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Abstract

Japanese Encephalitis (JE) is a vector-borne disease of major importance in Asia. Recent increases in cases have spawned the
development of more stringent JE surveillance. Due to the difficulty of making a clinical diagnosis, increased tracking of
common symptoms associated with JE—generally classified as the umbrella term, acute encephalitis syndrome (AES) has
been developed in many countries. In Nepal, there is some debate as to what AES cases are, and how JE risk factors relate to
AES risk. Three parts of this analysis included investigating the temporal pattern of cases, examining the age and vaccination
status patterns among AES surveillance data, and then focusing on spatial patterns of risk factors. AES and JE cases from
2007–2011 reported at a district level (n = 75) were examined in relation to landscape risk factors. Landscape pattern indices
were used to quantify landscape patterns associated with JE risk. The relative spatial distribution of landscape risk factors
were compared using geographically weighted regression. Pattern indices describing the amount of irrigated land edge
density and the degree of landscape mixing for irrigated areas were positively associated with JE and AES, while fragmented
forest measured by the number of forest patches were negatively associated with AES and JE. For both JE and AES, the local
GWR models outperformed global models, indicating spatial heterogeneity in risks. Temporally, the patterns of JE and AES
risk were almost identical; suggesting the relative higher caseload of AES compared to JE could provide a valuable early-
warning signal for JE surveillance and reduce diagnostic testing costs. Overall, the landscape variables associated with a
high degree of landscape mixing and small scale irrigated agriculture were positively linked to JE and AES risk, highlighting
the importance of integrating land management policies, disease prevention strategies and promoting healthy sustainable
livelihoods in both rural and urban-fringe developing areas.
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Introduction

Japanese encephalitis (JE) is the leading cause of viral

encephalitis in Asia [1]. It is a mosquito-borne disease caused by

a flavivirus that cycles between birds, pigs and people [2]. Its

distribution has, in recent years expanded and is expected to

spread more widely geographically with anticipated changes in

climate and land use [3]. Although less than 1% of people infected

with the JE virus develop clinical disease, approximately 20–30%

of cases are fatal and 30–50% of survivors have long-term

neurological sequelae [1]. The global incidence of JE is unknown

due to varying surveillance efforts and capacity, but Campbell et

al. [1] estimated its annual incidence in 24 JE-endemic countries

to be 1.8/100,000; 5.4/100,000 for children 0–14 years of age.

The high case fatality rate, high rate of severe long lasting

neurological symptoms and the majority of deaths occurring in

children make JE a major public health problem [4].

Acute encephalitis syndrome (AES) is characterized by acute

onset of fever, a change in mental status, and/or new onset of

seizures. In tropical counties, the annual incidence of AES has

been estimated to be 6.3/100,000 and perhaps up to 10/100,000

for children [5]. JE is the major identified cause of AES in Asia [6].

AES serves as the World Health Organization’s clinical case

definition for JE and is used by clinicians to recognize suspect JE

cases. AES is not, however, specific for JE. It can be associated

with a variety of other pathogens including other viruses,

bacterium and parasites that co-exist in JE endemic countries. It

has been estimated that a quarter of AES cases in Nepal are due to

JE and that AES cases that are caused by JE have a worse

prognosis than AES caused by other pathogens [6].

Nepal is a landlocked mountainous country with a population of

approximately 29 million in 2011. Positioned on the slopes of the

Himalayan range between China in the north and India in the

south, east, and west, Nepal’s landscape is characterized by three

landscape types representing an altitudinal gradient from Tibet to

India including the Himalaya (mountain region), the Hill areas of

the inner Terai valleys, and the plains of the outer Terai. Monsoon

rains support intensive agriculture (e.g., rice growing) and animal

production (cattle, poultry and ruminants) on the Terai plains. Rice

paddies support the breeding of Culex tritaeniorrhynchus, the dominant

vector of JE in Nepal. Outbreaks occur with the onset of monsoon

rains in July and usually end in October in endemic Terai areas,

while recent shifts of JE to hill-region areas and the Kathmandu

valley exhibit markedly different temporal patterns [7].

