F1 score (98.12%) occurred when Pearson’s
correlation used, and, as for Data II, the partial correlation
had the highest F1 score (61.78%), as shown in Tables 2
and 3.
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Figure 2: The results of peak alignment using PAS. (a) and (b) are for Data I and (c) and (d) are for Data II. The plots of PPV versus TPR are
in (a) and (c), and the plots of FPR versus TPR are in (b) and (d).

Overall, Pearson’s correlation with PAM performs the
best in terms of F1 score for Data I (98.12%), and the partial
correlation with SW-PAD performs the best for Data II
(66.65%), as can be seen in Tables 2 and 3. Interestingly,
the partial correlation always has the highest AUC across

the approaches in case of Data I. More detailed F1 scores
and AUCs for each of the distance measures and the datasets
can be found in the Supplementary Material Tables S1–
S8 (Supplementary Material available online at http://dx.doi
.org/10.1155/2013/509761).

http://dx.doi.org/10.1155/2013/509761
http://dx.doi.org/10.1155/2013/509761
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Figure 3: The results of peak alignment using DW-PAS. (a)–(c) are for Data I and (d)–(f) are for Data II. The plots of PPV versus TPR are in
(a) and (d), the plots of F1 scores are in (b) and (e), and the plots of FPR versus TPR are in (c) and (f).

4. Discussion and Conclusions

When the less dense data such as Data I are applied,
the effect of the mass spectral similarity measures on the
performance of peak alignment is small since the retention
time distance dominates the performance of peak alignment.
In fact, F1 scores of all the mass spectral similarity measures
except for the Spearman’s correlation are not significantly

different from each other when PAM is applied to Data I, as
shown in Table 2. On the other hand, when analyzing more
complicated data such as Data II, the mass spectral similarity
measures play a critical role in obtaining a better performance
of peak alignment. As can be seen in Table 3, the F1 score of
the partial correlation with SW-PAD is significantly different
from those of other methods. Furthermore, all the peak
alignment approaches perform the best when the partial
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Figure 4:The results of peak alignment using SW-PAD. (a)–(c) are for Data I and (d)–(f) are for Data II. The plots of PPV versus TPR are in
(a) and (d), the plots of F1 scores are in (b) and (e), and the plots of FPR versus TPR are in (c) and (f).

correlation is employed, indicating that the effect of the mass
spectral similarity measures on alignment is critical and we
should consider the partial correlation to achieve a better
performance.

In case that the mass spectral similarity measures were
compared to each other in terms of accuracy of com-
pound identification, the part correlation performed the best

although its performance was comparable to that of the
partial correlation [21]. Different from compound identifi-
cation, the partial correlation performs significantly better
than the part correlation in peak alignment. For example,
we can see this from the results of PAS listed in Tables 2
and 3. Interestingly, when the more dense data are used,
the performance of the part correlation with PAS becomes
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Table 2: F1 score and AUC of each peak alignment method for Data I.

Cosine Pearson’s Spearman’s Partial Part

F1 (%)

PAS 90.23∗ 90.30 75.82 97.24 94.93
(0.69)# (0.68) (0.80) (0.18) (0.23)

DW-PAS 96.18 96.18 91.84 97.59 95.72
(0.37) (0.37) (0.51) (0.25) (0.36)

𝑘
$ 3 3 3 20 5

Distance∗∗ E E E E, Mx, Mh Mx

SW-PAD 97.66 97.68 96.47 97.31 70.52
(0.26) (0.26) (0.27) (0.28) (0.39)

𝜌
## 0.5 0.5 0.1 0.4 0.1

Distance C C C E, Mh E, Mx, Mh

PAM 98.10 98.12 97.15 97.89 97.91
(0.20) (0.20) (0.26) (0.21) (0.24)

𝑊
$$ 0.5 0.5 0.95 0.6 0.5

Distance C C C C C

AUC (%)

PAS 93.82 93.83 83.85 97.97 96.81
DW-PAS 94.25 94.26 86.55 97.79 96.95
SW-PAD 97.59 97.82 97.16 97.99 77.68
PAM 96.47 96.42 84.16 98.10 97.15

∗Mean (%); #standard error (%); $the cut-off rank; ∗∗the distance measure E, Mx, Mh, and C stand for Euclidean, Maximum, Manhattan, and Canberra
distances, respectively; ##the cut-off similarity score; $$the weight factor of the mixture similarity score. The numbers in bold and italic indicate the maximum
for each of the peak alignment methods.

Table 3: F1 score and AUC of each peak alignment method for Data II.

