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Summary
The cellular basis of the in vitro and in vivo T cell responses to Staphylococcus enterotoxin B
(SEB) has been investigated . The proliferation and cytotoxicity of V#8.1,2+,CD4+ and CD8+
T cells were observed in in vitro response to SEB. In primary cytotoxicity assays, CD4+ T cells
from control spleens were more active than their CD8+ counterparts, however, in cells derived
from SEB-primed mice, CD8+ T cells were dominant in SEB-specific cytotoxicity. In vivo
priming with SEB abrogated the response of V$8.1,2+,CD4+ T cells despite the fact that these
cells exist in significant number . This SEB-specific anergy occurred only in V08.1,2+,CD4+ T
cells but not in CD8 ' T cells. These findings indicate that the requirement for the induction
of antigen-specific anergy is different between CD4' and CD8+ T cells in post-thymic tolerance,
and the existence of coanergic signals for the induction of T cell anergy is suggested.

Staphylococcal enterotoxins (SEs)t provoke dramatic T cell
responses (1-3) . These are extremely potent polyclonal

mitogens stimulating a large proportion ofboth murine and
human T cells. Minor lymphocyte stimulating (Mls) antigens
have a similar nature to SEs (4-6), but the primary structure
of the Mls antigen is not known, as neither the gene nor
its product are yet isolated . These antigens are labeled "su-
perantigen." Recent evidence has demonstrated that these an-
tigens are recognized by T cells expressing particular TCR
Vo gene families in the context ofclass II MHC (Ia) antigen
(7-11), and this was further supported by reports showing
the affinity of SEs to la antigen (12, 13) . These antigens are
reported to cause the intrathymic negative selection of reac-
tive cells and result in major effects on the TCR repertoire
in both CD4+ and CD8' T cells (10, 14-19) . It was also
shown that post-thymic tolerance to foreign Mls antigen is
achieved by clonal anergy of CD4+ T cells (20) . Although
superantigens have these strong effects on the formation of
the repertoire in both CD4+ and CD8+ T cells, it is not
clear whether CD8+ T cells are responsive to these antigens
or under similar control in the induction of post-thymic toler-
ance . Here we demonstrate that both V08.1,2+,CD4+ and
CD8+ T cells in vitro respond to Staphylococcus entero-
toxin B (SEB), whereas in vivo injection ofSEB causes anergy
only in CD4+ but not in CD8+ T cells. These findings in-
dicate that the requirement for the induction ofantigen-specific
anergy is different between CD4+ and CD8+ T cells in

1 Abbreviations used in this paper. Mls, minor lymphocyte stimulating ; RT,
room temperature; SE, Staphylococcal enterotoxin .

post-thymic tolerance . It is suggested that antigen recogni-
tion by TCR alone is not sufficient and that supplemental
signals, termed here "Coanergic" signals, are necessary to in-
duce anergy.

Materials and Methods
Mice.

	

BALB/c byJ mice (4-6 wk old) were obtained from The
Jackson Laboratory (Bar Harbor, ME) .

mAbs and Mitogens.

	

B cell hybridoma lines producing antibodies
directed against murine CD4 (GK1.5), CD8 (3.155) were purchased
from American Type Culture Collection (Rockville, MD). VQ8.1,2
idiotype-specific mAb KJ16-133- (21) and V,68.1,2,3 idiotype-
specific mAb F23.1- (22) producing hybridoma lines were provided
by Drs. P. Marrack,J . Kappler (National Jewish Center for Immu-
nology and Respiratory Medicine, Denver, CO), and M.J . Bevan
(Research Institute of Scripps Clinic, LaJolla, CA) . PE-anti-CD4 an-
tibody and PE-avidin were purchased from Becton Dickinson &
Co . (Mountain View, CA) . SEA was purchased from Toxin Tech-
nologies, Inc. (Madison, WI) . SEB was purchased from Sigma
Chemical Co. (St . Louis, MO) . Con A was purchased from
Boehringer Mannheim Biochemicals (Indianapolis, IN) .