JE was first confirmed in Nepal in 1978 in the Terai districts

near the Indian border [8]. Due to the complexity of interactions
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between landscape, vectors, reservoirs, and hosts, the epidemiol-

ogy of JE remains poorly understood in Nepal as well as in many

other parts of Asia. Limitations and variability in surveillance

systems, health care systems and diagnostic capacity in endemic

areas may be leading to misclassification of JE cases and non-JE

cases [1], [4] as well as creating errors in estimating AES

distribution, incidence and impacts. Many estimates of JE

incidence depend on hospital based studies [1] which may fail to

capture cases with mild symptoms that do not interact with the

healthcare system. Nepali citizens are additionally challenged due

to difficulty in accessing health facilities, poor perception of

government or public health centres, gender differences in use of

health care resources and/or high levels of poverty which may

prevent people from presenting for diagnosis [9–12]. Because self-

referral was the most common route of presentation to hospitals

for Nepali AES patients in 2006–08, these impediments to

accessing health services may present a detection bias for AES

and JE surveillance and/or epidemiological studies. Additional

biases can arise due to the reliance on serological tests, such as

enzyme-linked immunosorbent assay (ELISA), for diagnosis. A

retrospective study in Nepal found that 82% of JE positive cases

were based on IgM ELISA, with 79% being based on a single

serum sample [6]. While IgM ELISA is an accepted standard for

JE serological diagnosis, both IgG and IgM based ELISA can

cross-react with other pathogens, such as Dengue virus and West

Nile virus [13–15].

Infectious diseases, such as JE, are driven by ecological and

social processes which result in heterogeneous distribution of

disease risk. Strategic allocation of JE control resources require

detailed knowledge of at-risk populations. This becomes more

critical for low income countries such as Nepal where there may be

insufficient resources or capacity to provide vaccination, mosquito

control or education programs for all citizens. Spatial analysis can

assist in forecasting where at-risk populations are geographically

located, identify social and environmental risk factors and thus

help with disease control planning. But, such analyses are limited

in their ability to accurately classify the outcome of interest; in this

case, the distribution and abundance of JE [16]. Impoinvil et al.

(2011), for example, reported on associations between spatial

heterogeneity of JE cases and environmental variables in Nepal,

finding links between weather and land-use variables. That study

used AES cases with a positive anti-JE IgM ELISA test in serum or

cerebrospinal fluid, potentially missing cases that were not subject

to diagnostic testing. Climate variables and land-use were similarly

seen as geographic risk factors for viral encephalitis in Thailand,

yet again, that study recognized the limitations created by

inconsistent application of a rigourous inclusion criterion for case

detection [17] . Given that; (i) access to diagnostic testing and

reliance on hospitalized cases may exclude some JE cases from

surveys or surveillance data; (ii) there are some overlaps in known

risk factors for JE as well as some other diseases that may cross-

react with JE on diagnostic testing and (iii) Rayamajhi et al. [6]

found no marked differences in the season or age profiles of JE and

non-JE cases among cases of viral AES presenting to hospital; we

wondered if the geographic distribution and spatial risk factors for

AES in Nepal would be sufficiently parallel to those for JE to allow

AES to act as a syndromic surrogate for JE to inform public health

planning.

Spatial analysis of syndromic surveillance has been used in other

settings to detect disease clusters, track the spread of disease,

identify spatial variability, and provide early warning for infectious

and non-infectious diseases [18–21]. Syndromic surveillance has

also been used to examine associations between environmental risk

factors and disease outcomes [22] and for identifying high risk

populations [23]. Our main research objective was to compare

and contrast spatial risk factors of AES and JE in Nepal in order to

explore the potential for AES syndromic surveillance to inform

public health decision making for JE prevention and control.

