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Abstract With the rapid development of cloud computing techniques, the number of users is

undergoing exponential growth. It is difficult for traditional data centers to perform many tasks

in real time because of the limited bandwidth of resources. The concept of fog computing is pro-

posed to support traditional cloud computing and to provide cloud services. In fog computing,

the resource pool is composed of sporadic distributed resources that are more flexible and movable

than a traditional data center. In this paper, we propose a fog computing structure and present a

crowd-funding algorithm to integrate spare resources in the network. Furthermore, to encourage

more resource owners to share their resources with the resource pool and to supervise the resource

supporters as they actively perform their tasks, we propose an incentive mechanism in our algo-

rithm. Simulation results show that our proposed incentive mechanism can effectively reduce the

SLA violation rate and accelerate the completion of tasks.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud computing is a new service mode that can provide avail-
able and convenient network visits (Mell and Tim, 2011). It
only took several years to integrate in people’s lives. At the

far cloud end, data centers keep users from the bottom physi-
cal framework through virtualization technology and form a
virtual resource pool for external services. The cloud data cen-

ter is composed of many large servers that meet pay-as-you-go
demand. These large-scale data centers are constructed by

well-capitalized big companies, such as Google, Yahoo, etc.
They possess the absolute right of control over resources,
and users can only use resources. With the development of

mobile internet, more and more heterogeneous devices are
connected to the network (Zhang et al., 2011). Although
large-scale cloud data centers can meet the complicated
requests of users, bandwidth limits may cause network conges-

tion and even service interruptions when many users request
services from the data center at the same time. The QoS (qual-
ity of service) cannot be ensured if the request has to be pro-

cessed by the far cloud end. Under this circumstance, fog
computing was developed (Bonomi et al., 2012).

Fog computing is a new resource provision mode in which

the users not only can use the virtualized resources but can also
provide services. In fog computing, some simple requests with
high time sensitivity could be processed by geographically
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distributed devices that can absorb some pressure of the cloud
data center. All devices with spare resources can be resource
supporters of fog computing, even some sensors and smart

phones. Since the resource supporter is closer to the resource
consumer, fog computing is superior to cloud computing in
terms of response speed.

The resource supporters are all rational and would like to
achieve some benefit for their resource contributions. If there
is not an effective incentive mechanism, the resource owners

will not contribute their resources (Vaquero and Rodero-
Merino, 2014). Based on the above problems, the main contri-
butions of this paper are presented as follows:

(1) A system structure based on the neural network of the
human body is put forward according to the character-
istics of cloud and fog data centers. The reasonability of

this system structure is analyzed.
(2) Based on the idea of crowd-funding, a reward and pun-

ishment mechanism was established by integrating the

computing capacity of geographically distributed
devices. This mechanism encourages resource owners
to contribute their spare resources and monitors the

resource supporters to execute tasks positively; it then
increases the working efficiency and reduces the SLA
violation rate.

In Section 2, we present the architecture of fog computing
based on the human neural network, and describe related
issues about crowd-funding. Then, we elaborate the crowd-

funding algorithm flow and analyze it mathematically using
repeated game theory. In Section 3, simulations are used to
show the effects of this algorithm on reducing the SLA viola-

tion rate and decreasing task execution time. Our work is con-
cluded, and future research directions are proposed in
Section 4. In Section 5, the related work of fog computing is

introduced.
2. Related works

Due to continuous development of the internet of things tech-
nology, more intelligent devices are used in people’s daily lives.
These geographically distributed devices possess tremendous
idle resources. There are plenty of resources available for users

in data centers. Therefore, coordinated management of these
resources in a fog environment for automatic deployment,
dynamic expansion and distribution according to user needs

is a research hotspot.
Many experts and scholars have explored coordinated

resources management in the cloud and fog environment.