Cell Preparation.

	

Spleen cells were treated with biotinated anti-
C134 (GK1.5) or anti-CD8 (3.155) (both were purified from the
supernatant of B cell hybridomas by protein A-Sepharose [Phar-
macia Fine Chemicals, Uppsala, Sweden]) . Cells were washed and
mixed with streptavidin magnetic beads (Dynabeads M280; Dynal
A.S ., Oslo, Norway) at 10.0 P.1/105 cells for 30 min at room tem-
perature (RT) . The magnetically coated cell were isolated by a mag-
netic field generated by MACS, (Miltenyi Biotec GmbH., Meitz-
feld, FRG). Purification for positively coated cells was performed
twice, resulting in >90% purity for the phenotype selected .
CD4- spleen cells, CD8 - spleen cells, or CD4,CD8 double-
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negative spleen cells were obtained after the above separation
protocol .

Flow Microfluorometry.

	

Spleen single cell suspensions ofunprimed
BALB/c mice were treated with Tris-buffered 0.16 M ammonium
chloride to lyse the RBC. These cells were cultured for 72 h in
RPMI 1640 medium supplemented with 10% FCS and 5 x 10-5
M 2-ME in a 24-well culture plate at a concentration 2 x 106/ml
per well in the presence-of 10.0 hg/ml SEB or 5 .0 hg/ml of Con
A at 37°C. Those cultured or fresh spleen cells were washed and
then incubated with KJ16-133 or F23 .1 culture supernatant at
106/ml for 30 min . These cells were washed three times and
treated with fluorescein (green) goat anti-rat or mouse Ig reagent .
The cells were then treated with PE (red) anti-CD4 antibody or
biotinated anti-CD8 for 30 min . To determine CD8 expression,
cells were washed and further incubated with PE-avidin for an-
other 30 min . Cells were washed followed by two-color (red and
green) fluorescence analysis by Epics-C fluorocytometry (Coulter
Electronics Inc., Hialeah, FL) . All incubations during cell staining
were done on ice.

Proliferation Assay.

	

Spleen cells were stimulated in vitro with
SEA, -B, or Con A in 96-multiwell tissue culture plates at 105
cells/100,ul or a reciprocal number (2-2-22 x 104 ) of cells in each
well. After 40 h of culture, cells were pulsed with 1 PCi/well of
['H]thymidine (Amersham International, Amersham, UK). Cells
were collected 8 h later by glass fiber filter mats . Radioactivity was
determined in a liquid scintillation beta counter.

11,2 Production Assay.

	

Single cell spleen suspensions of SEB-
primed or control BALB/c mice were stimulated with SEB (10 .0
Wg/ml) in 24-well plastic culture dishes at 2 x 106/ml per well .
Supernatants were collected after 48 h and were tested for the growth
promotion of the IL2-dependent cell line CTLL-1 . To do this,
CTLL-i cells were cultured in 96-well U-bottomed culture plates
at 5 x 104 cells/well in 200 1A1 of medium containing varied con-
centrations ofsamples. After 24 h, cells were pulsed with 1 p.Ci/well
of [ 3H]thymidine for 16 li . Cells were collected onto glass fiber
filter mats by a microsample harvester (Skatron, Inc., Sterling, VA) .
Radioactivity was determined in a liquid scintillation beta counter.
Data indicated are arithmetic means of triplicate samples .

Cytotoxicity Assay.

