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The inflammatory response appears to play a critical role in clotting in which neutrophil
extracellular traps (NETs) are the major drivers of thrombosis in acute ischemic stroke
(AIS). The inflammasome is an innate immune complex involved in the activation of
interleukin (IL)-18 and IL-1β through caspase-1, but whether the inflammasome plays a
role in NETosis in AIS remains poorly understood. Here we assessed the levels of
inflammasome signaling proteins in NETs and their association with clinical and
procedural outcomes of mechanical thrombectomy for AIS. Electron microscopy
and immunofluorescence indicate the presence of NETs in thrombi of patients with
AIS. Moreover, the inflammasome signaling proteins caspase-1 and apoptosis-
associated speck-like protein containing a caspase recruitment domain (ASC) were
also present in clots associated with the marker of NETosis citrullinated histone 3H
(CitH3). Analysis of protein levels by a simple plex assay show that caspase-1, ASC and
interleukin (IL)-1β were significantly elevated in clots when compared to plasma of AIS
patients and healthy controls, while IL-18 levels were lower. Moreover, multivariate
analyses show that IL-1β levels in clots contribute to the number of passes to achieve
complete recanalization, and that ASC, caspase-1 and IL-18 are significant
contributors to time to recanalization. Thus, inflammasome proteins are elevated in
NETs present in thrombi of patients with AIS that contribute to poor outcomes following
stroke.
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INTRODUCTION

Stroke is the leading cause of long-term disability and the second leading cause of death worldwide.
Although large vessel occlusion acute ischemic strokes (LVOS) account for approximately 40% of
ischemic strokes, they are disproportionately associated with severe disability and mortality (Rennert
et al., 2019). Currently, treatment options for LVOS are limited to intravenous alteplase (tPA) within
4.5 h as well as mechanical thrombectomy within 24 h of symptom onset (Powers et al., 2019). While
early reperfusion has been shown to improve functional outcomes, many patients are ineligible or
lack access to treatment (Fransen et al., 2014; Goyal et al., 2016a; Goyal et al., 2016b; Jadhav et al.,
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2018). Moreover, over half of the patients who are treated with
endovascular intervention and/or tPA remain severely disabled
or deceased at 90 days (Goyal et al., 2016b; Hankey, 2017). While
the thrombus is the primary target of stroke treatment, little is
known about the composition and pathogenesis following stroke.
Previous studies attempted to use computed tomography (CT)
and magnetic resonance imaging (MRI) to predict clot density
(Niesten et al., 2014; Kim et al., 2015; Jagani et al., 2017).
However, a further understanding of the dynamic processes of
clot pathology is necessary in order to translate these findings into
improved clinical treatment methods.

Cerebral thrombus histopathology reveals common
components, including presence of platelets, leukocytes, and
red blood cells in diverse histological and quantitative patterns
(Brinjikji et al., 2017). The heterogeneity of thrombi composition
is thought to be associated with thrombus origin. However, recent
studies have detected extensive neutrophil extracellular traps
(NETs) throughout all LVOS thrombi (Laridan et al., 2017;
Ducroux et al., 2018). NETs are large extracellular web-like
structures composed of decondensed chromatin lined with
granular and cytosolic proteins (Brinkmann et al., 2004) that
are formed in a cell death pathway known as NETosis (Gupta
et al., 2010). In addition to acting as a scaffold for platelets and red
blood cells, NETs have a pro-inflammatory role that is associated
with thrombogenesis in the arterial and venous vasculature
(Kimball et al., 2016; Laridan et al., 2019).

The inflammasome is a multiprotein complex comprised of a
sensor such as a NOD-like receptor (NLR), the adaptor protein
apoptosis-associated speck-like protein containing a caspase-
recruitment domain (ASC) and the inflammatory cysteine
aspartase caspase-1 (Govindarajan et al., 2020). We have
previously shown that the NRLP1 inflammasome is activated
following cerebral ischemia in rodents (Abulafia et al., 2009). In
addition, numerous studies have reported inflammasome
involvement in the pathogenesis of cerebral ischemia
(Kastbom et al., 2015; Tong et al., 2015; Gao et al., 2017;
Ismael et al., 2018; Yang et al., 2018; Kim et al., 2020). The
NLRP1 inflammasome was the first inflammasome reported to
play a role in cerebral ischemia (Abulafia et al., 2009). However,
inhibition of the NLRP3 inflammasome with intravenous
immunoglobulin has been shown to be neuroprotective is an
animal model of stroke (Fann et al., 2013), and studies in NLRP3
knockout mice indicate that NLRP3 deletion results in decreased
infarct volume, decreased edema and decreased permeability of
the blood brain barrier (Yang et al., 2014). Moreover,
inflammasome proteins in humans have been shown to be
reliable biomarkers of central nervous system (CNS) injury
(Adamczak et al., 2012; Kerr et al., 2018b; Perez-Barcena et al.,
2020) and disease (Keane et al., 2018; Scott et al., 2020), including
stroke (Kerr et al., 2018a). Thus, the inflammasome is an
important regulator of the inflammatory innate immune
response following stroke.