Methods

Geographical patterns can provide important clues about

disease etiology [24]. The objective of this analysis was to examine

whether the cases reported as AES were similar in their geographic

pattern to cases identified as JE. It is hypothesized that a certain

proportion of AES and JE cases are due to the same etiological

processes. We examined relationships between geographic risk

patterns and risk relative to underlying landscape variables related

to etiologic processes specific to known JE epidemiology. Finally,

we compared risk factors and geographical patterns in risk factors

to further elucidate the epidemiological relationship between JE

and AES in Nepal.

Data
AES and JE surveillance data were obtained from the AES

Surveillance System as part of the World Health Organization

(WHO) Programme for Immunization Preventable Diseases (IPD)

which is responsible for many types of disease surveillance

throughout Nepal. Cases are obtained from reporting district

health centres (578 for all of Nepal) and tested for JE using the

anti-JE IgM ELISA(X CYTON commercial Kits which has

sensitivity 77.8% and specificity 93.3%) test. Cases testing positive

for JE were extracted and classified as JE, while cases testing

negative were denoted as AES. A small subset of cases was not

tested or the test results were inconclusive, we classified these cases

as unknown viral encephalopathy (UVE).

Disease data were integrated with population data obtained

from the Nepalese Department of Health Services for each of the

study years (2007–2011) to compute year-specific incidences for

each district. While geographic studies of disease risk often deal

with unstable risk estimates resultant from low population areas

via Bayesian shrinkage estimation [25], this was not done here

because the empirical risk distribution for both JE and AES is not

related to sample size and discrete discontinuities in risk may in

fact, be a real feature of JE epidemiology. Further, the large size

and relatively low number (n = 75) of districts negated any

procedures which could potentially oversmooth and misrepresent

the true risk distribution [26]. The maximum annual incidence

rates for the study area and years are presented in Figure 1.

Maximum annual incidence was used as a measure of risk as our

interest was in identifying outbreak prone locations and visual

analysis. For Poisson regression-based risk modelling, the 2009

population estimates were used as the denominator data (i.e., offset

variable).

Landcover data was obtained from the South Asia edition of the

Global Land Cover 2000 Dataset (GLC) which is a global mosaic

of SPOT-4 data produced by the Joint Research Centre of the

European Commission [27]. The global mosaic is an aggregation

of regionally-optimized landcover classifications with a harmo-

nized globally integrated legend. The South Asia GLC data

included all of Nepal which contained 27 of the 47 landcover

classes defined for South Asia. The South Asia classification is

based on multi-temporal SPOT Vegetation data whereby

temporal profiles were matched to phenological variation in

vegetation types to improve classification accuracy [28]. A

validation study of the South Asia classification map found forest

and cropland classes to be 78% and 74% accurate relative to high-

resolution classifications [29]. The landcover dataset was clipped

JE and AES in Nepal
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to the boundaries of Nepal and used to characterize landcover

within each of the districts.

Landscape Pattern Indices
Landscape pattern indices (LPIs) are measures of landscape

structure that typically characterize one of two fundamental

properties of spatial pattern: configuration, the spatial arrange-

ment of landscape patches, and composition, the variance and

abundance of patches within a landscape. LPIs are used to

summarize properties of spatial pattern, usually with a single value

for a given landcover map. Measures of configuration, such as

patch size distribution, habitat connectivity [30] and the density of

edges [31] offer different ways of measuring how the landcover

types in a landscape are arranged. Compositional metrics on the

other hand, such as the number of patch types, relative abundance

of each patch type, and composite measures [32] relate to the

overall abundance of specific landcover classes in the landscape.