Zhen et al. (2013) introduced the concept of ‘‘skewness.” By
minimizing skewness, the overall utilization of server resources
is improved to enhance the ability of the cloud data centers to
provide resources to serve the users. They also developed a set

of heuristics that effectively prevent system overload and con-
serve energy. Beloglazov et al. (2012) investigated the issue of
virtual machine consolidation in heterogeneous data centers

and presented an energy-efficient virtual machine deployment
algorithm called MBFD. The algorithm selects the physical
machine that increases the energy consumption of the system

the least after placing a virtual machine as the destination host
where a virtual machine should be placed. The algorithm plays
an energy-saving role. Lee and Zomaya, 2012 generated two
heuristic algorithms for task integration, ECTCC and MaxU-
til. The goal of these heuristic algorithms is to reduce the

energy consumption of data centers by improving resource uti-
lization of the physical machines to turn on as few physical
machines as possible. Hsu et al. (2014) proposed an energy-

aware task consolidation (ETC) technique. The ETC mini-
mizes energy consumption by restricting CPU use below a
specified peak threshold and by consolidating tasks among vir-

tual clusters. The network latency when a task migrates to
another virtual cluster has been considered in the energy cost
model. Gao et al. (2013) investigated the deployment of virtual
machines under the homogeneous data center, regarding it as a

multi-objective optimization problem. System resource utiliza-
tion and energy consumption were optimized and a multi-
objective ant colony algorithm was presented. Dong et al.

(2013) designed a hierarchical heuristic algorithm that consid-
ers the communication between virtual machines when analyz-
ing the virtual machine deployment problem. The energy

consumption of physical and network resources is optimized.
Wu et al. (2014) presented a green energy-efficient scheduling
algorithm that efficiently assigns proper resources to users

according to the users’ requirements in the cloud data center.
Their algorithm increases resource utilization by meeting the
minimum resource requirement of a job and prevents the
excess use of resources. The DVFS technique is used to reduce

energy consumption of servers in data centers.
Aazam and Hum (2015a,b) proposed a resources manage-

ment model based on fog computing. The model in (Aazam

and Hum (2015a,b)) considered resource prediction and allo-
cation as well as user type and characteristics in a realistic
and dynamic way, thus enabling to adaption to different tele-

com operators according to requirements. However, their
resources management model neglected heterogeneous ser-
vices, service quality and device movement. In (Aazam and

Hum (2015a,b)), the authors proposed a high-efficiency
resources management framework. Since fog computing
involves different types of objects and devices, how many
resources will be consumed and whether request node, device

or sensor will make full use of requested resources are unpre-
dictable. Therefore, they developed a resources evaluation
and management method by comparing the abandonment

probability of fluctuating users to service type and service
prices as well as the variance of abandonment probability. This
method was conducive to determining correct resource

demand and avoiding resource waste. Nevertheless, their
resources management model analyzed from the perspective
of only the service supplier, and neglected the economic bene-
fits of service users. In (Do et al., 2015), the authors studied

resource co-allocation in fog computing and reducing carbon
emissions. A high-efficiency distributed algorithm based on
the near-end algorithm was developed that decomposed

large-scale global problems into several sub problems that
can be solved quickly. However, this algorithm only focused
on a single data center and neglected the fact that there are

multiple small data centers in fog computing. SU et al. ana-
lyzed how to share or cache resources between servers effec-
tively using the Steiner tree theory (Su et al., 2015). When

the fog server is caching resources, a Steiner tree is produced
first to minimize the total path cost. Next, the Steiner tree is
compared with a traditional shortest path scheme, which
proved that the Steiner tree is more efficient. However, they
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Figure 1 Architecture of fog computing based on the nervous

system.
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only analyzed resources management issues between servers
and did not perform collaborative analyses on distributed user
resources in the fog environment. In (Zeng et al., 2016), the

authors designed a high-efficiency task scheduling and
resources management strategy designed to minimize time to
accomplish tasks in the fog environment to enhance user expe-

riences. For this reason, the authors discussed three problems:
(1) how to balance loads between user devices and the comput-
ing server, or task scheduling; (2) how to place task images on

the storage server, or resources management; and (3) how to
balance I/O interrupt requests between storage servers. They
were abstracted into a mixed integer nonlinear programing
problem. However, the authors basically applied concentrated

resources management under cloud computing and did not
consider the distributed structural characteristics of fog com-
puting. In (Lee et al., 2016), the authors put forward a gateway

conceptual model based on a fog computing framework. This
framework mainly consisted of host nodes and slave nodes,
managing virtual gateways and resources. This model was sus-