Here we isolated thrombi and plasma from patients following
AIS and performed electron microscopy and immunofluorescent
staining to determine the cytoarchitecture of thrombi and the
composition of NETs and the inflammasome proteins in clots in
this patient population.

MATERIAL AND METHODS

Participants
Between November 2018 and November 2019, we conducted a
prospective study investigating thrombi retrieved from
mechanical thrombectomy procedures in AIS patients
admitted to Jackson Memorial Hospital/University of Miami
Hospital (Table 1). All patients with age ≥18 years old who
presented with acute stroke and underwent thrombectomy with
retrieval of thrombus material were eligible for the study. Ethics
approval was approved by the Institutional Review Board at the
University of Miami (IRB 20160699), and informed consent was
obtained from all patients included in this study. Patients were
excluded if adequate thrombus material could not be obtained or
the patient/legal representative refused to participate in the study.
Patient demographics, clinical presentation, neurological exam
(National Institutes of Health Stroke Scale (NIHSS)), pre-
procedural imaging results, intravenous tissue plasminogen
activator (IV-tPA) administration, procedural details including
number of passes, thrombectomy technique used, recanalization
results (Thrombolysis in Cerebral Infarction (TICI) scale, and
follow-up data were collected. A total of 30 clots were obtained

TABLE 1 | Baseline characteristics of patients who underwent mechanical
thrombectomy.

Patient and procedural characteristics (N = 30)

Mean age (StdDev) 70 (15)
Male (%) 18 (60%)
Median NIHSS (SEM) 16 (1.1)
IV tPA (%) 14 (46%)

Comorbidities
Congestive heart failure (%) 3 (10%)
Atrial fibrillation (%) 14 (47%)
Coronary artery disease (%) 10 (33%)
Diabetes mellitus (%) 9 (30%)
Hyperlipidemia (%) 13 (43%)
Hypertension (%) 26 (87%)
Cancer (%) 5 (17%)
Prior stroke (%) 9 (30%)
Smoking (%) 13 (43%)
Substance abuse (%) 4 (13%)
Antiplatelet (%) 4 (13%)
Anticoagulation (%) 6 (20%)
Median mRS pre-MT 0 (0.23)
Median time LKN to recanalization (SEM) 303 min (92)
Mean # passes 1.8 (1.1)
Stentriever (%) 22 (73%)
ADAPT (%) 8 (2.7%)

TICI score
2B (%) 2 (6.7%)
2C (%) 7 (23%)
3 (%) 21 (70%)

Hemorrhage
rICH (%) 9 (30%)
sICH (%) 2 (6.7%)
Median mRS @ discharge 4 (0.39)
Death (%) 7 (23%)

tPA, tissue plasminogen activator; mRS, modified ranking score; MT, mechanical
thrombectomy; LKN, Last known normal; ADAPT, a direct aspiration first pass
technique, TICI: thrombolysis in cerebral infarction; rICH, radiographic intracranial
hemorrhage; sIH, symptomatic intracranial hemorrhage.

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 6072872

Chen et al. Inflammasomes and Netosis in Stroke

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


from patients undergoing mechanical thrombectomy. Following
mechanical thrombectomy, six clots were fixed in 4%
paraformaldehyde for histology and the remaining 24 clots
were processed for molecular analysis. Healthy control samples
were purchased from BioIVT (Hicksville, NY), and they were
obtained from donors without any diagnosed disease.