Cosine Pearson’s Spearman’s Partial Part

F1 (%)

PAS 61.09∗ 61.17 49.31 61.58 58.52
(0.31)# (0.30) (0.25) (0.87) (0.85)

Rank 30 5

DW-PAS 59.32 59.23 56.74 59.52 58.23
(0.33) (0.34) (0.32) (0.95) (1.02)

𝑘
$ 15 15 5 20 15

𝑞
∗∗ 50 15

Distance## C C C C C

SW-PAD 59.55 59.16 56.32 66.65 57.96
(0.41) (0.36) (0.37) (0.77) (0.75)

𝜌
$$ 0.93 20 0.3 0.7 0.1
𝑞 50 100

Distance Mh Mx Mh Mh Mh

PAM 61.48 61.51 59.42 61.78 60.19
(0.31) (0.33) (0.36) (0.91) (1.00)

𝑤
∗∗∗ 0.05 0.05 0.7 0.1 0.5
𝑞 30 3

Distance E, Mx, Mh Mx C E, Mx, Mh Mh

AUC (%)

PAS 84.53 84.55 72.55 85.07 83.16
DW-PAS 83.45 83.43 81.50 83.30 82.71
SW-PAD 78.06 77.81 77.77 82.90 75.35
PAM 76.89 76.89 79.22 77.45 77.18

∗Mean (%); #standard error (%); $the cut-off rank; ∗∗the rank for the two-step partial and part correlations; ##the distance measure E, Mx, Mh, and C stand
for Euclidean, Maximum, Manhattan, and Canberra distances, respectively; $$the cut-off similarity score. ∗∗∗Theweight factor of the mixture similarity score;
the numbers in bold and italic indicate the maximum for each of the peak alignment methods.
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Figure 5: The results of peak alignment using PAM. (a)–(c) are for Data I and (d)–(f) are for Data II. The plots of PPV versus TPR are in (a)
and (d), the plots of F1 scores are in (b) and (e), and the plots of FPR versus TPR are in (c) and (f).

worse than those of the cosine and Pearson’s correlations.
This may be because the characteristics of the experimental
data are different between compound identification and peak
alignment. Namely, in compound identification, the query
mass spectra are generated from the experimental conditions
typically different from that of the reference library mass
spectra. Therefore, the effect of the reference library mass

spectra is ignorable so that the part correlation performs
the best. On the other hand, the peak alignment here
uses the homogeneous data which are generated from the
similar experimental conditions, resulting in that the partial
correlation performs the best.

To further investigate this difference of the five similarity
measures, we plotted the distributions of the five similarity
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Figure 6: The distributions of similarity scores from the same and the different peaks. The blue solid lines and the red dotted lines represent
the distributions of the similarity scores between the same peaks and between the different peaks, respectively.The left 𝑦-axis is scaled for the
different peaks and the right 𝑦-axis is scaled for the same peaks. (a) and (b) are for Data I and Data II, respectively.

scores from the same peaks as well as from the different peaks
for Data I and Data II, as shown in Figure 6. In an ideal
case, the distribution of the same peaks (the blue solid line)
should be close to 1, and the distribution of the different
peaks (the red dotted line) should be close to either 0 (for
the cosine correlation) or −1 (for other similarity measures).
We can see that the distributions of the partial correlation
are clearly separated among the five mass spectral similarity
measures (including the part correlation), explaining why
the partial correlation with PAS performs the best in terms
of F1 scores. In addition, the distributions of the cosine and
Pearson’s correlations have the very similar trends to each
other for both Data I and Data II. In fact, this is consistent
with the result of the comparison analysis of Liu et al. [25], in
which Pearson’s correlation coefficient is most robust, but the
difference between the dot product and Pearson’s correlation
coefficient is subtle.

Another point to consider is that SW-PAD with the
partial correlation is the best approach in case of Data II,
while PAM is the best approach with Data I. In fact, the F1
score of SW-PAD with the partial correlation is improved up
to 5%, compared to that of PAM with the partial correlation
in case of Data II. This may be because more peaks in Data
II have similar mass spectral information although they are
generated from the different compounds. For example, the
cut-off value 𝜌 of SW-PAD with the partial correlation is
much larger in Data II than that in Data I (Tables 2 and
3).

In conclusion, as for the less dense data such as Data
I, PAM with any one of the cosine, the Pearson’s, and the
partial correlations will give us a better performance of peak
alignment, while SW-PAD with the partial correlation will
perform the best in case of the more dense data, such as the
data acquired from real biological samples.
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