pended in the theoretical study. How to limit found resources
in actual application scenarios and determine which resources
need virtualization and how to integrate virtual resources have

to be solved in the future. In (Song et al., 2016), the authors
established a load equilibrium algorithm based on dynamic
graph division that could allocate system resources effectively
and reduce loss caused by node transferring. This algorithm

sacrificed system performance for resource management,
which influenced the user experience. In (Wang et al., 2016),
the authors introduced the concept of multimedia perception

of service and put forward a new resource allocation frame-
work at the cloud edge, or fog end. This framework analyzed
the dependence of data in the space, time and frequency

domains as well as energy efficiency under different resource
allocation strategies considering the effect of a flexible infor-
mation channel coding rate. Multimedia perception-oriented

users designed a physical resource allocation strategy. Their
study emphasized data analysis, but did not have a specific
resource collaborative management scheme. In (Zeng et al.,
2016; Guo et al., 2016), the authors considered an embedded

system that was defined by fog computing support software.
To enable users to accomplish tasks in minimum time, an effi-
cient resource management strategy was designed. However,

this strategy had the disadvantage of overly high computing
complexity and poor resource management. To solve the com-
puting complexity problem, in (Gu et al., 2016; Liu, 2013), the

authors put forward a two-stage heuristic algorithm based on
linear programming that was proven to be highly cost-efficient
by experimental results. Nevertheless, most existing research is
based on a fixed resources supply model, resulting in low

resource flexibility.
The performance of the resources management system is

the key to fog computing technology. Devices connected to

the network and user demands increase with the continuous
development of fog computing, causing resource bottlenecks
at the data center. The cloud data center has difficulty meeting

the demands of users with high real-time requests. Therefore, it
becomes more important to discuss collaborative resources
management of data center and network edge devices. Such

collaborative management is more complicated because user
resources are often distributed and the same resource is often
shared by numerous computational nodes. User resources
management not only involves topology, configuration, capac-
ity and other intrinsic properties of the network but is also clo-
sely related with computing resources, storage resources and
distribution of applications. Therefore, studying collaborative

management of data center and user resources is challenging
and urgent.

3. Methods

For the basic structure of fog computing, most existing
research is a three-tiered architecture where fog cloud comput-

ing lies between the cloud computing layer and the Internet of
Things layer. The fog computing layer is composed of some
small data centers, located at the edge of the network where

they are closer to users. They can handle relatively simple
and high real-time task requirements. We are inspired by
Ning and Wang (2011) who proposed a future architecture

of the Internet of Things that is similar to a human neural net-
work. The architecture is shown in Fig. 1 and consists of the
brain nerve center (cloud data centers), spinal nerve center
(fog computing data centers), and the peripheral nerves (smart

devices), widely distributed all over the body. The activities of
the spinal cord are controlled by the brain.

Peripheral nerves are distributed in the body. They feel

stimulation and transfer tasks. The spinal nervous system han-
dles the simple unconditioned reflex, such as the knee jerk
reflex. If all requests had to be dealt with by the brain, the

brain would be extremely tired. Similar to the characteristics
of neural structures of the body, we designed a new system
architecture. In our architecture, the intelligent devices can
be seen as the peripheral nerves that are widespread geograph-

ically, such as the phones, tablets, smart watches, or sensors.
The Fog computing center will address some simple and
time-sensitive requests (such as the spinal cord knee jerk reflex)

that can share the resource pressure of the cloud data center.
The spinal cord is the connecting pathway between periph-

eral nerves and the brain, which is similar to the location of the

fog data center that is the bridge of the underlying Internet of
Things and high-level cloud data centers.
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3.1. Game model description

In the open and sharing mobile Internet era, many spare
resources are underutilized. In fog computing, users will not
take the initiative to contribute their spare resources if there

is not an effective incentive mechanism. We established a set
of incentive mechanisms based on the idea of crowd-funding
and repeated games, and some definitions are as follows:

3.1.1. Definition 1: broker

The local fog computing data centers constructed by small
enterprises or universities that have the ability to provide ser-

vices for users. However, the computing and storage services
that they provide are limited. They are eager to improve by
integrating the resources of resource supporters.