Thrombectomy Procedure
The mechanical thrombectomy procedures were all performed or
supervised by board-certified neurointerventional experts under
biplane neuroangiography (Artis Q, Siemens Healthcare,
Erlangen, Germany). All patients were treated under general
anesthesia, per institutional protocol. Site of access and
thrombectomy technique were at the discretion of the treating
physician. If an aspiration-alone technique was used, a large guide
catheter was navigated into the cervical segment of the target
vessel, then a microcatheter (0.027″) telescoped through the
aspiration catheter (0.068″ or 0.071″) was introduced and
navigated just proximal to the clot. With the aspiration pump
initiated, the aspiration catheter was brought over the
microcatheter to the face of the clot. The microcatheter was
then removed for improved aspiration and the aspiration catheter
was retracted. Moreover, if a Solumbra technique was used, a
guide catheter (balloon guide or 0.088”) was brought into the
cervical segment of the target vessel, a microcatheter telescoped
through an aspiration catheter was introduced and navigated over
a microwire past the site of occlusion. The microwire was then
removed and the stent retriever was deployed through the
microcatheter across the occluded segment. The microcatheter
was then removed and aspiration from the aspiration catheter
was initiated. The stent retriever was left in place for 5 min to
encourage integration of the clot and then slowly retracted under
constant aspiration into the guide catheter. Heparin was not
administered during mechanical thrombectomy, although non-
therapeutic doses of 1,000 IU unfractionated heparin were always
added to the 1-L bags of standard 0.9% saline flushes in order to
avoid catheter-associated thrombus formation.

Immunofluorescence
For immunohistochemical procedures, six clots were fixed in 4%
paraformaldehyde overnight, and then processed for paraffin
embedment as described in (de Rivero Vaccari et al., 2009).
Sections were then double-stained with primary antibodies
rabbit anti-caspase-1 (Cat #06-503-I, EMD Millipore) or rabbit
anti-ASC (amino acids 182-195, EMD Millipore) and mouse anti-
Citrullinated-Histone H3 (amino acids 1-100, Abcam) followed by
fluorescently labeled secondary Alexa Fluor antibodies (488 and
594) raised in goat (Invitrogen). Autofluorescence in sections was
quenched using the Vector TrueVIEW Autofluorescence
Quenching Kit (Vector Laboratories) according to manufacturer
instructions. Sections were imaged using an EVOS FL Auto two
Imaging System (ThermoFisher Scientific). Secondary antibodies
alone were used as negative controls (Supplementary Figure 1).

Immunoblotting
For immunoblot analysis of NLRP1 and ASC proteins from
clots of nine different patients, protein was extracted and

resolved as described in (Brand et al., 2015). Briefly, equal
amounts of protein lysates (20 μg of total protein) were
resolved in 4–20% Criterion TGX Stain-Free precasted gels
(Bio-Rad). Protein was then transferred to polyvinylidene
difluoride (PVDF) membranes (BioRad) using the Trans Blot
Turbo System (BioRad). Membranes were then blocked in
blocking buffer with I-Block (Applied Biosystems) diluted in
phosphate buffered saline (PBS) and incubated with primary
antibodies (1:1000 dilution) rabbit anti-NLRP1 (#NBP1-54899,
Novus Biologicals) and rabbit anti-AIM2 (D-14, Santa Cruz)
followed by incubation with anti-mouse IgG HRP-linked
secondary antibodies (1:1000 dilution, Cell Signaling) and
enhanced chemilluminescence using LumiGLO reagent (Cell
Signaling). PVDFmembranes were imaged using the ChemiDoc
Touch Imaging System (BioRad).

Transmission Electron Microscopy (TEM)
Blood clot samples were fixed in 2% glutaraldehyde in 0.05 M
phosphate buffer and 100 mM sucrose. Then they were post-fixed
overnight in 1% osmium tetroxide in 0.1 M phosphate buffer,
followed by dehydration and embedment in a mixture of EM-
bed/Araldite (Electron Microscopy Sciences). One μm-thick
sections were then stained with Richardson’s stain for
observation by light microscopy. One hundred ηM sections
were then cut on a Leica Ultracut-R ultramicrotome and
stained with uranyl acetate and lead citrate. Grids were viewed
at 80 kV in a JEOL JEM-1400 transmission electron microscope.
Images were captured by an AMT BioSprint digital camera.

Scanning Electron Microscopy (SEM)
For SEM imaging, blood clot samples were fixed in 2%
glutaraldehyde in 1X phosphate buffer saline (PBS) (E.M.
Sciences,Inc.), post-fixed for 1 h in 1% osmium tetroxide in
PBS buffer, rinsed in buffer, dehydrated through a graded
series of ethanols, and dried after three changes of
Hexamethyldisilazane (HMDS) (E.M.Sciences,Inc.). Samples
were then coated with a 20 nm layer of palladium (Pd) in a
plasma sputter coater, and imaged in a Philips XL-30 Field
Emission SEM.