Figure 1. Maximum standardized incidence ratios over the study period for a) Japanese Encephalitis (JE) and b) Acute Encephalitis
Syndrome (AES).
doi:10.1371/journal.pone.0066168.g001

JE and AES in Nepal
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LPIs have been used to reveal how landscape can function to

impact emerging infectious diseases. For example, Langlois et

al. examined landscape pattern indices in relation to hantavirus

in deer mice, finding that both forest composition (i.e., deer

mice habitat) and configuration (i.e., fragmentation) were

related to hantavirus geographical distribution [33]. LPIs may

have special utility for vector-borne diseases due the environ-

mental sensitivity of vector habitat locations which can vary

greatly over small spatial scales and be important causal factors

in human infection risk. Through simulation, Smith et al. [34]

showed that the biting rate of infectious mosquitoes declines

with distance from larval habitat, while the percentage of

mosquitoes that are infectious increases with distance due to

shifts in age distributions with dispersal from larval breeding

areas. Thus, when humans and mosquito populations are

distributed heterogeneously, the density of infected humans

was found to peak at a distance far from the source of the

mosquito populations. These results imply that it is not the mere

presence of mosquito habitat that impacts the risk of human

infection, but also the spatial arrangement of habitat patches in

relation to human population density.

While conceptually, the notions of composition and configura-

tion describe two distinct aspects of spatial pattern, measures of

these properties are inherently correlated [35], and there is need to

determine the extent to which changes in configuration are due

only to compositional change [36]. LPIs also do not map uniquely

to spatial patterns, leading to the possibility of perceptually (and

statistically) different landscapes having identical LPI values [37].

Finally, landscape patterns are scale dependent [38] and require

scale-specific interpretations of underlying mechanisms when used

in a quantitative analysis.

Correlation among indices is usually handled through

correlation tests or ordination techniques [35]. Non-unique

mapping between LPI values and landscape patterns applies

primarily to assessing landscape change and has been addressed

by simulating landscapes with known levels of composition and

configuration [39]. Scale issues are usually accommodated by

repeating analysis at multiple scales, framing LPIs within a

hierarchy of landscape patterns and ecological processes [40–

41]. In all research contexts, careful selection of LPIs based on

hypothesized effects on an ecological process is a key require-

ment [42]. In spatial epidemiological studies, LPIs are best

applied in a large-scale exploratory studies to provide evidence

for existing hypotheses of disease mechanisms or to suggest new

hypotheses.

We selected LPIs that characterize the both spatial configura-

tion and composition of landcover classes relevant for JE

epidemiology. The transmission cycle of JE in Nepal is suspected

to include humans exposed to the JE virus via mosquito bites.

Mosquitoes also transmit the virus to pigs, which serve as an

amplifying reservoir. The source of the virus is generally thought

to be migratory birds in most of Asia. The role of landscape can

factor into any of these epidemiological links. For example, Ferraz

et al. [43] showed that increasing fragmentation in Brazilian

forests decreased avian biodiversity, which could have impor-

tant effects given the complex relationships between biodiversity

and emerging infectious disease ecology [44–45]. Landscape

pattern may also impact mosquito populations, Yasouka and

Levins [46] reported significant effects of deforestation and

agricultural development of anopheline mosquito populations,

noting for example the fourfold increase in malaria incidence in

Afghanistan reportedly due to irrigation-based agricultural

development [47–48].

Landscape types extracted from the landcover inventory were

based on the GLC 2000 Legend specific for South Asia. Table 1

outlines the landcover classes and aggregations used for this

analysis. The most important landcover types thought to impact

JE risk were forest (i.e., bird habitat), irrigated land (i.e., mosquito

breeding sites and exposure sites), and grasslands. These classes

were used as input to LPIs (Table 1). To quantify the relative

abundance of each patch type within each landscape, the total

area of each relevant landcover type was used. An illustration of

each of the LPIs is outline in Figure 2. As can be seen for Class 2,

the number of patches (NumP), the interspersion index (IJI) and

the edge density metric (ED) are all higher for a randomly drawn

map than the clustered (and much more realistic) map. These

measures therefore provide some indication of the relative mix of

the different landcover types and may have utility as proxy risk

factors in large-area studies.

Each district was used as the unit of analysis for computing LPIs

as these were the scale at which disease data were obtained.

Distributions of LPIs were compared against JE and AES risk

using descriptive statistics and graphs. The Patch Analyst

Extension [49] and FragStats [50] were used to compute LPIs.