3.1.2. Definition 2: resources supporters

The resource owners who are willing to contribute some or all
of their spare resources and execute tasks assigned by fog data
centers are the resource supporters. They can earn rewards by

contributing their resource capacities.

3.1.3. Definition 3: crowd-funding reward

a is the financial reward that resource supporters get from the
fog broker per unit time by contributing resources.

3.1.4. Definition 4: task reward

b is the financial reward that resource supporters get from the
fog broker by performing tasks.

3.1.5. Definition 5: discount factor

d reflects the degree of patience of players in the game.

3.1.6. Definition 6: self-loss

The self loss / indicates the energy costs and risk costs of
crowd-funding supporters when they actively execute tasks.
The resource utilization of crowd-funding supporters will

improve if they fully use their resources to actively perform a
task. System utilization and power consumption are linear
according to (Fan et al., 2007; Kusic et al., 2009), which indi-

cates that the increase in system utilization leads to improve-
ment in energy costs. Even if a supporter has some spare
resources at present, these resources may be used at another

time. Contributing resources will increase the risk of resource
shortages on their own devices.

Our crowd-funding algorithm is designed as shown in
Fig. 2.

To encourage the resource owners to contribute their
resources, the fog broker promises to give the supporters a
higher bandwidth if they contribute their spare resources.

The additional revenue brought by the higher bandwidth is
the crowd-funding reward denoted by a. With the objective
of obtaining a higher bandwidth, users will select contributing

resources to form a local crowd-funding resource pool. How-
ever, after crowd-funding supporters have achieved the bene-
fits, they may refuse to continually provide the resources. To

monitor user consistency in contributing resources, we design
an incentive mechanism based on the repeated game theory.

First, supporters consider whether to accept the task
assigned by the fog broker. If the supporter accepts tasks, they
will get a higher reward b. If the user refuses, he can only get a
because he is contributing resources (a< b). If the supporter
accepts the task, he will perform the task positively or nega-

tively. The supporters will bring some self-loss / if they per-
form tasks positively. Suppose the fog broker is unable to
know whether the supporter is active and only knows the result

of the task. When the task is executed successfully, the income
of the fog broker is h (h> 0). If the task failed to finish, the
income of the fog broker is 0. Suppose when the supporter

actively performs the task, the task will surely succeed. When
the supporter passively performs the task, the probability of
completing the task successfully will be P, and the probability
of failure is 1 � P.

If a task was performed in only one stage, rational support-
ers will choose performing tasks negatively. Given this, a task
will be divided into many stages, so the supporters do not

know the end time of the task. Thus, the selection process of
resource supporters is equal to an infinite repeated game. To
ensure that the supporters perform tasks actively, the support-

ers will be put on a black list if they do not complete the task in
time. This means they will no longer get a reward from the fog
broker. Therefore, supporters will make full use of their own

resources in order to get more rewards. Then, we design a rea-
sonable trigger strategy according to the concept of the
repeated game to motivate and supervise supporters to actively
complete tasks. The resources pool of the fog broker has been

effectively expanded. It increases capacity for the task and alle-
viates the pressure on the bandwidth of the cloud data center.
Supporters also gain a reward.

3.2. Game analysis for our algorithm

Next, we use repeated game theory to analyze whether the

algorithm can effectively motivate supporters to contribute
their spare resources and actively perform tasks.

In the incentive mechanism we designed, the game between

fog broker and crowd-funding supporters is considered as a
repeated game with complete information. Assume that the
game has perfect memories meaning game players can remem-
ber information about themselves and others. At a random

stage G, the player will determine his own strategies based
on the strategies of the other side. Here, we first introduce
the stage game where a task only executes one stage G.
3.2.1. Stage G

The fog broker strategy combination is fbjb P 0g that gives
crowd-funding supporters a reward. The crowd-funding sup-

porter strategy combination is a function from fbjb P 0g to
{actively perform tasks, passively perform tasks, and refuse
to perform tasks} that is an infinite strategy dynamic game.