Simple Plex Assays
Clots were analyzed using a four-plex assay for the protein
expression of caspase-1, apoptosis-associated speck-like protein
containing a caspase-recruitment domain (ASC), IL-18 and IL-1β
(Protein Simple) as described in Brand et al. (Brand et al., 2016).
Briefly, samples were diluted 50:50 in dilution buffer, and 50 μL
were loaded in the respective wells of the cartridge. One ml of
washing buffer was loaded in the assigned wells, and the assay was
run in the Ella instrument (Protein Simple) using the Simple Plex
Runner 3.5.2.20 software. Data were then processed using the
Simple Plex Explorer 3.5.2.20, and further analyzed by Prism 8.0
statistical software (GraphPad Prism). Results presented
correspond to the mean of samples run in triplicates.

Statistical Analyses
Statistical analyses were carried using Prism 8 (GraphPad
Prism) software. Data were tested for normality using the
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D’Agostino and Pearson omnibus normality test. Comparison
between groups for normally distributed data were done using
a Kruskal-Wallis test followed by Dunn’s multiple
comparison test for data that were not normally
distributed. p-values of significance were p < 0.05. Mean
values of inflammatory cytokines in the clot lysate of LVOS
patients were compared to plasma levels of stroke patients and
healthy controls. In addition, linear and logistic regression
using inflammasome protein concentration in the clot of
patients and other clinical variables were done using
RStudio software Version 1.2.5033 using the following
packages: ggplot2, MASS, dplyr, broom, car, regclass and
ROCit and with Stata 10.0 (College Station, TX). Factors
predictive in univariate analysis (p < 0.15) were entered
into a multivariate logistic regression analysis. p-values of
≤0.05 were considered statistically significant.

RESULTS

Patients With AIS
A total of 30 clots were retrieved by mechanical thrombectomy
from patients presenting with acute large vessel occlusion stroke
(Table 1). Mean patient age was 70 years old and the majority of
patients were male (60%). Median national institutes of health
stroke scale (NIHSS) score on presentation was 16, median time
from last known well to recanalization was 303 min, all patients
had a thrombolysis in cerebral infarction (TICI) score of 2B or
greater, 11 patients had a modified ranking scale (mRS) less than
three at discharge, and 23% of patients died during the
hospitalization (Zaidat et al., 2018).

NETosis Is Present in the Clots of Patients
With AIS
Coarse fibrin and activated platelets have been previously
described in electron microscopy images of blood clots
(Kawasaki et al., 2004). Isolated clots from patients that
underwent thrombectomy following ischemic stroke were fixed
and processed for electron microscopy procedures. Processed
sections of clots from three different patients were analyzed by
SEM (Figure 1) and TEM (Figure 2). A series of images were
collected and the most representative images are presented in
Figures 1 and 2. Accordingly, clots presented deformed red blood
cells (Figures 1A and 1D), neutrophils (asterisk, 1D),
interconnecting fibers (arrows, Figure 1D), fibrin (arrow
heads, Figures 1B and 1C) and histones (short arrows,
Figure 1C) that are consistent with the presence of neutrophil
extracellular trap (NET) fibers. In addition, transmission electron
microscopy analysis of the clots (Figure 2) indicate the presence
of granulocytes (arrows, Figures 2A and 2D), red blood cells
(asterisk, Figures 2B and 2D) and dying neutrophils (arrow
heads, Figure 2C). Thus, these findings indicate that NETs are
present in the clots of patients with LVOS in addition to
neutrophils, deformed red blood cells, platelets, and fibrin.

Inflammasome Proteins Are Present in
NETs of Patients With AIS
Inflammasome signaling in neutrophils has been previously
associated with the formation of NETs and NETosis activation
(Chen et al., 2018). To determine if inflammasome proteins are
present in NETs present in the clots of patients with AIS, we
stained immunohistochemical sections with antibodies against

FIGURE 1 | SEM of clots from AIS patients. Clots were processed for SEM indicating the presence of red blood cells (A and D), fibrin (arrow heads, B and C),
histones (short arrows, C) and interconnected fibers (arrows, D) consistent with the presence of NETs in the clots of these patients. Scale bars: (A) 20 μm, (B) 100 μm,
(C) 2 μm, (D) 5 μm.
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the inflammasome signaling proteins caspase-1 and ASC, as well
as citrullinated histone-3 (Cit-3H), a marker of NETs. (Hirose
et al., 2014). Figure 3 shows that caspase-1 (green) and ASC (red)
immunoreactivity were present in structures positive for CitH3,
indicating that the inflammasome proteins caspase-1 and ASC
are present in NETs within the clots of patients with AIS.