	

"Cr (Amersham International)-labeled mu-
rine B lymphoma cells, A20-2J (23) (H-2d, Ia+) (10 4 ), are cultured
with varied number of effector cells (spleen cells) in the presence
of 10 Ntg/ml of SEB in 96-well U-bottomed tissue culture plates
(final volume 200 /.l/well) . 100 P,1 of the 16-h culture supernatant
was assayed for radioactivity by a gamma counter. We performed
a 16-h assay to compare CD4+ T cell cytotoxicity (which is op-
timum after 10 h ; data not shown) and CD8+ T cell cytotoxicity
(which has a faster time course and shows significant cytotoxicity
after 2 h ; data not shown) . Maximum release of "Cr was mea-
sured by incubating targets in 1 M HCI . Spontaneous release of
"Cr from A20-2J cells was consistently -20% after 16 h in cul-
ture . The percentage of specific lysis was calculated as 100x [(ex-
perimental - spontaneous release)/(maximum - spontaneous
release)] .

Results
In Vitro Primary Proliferative Response of Spleen T Cells to

SEB. We compared the relative responsiveness of CD4+
and CD8 + T cells against SEB. Unfractionated spleen cells
were stimulated in vitro with SEB at a concentration of 10.0
hg/ml, and with 5.0,ug/ml ofT cell mitogen, Con A (Table
1) . Two-color fluorescence analysis showed that SEB stimu-
lation dramatically increased the proportion of both CD4+
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and CD8+ T cells expressing Va8.1,2, whereas Con A did
not change the proportion of these T cells compared with
unstimulated fresh spleen cells. The V08.1,2+ cells increased
more than twofold among CD4+ T cells, while V08.1,2+,
CD8+ cells had a lower, but still significant increase. Thus,
it was demonstrated that V(38.1,2+ cells are selectively ex-
panded in both the CD4+ and CD8+ T cell population, by
SEB stimulation .

Proliferative Response ofSEBprimed Spleen Cells.

	

Wenow
had the unique opportunity to perform a comparative study
o£ the specific immunoresponse of CD4+ and CD8+ T cells
by a single antigen . Therefore, we further examined the sec-
ondary in vitro response using spleen cells of BALB/c mice
primed with SEB 7 d before the experiment . The size of the
spleen was usually larger in the SEB-primed mice than con-
trol mice and contained two- to threefold more cells than
control spleens, but the ratio of Thy-1 + cells and surface Ig-
positive cells was unchanged (data not shown) . Single cell
suspensions from the spleens of these mice were stimulated
in vitro with SEB to examine the functional capacity in
proliferative response in comparison with that ofPBS-injected
control mice (Fig. 1) . Spleen cells of control mice showed
a strong response at >3 x 104 cpm at 10.0 Ag/ml SEB in
a [ 3H]thymidine incorporation assay (Fig. 1 a) . The spleen
cells derived from SEB-primed mice, however, showed re-
duced levels of proliferation at <104 cpm. Reduction of
proliferation was dependent on the priming dose ofSEB, and
>80% ofthe response was suppressed in 50.014g SEB-primed
mice . The suppressed proliferation ofSEB-primed spleen cells
was further studied by the cell dose titration experiment (Fig.
1 b) . The results indicated a poor proliferation of50 Ftg SEB-
primed spleen cells in response to SEB stimulation, and the
proliferative efficacy was -25% compared with the control
cells . These SEB-unresponsive cells and control cells, how-
ever, showed comparative responses in a proliferation assay
to SEA that stimulates V,61, -3, -11, and -12 TCR+ cells
(24) (Fig . 1 c), indicating that the functional unresponsive-
ness occurred in a SEB-specific manner .

11,2 Production of SEB-primed Spleen Cells .

	

The results
presented in Fig. 2 showed unresponsiveness in 11,2 produc-
tion of SEB-primed spleen cells . In this experiment, IL-2 in
10.0 leg/ml SEB-stimulated spleen supernatant was quanti-
tated by testing growth-promoting activity on the indicator
cell line, CTLL1 . In SEB-primed mice, the production of
IL-2 in response to in vitro SEB stimulation was suppressed
in a primed dose-dependent fashion. The IL2 production was
already reduced at 1.0 Ag per injection, and [ 3H)thymidine
uptake was -30% of the control . The entire IL2 produc-
tion was almost abrogated at 50.0 Ag of injection .