Geographically-weighted regression
Geographically-weighted regression (GWR) is a local regression

method that generates N spatially localized regressions between a

dependent variable y and a vector of covariate variables observed

Table 1. Landscape pattern indices used to quantify landscape patterns in Nepal based on Global Land Cover 2000 classification.

Metric Definition Rationale

Grassland Area (G_sum) Sgrass Bird habitat, associations found in previous studies of spatial JE
epidemiology

Irrigated Agriculture Area (I_sum) Sirrigated Mosquito habitat associated with standing water and rice paddy agriculture

Forest Area (F_sum) Sforest Bird habitat associated with long-range virus movement.

Irrigated Agriculture Interspersion Juxtaposition
Index (I_IJI)

{Sm
i S

m
k=i ½(Eik) � ln(Eik)�
ln( m(m{1)

2
)

A measure of how well mixed the land cover configurations are in the
District. If irrigated agriculture areas are the source, a mixed distribution may
increase exposure to infected mosquito populations.

Number of Forest Patches (F_NP) SforestPatch A measure of forest fragmentation that may influence mixing of bird and
mosquito populations.

Average Edge Density of Irrigated Agriculture (I_ED) SirrEdge
StotalArea

A measure of the amount of edge of irrigated agriculture relative to the total
area of the district

All indices are computed at the district level.
doi:10.1371/journal.pone.0066168.t001
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over the same geographic units [51]. The basic GWR models is

specified as

yi~bo(si)z
X

k

bk(si)akzei ð1Þ

where the ordinary global regression model is rewritten with local

(si = xi,yi) estimates for the intercept b0 and slopes bk. In our case,

because we are working with count data, we used the generalized

linear model GWR with a Poisson link function. This generalizes

the ordinary GWR model to the generalize linear modelling

framework, making the local model as follows

log(E(yi))~bo(si)z
X

k

bk(si)akzei ð2Þ

This model provides flexibility to see how relationships between

covariates and the dependent variables vary across space. The

GWR model is calibrated with a distance decay model such that

points in the neighbourhood of the estimation location i closer to

location i are weighted more than points further away from i. The

form of the distance decay weighting function varies, but in this

analysis a Gaussian formulation was used as

wi(sj)~exp {
dij

h

� �2
" #

ð3Þ

where dij is the distance between centroids of the district i and

district j, and h is the bandwidth. Selection of appropriate

weighting function can be considered a model selection issue

and is generally considered less important than the definition used

for spatial neighbours [51]. The neighbourhood definition (i.e.,

what points are included in the local regression) represents a trade-

off between lowering standard errors of local coefficient estimates

with increasing local sample size, and increasing bias into estimates

by incorporating points that are ‘further away’ and potentially

unrelated to the estimating location. While automated neighbour-

hood definition methods are available using metrics such as the

AICc and cross validation, in this analysis we focused specifically

on local neighbourhoods – as our intent was descriptive rather

than explanatory (i.e., we wanted to compare local epidemiological

risk factors for JE and AES rather than fit the best model possible).

As such, we used a k-nearest neighbours definition with K = 15,

determined after exploratory analysis.

The purpose of GWR is to reveal underlying spatial non-

stationarity in relationships identified in a regression model, and

normally occurs following a global regression model and

inspection of model residuals. Here, we first specify a global

regression model where the risk of JE in district i is related to the

coefficients for the amount of area devoted to each of the

landcover classes and the relevant LPIs (Table 1).

Finally, as our objective was to identify differences in pattern of

JE and AES risk in Nepal, basic epidemiology of the time series of

cases is explored. We computed time series for each of the three

types of disease as well as other variables that may shed light onto

the etiology of the AES cases, including the proportion of cases

presenting that had been vaccinated with JE vaccine, and the

proportion of cases reported by individuals under the age of 16.

Through joint analysis of the temporal, spatial, and landscape

distributions of JE and AES cases, we aimed to uncover new

insights into their respective epidemiology.