Inflammasome Signaling Proteins Are
Elevated in the Clots of Patients With AIS
Inflammasome proteins have been previously shown to be
elevated in the serum and extracellular vesicles of patients
with stroke (Kerr et al., 2018a). To determine if
inflammasome signaling proteins were elevated in the clots of
patients with stroke, we obtained protein lysates from the clots of
patients with AIS and analyzed the protein levels of caspase-1,
ASC, IL-1β and IL-18 compared them to the plasma of stroke
patients (plasma) and healthy controls (control). Caspase-1
(Mean values � thrombi: 191 pg/ml, plasma: 3.26 pg/ml,
healthy control: 2.09 pg/ml) (Figure 4A), ASC (Mean values �
thrombi: 5,039 pg/ml, plasma: 386.9 pg/ml, healthy control:
243.5 pg/ml) (Figure 4B) and IL-1β (Mean values � thrombi:
39.82 pg/ml, plasma: 0.92 pg/ml, healthy control: 0.68 pg/ml)
(Figure 4C) were elevated in the clot when compared to
plasma in AIS and healthy controls; whereas IL-18 protein
levels were lower in the clot than in the plasma of healthy
controls and AIS patients (Mean values � thrombi: 53.31 pg/
ml, plasma: 201 pg/ml, healthy control: 200.2 pg/ml)
(Figure 4D). Importantly, the levels of caspase-1, IL-1β and
IL-18 measured were total protein values and do not
differentiate between the pro-forms and the cleaved forms of
these proteins. Taken together, these findings indicate that acute

inflammasome signaling protein expression is higher in the clots
of AIS patients consistent with higher levels of IL-1β.

NLRP1 and AIM2 Are Present in the Clots of
Patients With AIS
In rodents, the NLRP1 inflammasome has been previously shown
to contribute to the innate immune inflammatory following
thromboembolic stroke (Abulafia et al., 2009). To determine
which NLR sensor molecules were present in the clot of
patients with stroke, we immunoblotted samples for NOD-like
receptor protein-1 (NLRP1) and Absent in Melanoma-2 (AIM2);
two receptors that form protein-protein interactions with
caspase-1 and ASC to form an inflammasome complex.
Accordingly, NLRP1 and AIM2 were present in the clots of
nine patients with stroke (Figure 5). Interestingly, patient
eight differed in its expression of NLRP1 vs. AIM2, in which
NLRP1 showed laddering of the protein (Levinsohn et al., 2012),
that may indicate cleavage of NLRP1 or post-translational
modifications during inflammasome activation of this sensor
molecule that do not occur in activation of AIM2 in the clot
of the same patient.

IL-1β and TICI Score Contribute to the
Number of Passes to Achieve
Recanalization
The number of passes needed to achieve complete recanalization
is known to correlate with better outcomes after stroke, so that the
less passes needed, the better the outcomes (Zaidat et al., 2018).
Here we developed a logistic regression model using
inflammasome protein levels to explain the influence of

FIGURE 2 | TEM of clots from AIS patients. Clots were processed for TEM indicating the presence of granulocytes (arrows, A and D), red blood cells (asterisk, B
and D), dying neutrophils (arrow heads, C) consistent with the presence of NETs in the clots of these patients. Scale bars: (A) 2 μm, (B) 2 μm, (C) 1 μm, (D) 1 μm.

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 6072875

Chen et al. Inflammasomes and Netosis in Stroke

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inflammasome proteins in clots to the number of passes. Our data
indicate that IL-1β positively contributes (p � 0.049) to the
number of passes whereas the TICI score, as expected,
negatively contributes (p � 0.016) to the number of passes
(Table 2). Thus, in regards to the number of passes and
inflammasome signaling proteins, as IL-1β protein levels in
the clot increase, so do the odds of increasing the number of
passes to achieve complete recanalization as well.

Inflammasome Proteins Affect the Last
Known Normal (LKN) Time to
Recanalization
Recanalization is a main determinant of patient outcomes (Yeo
et al., 2013). Here we fit a linear regression model to explain what
factors contribute to the LKN time to recanalization using the
protein levels of ASC, caspase-1, IL-18 and IL-1β as well as tissue
plasminogen activator (TPA), Body Mass Index (BMI), Coronary

artery disease (CAD) and whether patients had diabetes or not
(Table 3). The model indicates that in the clots, caspase-1 (p �
0.016) and IL-18 (p � 0.043), CAD (p � 0.004) and DM (p �
0.037) positively contributed to the LKN time to recanalization,
whereas ASC (p � 0.041) presented a negative correlation to the
LKN time to recanalization outcome. Together, based on the
adjusted R-squared, this model explained 41% of the LKN time to
recanalization.