In this strategy, actively performing tasks, passively perform-
ing tasks or refusing to perform tasks is the response of
crowd-funding supporters to how much reward the fog broker

has given. Suppose the broker and supporters are rational indi-
viduals who are eager to maximize their own benefits. Since the
award is paid in advance and contributing their own resources
continuously will bring additional costs of energy and risk, if

there is not a punitive measure, crowd-funding supporters
must select passively performing tasks, and the expected rev-
enue of the fog broker is (ph � b). We assume that ph � b< 0

(performing tasks negatively is difficult to complete the task



Figure 2 The flow of the crowd-funding algorithm.
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within the required time, therefore, generally p is relatively
low). Such being the case, the fog broker will not give any
reward to supporters, i.e., b = 0. Therefore, crowd-funding

supporters will certainly select performing tasks negatively.
Thus, the Nash equilibrium of stage G is: {b = 0, selecting
performing tasks negatively when b = 0}.

When the model becomes a super game with stage repeats,
players can decide their strategies according to the memory of
stage G. To avoid fog brokers giving cheap rewards and
crowd-funding supporters performing tasks negatively, we

design a trigger strategy that is a credible threat to both the
fog broker and crowd-funding supporters so that getting rid
of this unfavorable situation and reaching Pareto is an excellent

outcome.
3.2.2. Trigger strategy T:

� On the Fog Broker side: pay a higher reward b* at the first
stage; if the payoff of the fog broker is always h in the for-
mer (t-1) phase, then continue to pay b*; otherwise no

longer give any reward, i.e., b* = 0.
� On the Crowd-funding Supporter side: if the reward is higher
than a, accept tasks assigned by the broker. If the first (t-1)
stage rewards are always b*, then users continue to actively

perform tasks at phase t, otherwise execute tasks passively.

The ultimate goal of supporters and the fog broker is to get

the highest capital return. Since the supporter does not know
at which stage the task ends, equivalently there is an infinite
repeated game with no final stage. To ensure the credibility

of the trigger strategy, the trigger strategy T needs to satisfy
the sub-game refining Nash equilibrium. We will analyze it
as follows:

If the players do not deviate from the trigger strategy, the

fog data center gives a higher reward b*, and supporters com-
plete tasks actively, the payoff function of the fog broker in the
whole repeated games is:

fw ¼ h� b� þ dðh� b�Þ þ d2ðh� b�Þ þ . . . ð1Þ



Table 1 Configuration parameters of the fog broker.

CPU Intel Core 2 DuoE5200

Memory space 4G

Operating system Win7

Table 2 Configuration parameters of crowd-funding

supporters.

CPU Exynos 8890

RAM 2G

ROM 32G

Operating system Android 4.4.3

Storage space 16G
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When resource supporters perform tasks positively, the
payoff function is:

uw ¼ b� � /þ dðb� � /Þ þ d2ðb� � /Þþ

¼ b� � /þ d
1� d

ðb� � /Þ ð2Þ

If any player deviates from the trigger strategy, the Nash

equilibrium will return. Because the fog datacenter does not
give any reward, it will get nothing in return. The payoff func-
tion of the fog data center is: fz ¼ 0.

If supporters choose performing tasks negatively, they may
complete the task with a weak probability p. Once beyond the
longest completion time the requestor can tolerate, the crowd-

funding supporter can get no incentive from the fog datacen-
ter, they can only get the basic contribution reward a from
the fog broker. The payoff function when supporters perform
tasks negatively is:

uz ¼ b� þ pduzþ1 þ ð1� pÞðdaþ d2aþ � � �Þ
ffi b� þ pduz þ ð1� pÞðdaþ d2aþ � � �Þ ð3Þ

If the trigger strategy is useful to encourage supporters and
brokers, the payoff function uw of supporters for actively per-

forming tasks should be more than uz of users for performing
tasks negatively. In addition, the payoff function fw of brokers
for giving a high reward should be more than fz of brokers for
giving a low reward.