Results

The total number of cases reported to the AES Surveillance

System in Nepal peaked in 2008 with 1988 total cases, while the

lowest number of (1216) cases reported was in 2011 (Table 2). The

greatest decline was in laboratory confirmed JE cases, while AES

declined also in 2011. The trend in lab-confirmed JE reflects the

mass vaccination campaign initiated in Nepal in 2005, which

aimed to vaccinate all children under the age of 15, with initial

efforts focused in rural areas, and in later years around the

Kathmandu valley. The spatial distribution of JE and AES risk in

Figure 1 illustrates two common patterns of risk. Firstly, rural areas

in the northern and southern Terai districts have a high relative

risk profile. This fits with expected patterns of risk for confirmed

JE, although not necessarily for AES. Secondly, high risk is also

noted in the Kathmandu Valley districts, as has been previously

reported. Importantly, the pattern holds for both AES and JE risk.

Figure 2. Landscape pattern indices (LPIs) used to investigate
relationships between landcover and disease risk. The inter-
spersion juxtaposition index (IJI) measures the relative spatial mixing of
a landcover class in the study area. Edge density (ED) measures the
amount of edge relative to the total area (class and landscape), while
the number of patches (NumP) reports the total and class level number
of contiguous landcover classes. Class 2 was chosen to illustrate class
level LPIs in the random map drawn from a Binomial distribution (a) and
the result of a median filter on the same map (b) which maintained the
relative proportion of class 2 (,32%).
doi:10.1371/journal.pone.0066168.g002

JE and AES in Nepal
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Very few cases are observed in the remote western districts. In

terms of risk magnitude, incidence varies from zero to almost 6 for

JE, and up to over 21 cases per 100,000 for AES.

The seasonal dynamics associated with JE is evident for AES

also (Figure 3a), with identical peaks in cases in late summer and

early fall, while for UVE there is a relatively even distribution

throughout the year. Over the course of the study period, the

seasonality of AES dampened in 2011 (Figure 3b). Whether this

pattern can be explained by the vaccination campaign is unclear.

The percentage of cases in individuals under the age of 16 is

presented in Figure 4a for JE, AES and UVE and vaccinations

over time are presented in Figure 4b. Each of these represents

important clues as to the interaction between JE and AES

epidemiology. If for example, vaccination status differed signifi-

cantly for AES and JE, we would have clear evidence for both the

efficacy of the vaccination campaign, and the existence of non-JE

aetiologies associated with AES. However with vaccinations barely

reaching more than 10% of cases, it is not possible to use this as a

discriminator between JE and AES. Additionally, the proportions

of patients under the age of 16 were fairly consistent over the study

period, composing between 35–45% of the total caseload for JE,

AES and UVE (Figure 4a).The similarity (and high percentage) of

cases under the age of 16 for all disease types is an analogous

finding to the similarity in temporal pattern and geographical risk

factors – that is, the exposures for these diseases are constant

across age, and likely due to a common set of exposure

mechanisms. Neither age distribution nor vaccination status

appear to discriminate among the disease classifications examined

in this study.

The global regression model results relating JE and AES to

landscape variables are outlined in Table 3 (UVE was not

including in modelling due to the relatively low number of cases).

For both models, the composition variables (grassland area,

forested area, irrigated area) had no significant relationships with

either JE or AES and were excluded from the final model results

reported here. The JE Poisson regression model was determined to

be significant (R2 = 0.31, AICc = 649.856) with irrigated area edge

density and irrigated area land mix having significant positive

Table 2. Descriptive statistics of Japanese Encephalitis (JE),
Acute Encephalitis Syndrome (AES) and Unknown Viral
Encephalopathy (UVE) in Nepal, 2007–2011.