DISCUSSION

Inflammatory mechanisms initiate clotting, decrease natural
anticoagulant activity, and impair the fibrinolytic system (Levi
et al., 2004). Recent studies have shown that NETosis plays a role
in thrombosis in stroke, suggesting that NETs play a critical role
in inflammatory and thrombotic disorders (Ducroux et al., 2018).
Our earlier study found elevated levels of inflammasome proteins
in serum of stroke patients (Kerr et al., 2018a). Here we extend
these observations and show that inflammasome proteins are
present in cerebral stroke thrombi that localize with NETs
(Figure 6). These findings are consistent with previous studies
that show that inflammasome activation is critical for NETosis
(Westerterp et al., 2018). Thus, it appears that inflammasome
activation contributes to the pathophysiology of cerebral stroke
thrombi that associate with NETs and that the level of
inflammasome proteins is predictive of outcome.

Neutrophils are key cells of the immune system capable of
phagocytosis, degranulation and release of NETs
(Papayannopoulos, 2018). NETs are extracellular structures
comprised of cytosolic and granule proteins intertwined with
scaffolds of chromatin that has been decondensed (Brinkmann
et al., 2004). NETs become extracellular by the cell death process
of NETosis (Fuchs et al., 2007). NETs have been shown to form in
vein occlusive events such as deep vein thrombosis and maybe
associated with the hypoxia that induces NETosis (Brill et al.,
2011; Etulain et al., 2015).

NETs quantity and content is correlated with endovascular
thrombectomy procedure length as well as number of passes
required to remove the clot (Ducroux et al., 2018). However, the
pathogenesis of activation of NET formation in cerebral thrombi
remains unknown. In mouse models of atherosclerosis,
cholesterol crystals induce inflammation by activating
macrophage and neutrophil inflammasomes (Warnatsch et al.,
2015). Inflammasomes are cytoplasmic multiprotein complexes
containing caspase-1, the adaptor protein ASC and an NLR or
ALR sensor molecule (e.g., NLRP1, AIM2). Inflammasomes
process the pro-inflammatory cytokines IL-1β and IL-18 into
their active forms (de Rivero Vaccari et al., 2014; de Rivero
Vaccari et al., 2016). In neutrophils, activated caspase-1 or
caspase-11 cleave gasdermin-D (GSDM-D), which leads to
pyroptosis and NETosis (Chen et al., 2018; Chen et al., 2020).
Moreover, NETs are downstream of neutrophil inflammasome
activation (Chen et al., 2018; Sollberger et al., 2018; Westerterp
et al., 2018).

The AIM2 inflammasome in the CNS is activated by double
stranded DNA (dsDNA) (Adamczak et al., 2014), and dsDNA is

FIGURE 3 | Caspase-1 and ASC are present within citrullinated-H3
structures. Fluorescent images of the clots of patients that were double-
stained for Cit-H3 (green) and (A) caspase-1 (red) or (B) ASC (red). Caspase-1
and ASC positive cells were also immunorective for Cit-H3 (yellow) and
nuclei were stained with DAPI (blue). Magnification: 60X. Scale bar: 75 μm.
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present in NETs associated with atherosclerotic lesions. These
findings suggest that NETs are capable of activating
inflammasomes. In addition, our findings show that AIM2 is
present in thrombi of patients with AIS. Moreover, previous
findings also indicate that inflammasomes can also promote NET
formation in a process that relies of caspase-11 and gasdermin-D
cleavage (Chen et al., 2018; Sollberger et al., 2018). Furthermore,
NETs have been shown to activate NLRP3 inflammasome
(Kahlenberg et al., 2013). However, in this study we were
unable to detect by immunoblotting procedures NLRP3 in
thrombi (data not shown). However, NLRP1 and AIM2 were

readily identified in clots using the same methodologies (Abulafia
et al., 2009). Unlike other NLRs, such as NLRP3, NLRP1 is
cleaved as part of its activation process (Levinsohn et al.,
2012). Interestingly, immunoblots of a thrombus from one
patient (patient 8) showed NLRP1 laddering, indicating
NLRP1 cleavage or post-translational modifications. However,
that same patient showed very low levels of AIM2, another
inflammasome complex involved in inflammation and
pyroptosis (Adamczak et al., 2014). Although beyond the
scope of this project, it is possible that AIM2 is the active
inflammasome in the clots of the other patients, and in patient
8, the inflammasome that was activated was the NLPR1
inflammasome instead, which would explain the lack of
cleaved NLRP1 products in the clots of the other patients.
Moreover, another possibility is that multiple inflammasomes
may be activated in the same clots, thus producing an even more
heightened innate immune response since clots from other
patients such as patient three had more cleavage fragments of
NLRP1 as well as higher expression of AIM2 than in other
patients e.g., patient 6 (for NLRP1) or patient 4 (for AIM2).