fw > fz

uw > uz
)

h�b�
1�d > 0

b��/
1�d >

b�þdð1�pÞ a
1�d

1�pd

((
ð4Þ

(4) can be solved as follows:

aþ /þ 1� d
dð1� pÞ/ < b� < h ð5Þ

Therefore, if condition (1.5) is met, the trigger strategy is

the Nash equilibrium of the original game. The beginning
sub-game between two crowd-funding stages has the same
structure with the originally repeated game, which is an infi-

nitely repeated game. Therefore, the triggering strategy is also
the Nash equilibrium in the sub-game under condition (1.5). If
the stages before the beginning sub-game are all in Nash equi-

librium, then the fog broker will still give a high reward b�.
Therefore, the optimal strategy of crowd-funding supporters
is to perform tasks positively. Then, supporters must complete
the sub-task successfully because of active performance. In
subsequent phases, the fog broker will continue to give a high

b� and continue the trigger strategy. The trigger strategy com-

bination in the sub-game is also a Nash equilibrium.
Therefore, this strategy combination is a sub-game perfect

Nash equilibrium, which indicates that the trigger mechanism

is credible. This strategy combination encourages the game
players to maintain cooperation with the fog broker.

4. Results

A small crowd-funding platform was established based on the
basic framework of the extended distributed system Hadoop

that consisted of a fog broker, a cloud data center and
crowd-funding supporters. The crowd-funding supporters
were 50 smartphones, which formed a virtual resource pool
for external services. The configuration parameters of fog bro-

ker and supporters are shown in Tables 1 and 2, respectively.
Our simulation mainly detected the SLA violation rate and
time for completion of a task under different task loads. Appli-
cation pressure test data were generated by JMeter. Specific

parameter configuration is introduced in the following
Tables 1 and 2.

The SLA violation rate is defined as the proportion of

the number of failed tasks to the number of total tasks.
‘‘Failed tasks” means that the supporter failed to complete
tasks in the time required by the task requester. As a typical

dynamic scheduling algorithm, Min-Min algorithm (Braun
et al., 2001) chooses resources by calculating the minimum
for double and schedules abundant tasks onto corresponding

virtual machines the most quickly, thus enabling completion
of all tasks in the shortest time. The MBFD algorithm pro-
posed in (Beloglazov et al., 2012) allocates tasks based on
CPU utilization rate. Our resource crowd-funding algorithm

encourages resource supporters to contribute their spare
resources and process task requests while achieving a bonus
in return.

SLA violation rates and the time of completing tasks under
different task numbers are shown in Figs. 3 and 4. It can be
seen from Fig. 3 that the SLA violation rate with our algo-

rithm is always lower than MM and MBFD. This is because
the bonus incentive encourages crowd-funding supporters to
make use of idle resources to execute tasks positively and
accomplish user task requests in the stipulated time. It will

not suffer resource shortages, thus reducing the SLA violation
rate. With the increase of tasks, the SLA violation rate of the
proposed algorithm showed better stability than the other two

algorithms.
The times to accomplish tasks using the three algorithms

under different loads are presented in Fig. 4. The proposed

algorithm achieved significantly higher execution efficiency
than the other two algorithms. This is because crowd-
funding users are at the network edges and beyond the restric-

tion of bandwidth, and tasks do not need to be transmitted to
the cloud end. With the increase of loads, the proposed algo-
rithm still took less time to accomplish tasks than MM and
MBFD.
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Figure 3 The comparison of SLA violation rates for three schemes with different numbers of tasks.
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5. Discussion and conclusions

In this paper, we present a system structure based on the neu-
ral network of the human body according to the characteristics

of cloud and fog data centers. Then, we design a resource
crowd-funding algorithm to integrate sporadic resources to
form a dynamic resource pool that can optimize the spare

resources in the local network. A comprehensive reward and
punishment mechanism is presented for the resource support-
ers in the resource pool. The simulation results shows that
our scheme can effectively increase working efficiency and

reduce the SLA violation rate by encouraging resource owners
to contribute their spare resources and by monitoring the
resource supporters to ensure they execute tasks positively.

Through this research, we find that unless these widespread
devices can work together to create meaningful services, all
the resources from devices may be meaningless. Therefore,

the integration must be conducted seamlessly and intelligently.
Energy consumption is also an important issue in fog com-

puting systems, and it will be studied in the future. Reducing
energy consumption to reduce the costs of service providers

is of great significance. Improving the resource utilization of
data centers and reducing energy consumption in fog comput-
ing data centers will be an important future research direction.
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