2007 2008 2009 2010 2011

JE 442 339 147 197 129

AES 1142 1548 1274 1305 966

UVE 73 101 97 112 121

Totals 1657 1988 1518 1614 1216

doi:10.1371/journal.pone.0066168.t002

Figure 3. Temporal patterns in Japanese Encephalitis (JE), Acute Encephalitis Syndrome (AES) and unknown viral encephalopathy
(UVE) in Nepal, 2007–2011. a) Seasonal distribution of AES (line), JE (light bars) and UVE (dark bars) cases over the study period. b) Time series of
AES (solid), JE (light dots) and UVE (dark dash) cases over the study period.
doi:10.1371/journal.pone.0066168.g003

JE and AES in Nepal
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relationships with JE incidence, and number of forest patches a

significant negative relationship (a= 0.05). The global regression

model relating AES to landscape variables was also significant

(R2 = 0.38, AICc = 2075.794) with all three variables significant

(a= 0.05) predictors of AES incidence.

The results of the geographically weighted regression analysis

are presented in Figure 5, which gives the spatial distribution of

local R2 values for JE and AES (a–b), as well as the coefficient

maps for the landscape variables (c–h). Generally, the JE model

(R2 = 0.584, AICc = 420.215) and the AES model (R2 = 0.549,

AICc = 1535.086), had a similar spatial distribution of local R2

values, with the highest values located around the Kathmandu

valley area. The pattern in coefficient estimates (represented

with 4 equal interval classes) were similar as well. The highest

coefficient estimate values were found for irrigated land mix.

For irrigated area edge density, the variable with the second

largest coefficient magnitude in the models, the spatial

distributions highly similar between AES and JE. For high risk

areas in the Terai, the edge density variable had a high positive

effect on risk of both JE and AES when compared to areas in

and around the Kathmandu Valley. The number of forest

patches variables had a negative relationship with both JE and

AES risk, however the patterns differed between JE and AES.

Overall, the negative effect was of a higher magnitude and more

spatially uniform for AES than for JE. A comparison of the

global models and the GWR models for both JE and AES based

on the AIC revealed that the local model was the better model

for both JE (D AICc = 299.641 – 35.3%) and AES (D
AICc = 531.708 – 25.7%).

Discussion

The combined burden of AES, JE, and UVF represent a

significant and continuing public health issue for Nepal and other

Asian countries. While confirmed laboratory cases of JE represent

only 15.6% of total cases reported to the AES Surveillance System

during the study period, the analysis presented here demonstrates

that AES cases are a useful syndromic surveillance signal for

managing JE as public health issue. Temporally, the pattern of

cases of JE and AES is very similar (Figure 3a) and likely due to the

higher case volume, the rise in cases associated with summer high

season in AES precedes that of JE, suggesting a significant early-

warning value for public health planning (Figure 3b). Random

variation in low numbers of JE cases does not reveal the size of the

seasonal caseload, while examining the AES time series, the case

load early in the year consistently predicts the size of the peak

season case load. Where public health resources are scarce, this

analysis presents cursory evidence for the syndromic value of AES

for timely early-warning to supplement more costly laboratory

testing.

Interestingly, the amount of land cover for each landcover type

(grassland, irrigated areas, forest) was not related to either JE or

AES risk. This is surprising in that JE is typically regarded as a

disease endemic to rural rice paddy areas in Asia. Recent trends

towards establishment of JE in the Kathmandu Valley and

mountain districts [52–53] were confirmed in this analysis

(Figure 1), and thus may have masked the expected relationship

with the amount of irrigated area (i.e., rice paddy agriculture).

However, the density of irrigated area edge was significantly

Figure 4. Annual trends in a) the proportion of cases under the
age of 16 and b) the proportion of cases vaccinated in Nepal,
2007–2011. (JE - Japanese Encephalitis, Acute Encephalitis Syndrome
(AES), unknown viral encephalopathy UVE).
doi:10.1371/journal.pone.0066168.g004

Table 3. Global regression model results for a) Japanese
Encephalitis (JE) and b) Acute Encephalitis Syndrome (AES).