FIGURE 4 | Inflammasome signaling proteins are elevated in the clots of patients with stroke. Protein levels in pg/ml of caspase-1 (A), ASC (B), IL-1β (C) and IL-18
(D) in the clots of patients with AIS as well as plasma of stroke patients (plasma) and from healthy controls (control). Caspase-1: N � 26 clot, N � 13 plasma stroke
patients, N � 39 plasma healthy control; ASC: N � 26 clot, N � 11 plasma stroke patients, N � 8 plasma healthy control; IL-1β: N � 19 clot, N � 5 plasma stroke patients, N
� 15 plasma healthy control; IL-18: N � 25 clot, N � 15 plasma stroke patients, N � 39 plasma healthy control a. Box and whiskers are shown for the 5th and 95th
percentile. p-value of significance <0.05. All groups were compared by a Kruskall-Wallis test followed by Dunn’s multiple comparison test.

FIGURE 5 | NLRP1 and AIM2 are expressed in the clots of patients with
AIS. Immunoblot analysis of clots from nine AIS patients that were blotted for
NLRP1 and AIM2.

TABLE 2 | Logistic regression output of factors influencing number of passes.

Factors influencing Number of Passes

Estimate Std. Error p-Value

IL-18 0.045 0.030 0.131
IL-1β 0.019 0.010 0.049*
TICI −5.353 2.221 0.016*
Smoking −0.951 0.835 0.255

TICI, Thrombolysis in Cerebral Infarction. pp < 0.05.

TABLE 3 | Linear regression output for factors affecting LKN time to
recanalization.

Factors Influencing LKN Time to Recanalization (min)

Estimate Std. Error p-Value

ASC −0.195 0.087 0.041*
Caspase-1 3.872 1.429 0.016*
IL-18 1.777 0.805 0.043*
IL-1β 1.904 1.094 0.102
TPA −145.342 208.956 0.497
BMI −31.165 15.832 0.068
CAD 888.713 264.213 0.004*
DM 601.35 263.286 0.037*

tPA, tissue plasminogen activator; BMI, bodymass index; CAD, Coronary artery disease;
DM, Diabetes Mellitus. pp < 0.05.

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 6072877

Chen et al. Inflammasomes and Netosis in Stroke

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Future studies are needed to determine the role of different NLRs
and AIM-2 like receptors (ALRs) in the clots of stroke patients.

Our findings show that IL-1β is significantly elevated in
cerebral thrombi in contrast to the plasma of stroke patients
and healthy controls. IL-1β has a fundamental role in
inflammation and coagulation (Wada et al., 1991; Danton and
Dietrich, 2003). Previous studies have found that IL-1β
contributes to slow progressive chronic conditions such as
atherosclerosis, diabetes, osteoarthritis and acute ischemic
processes, including myocardial infarction and stroke (Gabay
et al., 2010; Kerr et al., 2018a). In particular, IL-1β down-regulates
thrombomodulin and impairs protein C activity, thus acting as a
procoagulant. Furthermore, platelets express IL-1-R1 receptor
and the presence of its ligand, IL1β, results in platelet
hyperactivation and clumping (Bester and Pretorius, 2016).
Consistent with the hyperinflammatory response in the clot
are our findings of neutrophil composition and deformed red
blood cells within the clot as shown by electronmicroscopy. Thus,
inflammasome activation in cerebral thrombi may lead to further
clot propagation and stabilization, and hinder breakdown by the
body’s natural anticoagulant processes.