a) JE Global Poisson Regression Model Results

Variable Coefficient Estimate Std. Error

Intercept 210.260 0.038

Irrigated Edge Density 0.239 0.035

Number of Forest Patches 20.259 0.048

Irrigated Land Mix 0.230 0.024

b) AES Global Poisson Regression Model Results

Intercept 28.699 0.018

Irrigated Edge Density 0.137 0.137

Number of Forest Patches 20.442 0.231

Irrigated Land Mix 0.255 0.011

Note that coefficient estimates are reported in log terms and the independent
variables were z-transformed before entering into the regression model.
doi:10.1371/journal.pone.0066168.t003
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associated with both AES and JE risk, representing both mosquito

breeding habitat and potential exposure surface area. This finding

highlights the importance of spatial configuration measures in

spatial epidemiological analyses. Further, the relationship was not

uniform, with moderate positive relationship between AES/JE risk

and edge density in the northern and southern Terai districts

(Figure 5c/d).

To our knowledge, this is the first association found at the

landscape level between rice paddy spatial configuration and

disease risk in Nepal. In a recent analysis [16], the percentage of

Figure 5. Maps of geographically weighted regression analysis for Japanese Encephalitis (JE) and Acute Encephalitis Syndrome
(AES) and relationships with selected landscape pattern indices.
doi:10.1371/journal.pone.0066168.g005
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irrigated land was found to have a slight positive relationship with

lab-confirmed JE in 2007. This effect found was small (b= 0.028)

and was not significant in 2008 (the last year of the study’s data). It

is likely that the effect in [16] represent rural Terai endemic JE,

whereas the association identified in this analysis also measures risk

in the Kathmandu Valley districts. The coefficient map in

Figure 5c supports the homogeneity of the effect in the northern

and southern Terai. From a land management perspective, the

results indicate heightened risk of both AES and JE where small

scale irrigation agriculture mixes with other land cover types

(Figure 5e/f). This was the anticipated finding, as greater mixing

and amounts of edge represent greater opportunities for exposure

to disease vectors, it also represents a challenge in the promotion of

healthy landscapes. For example, the location of settlements

proximal to the small-scale rice paddy area may both support food

security and sustainability, but also incur greater disease burden

due to vector-borne disease risk. Public health planning and

disease control activities in Nepal should consider the role of land

use mix in promoting healthy land management planning rather

than purely land use amount. For example, irrigated agriculture in

the Terai versus steppe rice agriculture in hill regions may differ

significantly in terms of area, but confer the same risk of vector

borne disease exposure. This spatial configuration of irrigated

areas may also be a proxy for virus mixing between egret, pig, and

mosquito populations, a process not well understood but often

cited as a key driving process in the emergence of new zoonoses in

developing regions. The negative relationship identified between

forest fragmentation and JE/AES is difficult to understand, other

than that it is potentially not related to the virus reservoirs as was

suspected. More thorough investigation of wild and domestic avian

host reservoirs are needed to determine this conclusively.

There are important caveats to the spatial analysis of JE and

AES risk at the district scale which should be highlighted and may

impact our reported results. Firstly, the large size and relatively

low number of districts limits the specificity of risk factor

relationships which could be identified. Secondly, the case data

is subject to significant time delays and variation in reporting/

surveillance effort. The AES surveillance system utilizes 578

sentinel sites for data collection, however the accessibility of

these sites is not uniform, and variation in case detection may

impact the patterns reported here. From a methodological

perspective, it is important to reiterate the descriptive and

comparative purpose of the models presented here. Our

ultimate objective was to compare the patterns of JE and AES

risk and landscape-oriented risk factors rather than develop the

best fitting model for predictive and/or explanatory purposes.

GWR is an exploratory technique which highlights non-

stationarity in estimated linear relationships and is not suited

to rigourous estimation of risk factor effect sizes. Future analysis

should further explore the relationships between spatial config-

uration of irrigated lands and JE and AES risk using more

robust techniques – for example, incorporating a joint-risk

model at a more local spatial scale [54].

The spatial, temporal, and landcover configuration distributions

of JE and AES were explored in this study. Overall, we found a

high similarity in pattern between JE and AES across all three

dimensions of comparison.
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