In contrast, IL-18 was significantly decreased in cerebral
thrombi as compared to plasma of healthy controls. IL-18 is
an important immunoregulatory cytokine that is involved in the
production of IFN-γ and T cell polarization as well as increasing
cell adhesion molecules, nitric oxide synthesis, and chemokine

induction (Dinarello et al., 2013). However, unlike IL-1β,
precursor IL-18 is constitutively expressed by whole blood
cells and epithelial cells (Dinarello et al., 2013), and may
explain our finding that patients had lower levels of IL-18 in
cerebral thrombi as compared to plasma. It is also possible that in
the clot there is compensatory mechanism in which as IL-1β
levels increase, the levels of IL-18 decrease in order to modulate
the exacerbated inflammatory response present at the clot site.

High resolution SEM and TEM showed that NETs are
structures comprised of stretches of globular proteins. These
proteins are released into the extracellular matrix by activated
or dying neutrophils as a result of damage or infection
(Kessenbrock et al., 2009). A key protein involved in NETosis
is CitH3, characteristic of decondensed chromatin structures and
hypercitrullination of histone H3 by peptidylarginine deiminase 4
(PAD4) (Fuchs et al., 2007). In support of this observation, we
found CitH3 within clot structures, which contained the
inflammasome proteins caspase-1 and ASC, indicating
heightened inflammasome activation in NETosis in thrombi
following AIS.

The activation of IL-1β and other proinflammatory cytokines
recruit myeloid cells to the vascular endothelium to initiate
remodeling and perpetuate inflammation (Duewell et al.,
2010). In more advanced stages of the disease, cytokines
destabilize atherosclerotic plaques by promoting apoptosis and
matrix degradation. In patients with carotid plaques, elevated

FIGURE 6 | Thrombosis in acute ischemic stroke induces inflammasome activation in NETs present in clots. In AIS (1), thrombi (2) contain neutrophil extracellular
traps (NETs) that contain inflammasomes (3). These inflammasomes are responsible for the released IL-1β in the thrombi of these patients (4).
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levels of IL-1β, IL-6, IL-8, IL-12 p70, IFN-γ, TNF and caspase-3
are significantly higher in rupture-prone post bifurcation
segments of the plaque, suggesting a prominent inflammatory
role in creating cerebral emboli (Caparosa et al., 2019). Thus,
inflammasome activation may influence NETs and coagulation at
the site of cerebrovascular occlusion, thus affecting
thrombectomy outcomes, inflammasome activation may also
be a product of emboli formation.

Importantly, NETs in thrombi may act as molecular filters for
a variety of proteins, including inflammasome proteins. However,
whether those proteins are catalytically active or capable of
carrying out other roles in the inflammasome pathway is
presently under investigation in our laboratory. Future studies
are needed to analyze the role of inflammasome activation in
neutrophils isolated from thrombi of AIS on the cell mediated
processes of NETosis and pyroptosis. It is also critical to establish
how these processes affect the inflammatory milieu in the
thrombus microenvironment and in the systemic
inflammatory response after cerebral ischemia. However, we
have previously shown secreted inflammasome proteins
caspase-1, ASC, IL-1β and IL-18 correlate with poorer
outcomes in a variety of diseases or conditions of the nervous
system and periphery, suggesting that these secreted
inflammasome proteins are functional in inflammasome
signaling (Kerr et al., 2018a; Kerr et al., 2018b; Keane et al.,
2018; Forouzandeh et al., 2020; Perez-Barcena et al., 2020; Scott
et al., 2020), suggesting an important role in disease- or trauma-
related inflammatory pathological processes.

Our study is limited by the small number of samples as well as
the significant heterogeneity that exists between patients and
providers. There is not a standardized mechanical thrombectomy
technique and both tools and technique remain at the discretion
of the provider. Furthermore, there is a selection bias wherein clot
samples are only available in patients who had at least partial
success in clot removal. Thus, there are very few patients in the
cohort where at least partial successful recanalization was not
achieved. Additionally, there is selection bias for techniques
wherein the clot could be preserved such as stentriever as
opposed to aspiration alone. Nonetheless, our regression
analyses indicate that inflammasome proteins in thrombi from
AIS patients were associated with a greater number of
thrombectomy passes in order to achieve complete
recanalization, which is consistent with a longer time to
achieve reperfusion and poorer outcomes in AIS patients.
While, clot properties such as size, density, and strength were
not obtained for this study, future studies are necessary to assess
the association of inflammasome concentration with physical clot
properties.

Taken together, our results provide evidence for
inflammasome activation and NETosis in cerebral thrombi as

well as a significant role of inflammasome proteins in
contributing to poorer outcomes in patients after stroke.
Therefore, an improved mechanistic understanding of the role
of inflammasomes in NETosis will help in the development of
therapies to treat thrombotic and inflammatory disorders,
including stroke.
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