Proliferative Unresponsiveness ofCD4+ T Cells in SEBprimed
Spleen . Spleen cells from 50.0 Ecg SEB-primed mice were
further studied by purifying CD4+ T cells and CD8+ T
cells to determine ifboth populations were equally unrespon-
sive to SEB (Fig . 3) . In control mice, both CD4+ and CD8+
T cells responded to SEB (10.0 Fig/ml) in the presence of
CD4- , CD8- spleen cells as the source of la+ cells. The re-
sponse of CD4+ T cells was significantly reduced when cells
purified from SEB-primed mice were used . However, CD8 +



Table 1 .

	

In Vitro Primary Prolferative Response of V68.1,2*,CD4* and CD8* Spleen T Cells to SEB

" Proportion of V08.1,2+ cells among CD4+ T cells .
t Proportion of Vj38 .1,2+ cells among CD8+ T cells .

T cells from these mice proliferated in response to SEB to
a level comparable with that seen in nonprimed control cells .

Proportional Study of V08+ T Cells in SEBprimed Spleen.
Previous studies have shown that the response of murine T
cells to SEB is specific for the expression of V03- or V#8-
bearing TCR on the responding cell (10) . BALB/c is a strain
that has nondetectable levels of V03+ T cells in the pe-
riphery because the Mls allotype is "2'" (8) . Therefore, VS8+
T cells represent the only SEB-reactive T cells in this mouse
strain . We therefore examined whether the reduction in
proliferative response was due to the deletion or anergy of
V#8+ T cells . As shown in Table 2, the proportion of
V#8 .1,2+ cells was -20% in CD4+ T cells and -30% in
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SEB 50 .0 Ng

CD8+ T cells in control mice. The proportion ofV08.1,2+
T cells decreased to -15% in CD4+ T cells in SEB-primed
mice, while the effect of SEB injection on the proportion
of Vf8.1,2+ cells was minimal in CD8+ T cells (but slightly
decreased at a SEB dose of 50.0 lAg) . The study of F23.1+
cells (detects all V(38.1+, VQ8.2+, and V08.3+ cells) also
showed similar results in 50 Etg SEB-primed mice. These results
show that V68+ T cells remain in SEB-primed mice, and
thus, CD4+ T cells seem to be in anergy.

Cytotoxic Response ofSEBprimed Spleen Cells to SER

	

In
another set of experiments, we examined the cytotoxicity of
spleen cells primed with SEB 7 d prior (Fig. 4) . The spleen
cells from control mice showed cytotoxicity against an la+
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c

g
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a
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H
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Figure 1 .

	

Suppression of SEB-specific proliferative response ofSEB-primed spleen cells to SEB. BALB/c byJ micewere given one intravenous injection
(by tail vein) of 1 .0, 10.0, and 50 .0 ug of SEB in 0 .2 ml PBS. 1 wk later, spleen cells were in vitro stimulated with 10.0 and 50.0 )Ag/ml of SEB
(a). In the second experiment, reciprocal numbers of 1-wk 50 FAg SEB-primed spleen cells were stimulated with SEB at a concentration of 10.0 ug/ml
(b). Reciprocal numbers of 1-wk 50 lug SEB-primed spleen cells were stimulated with SEB or SEA at a concentration of 10 .0 jug/ml (c) . Data are
indicated as the arithmetic mean of triplicate samples. SD was normally <10% . Data shown is representative of three experiments. (-) SEB not added ;
(+) 10.0 jug/ml SEB added. (SEA) 10 Ftg/ml SEA added .

Phenotype of T cells
Fresh

(n
spleen
= 4)

Percent of positive cells

SEB (10 .0 jug/ml)
(n = 3)

Con A (5 .0 Ag/ml)
(n = 3)

CD4* 28 .4 ± 2.1 44.2 ± 2.6 45.9 ± 2.3
CD8 * 10.6 ± 1 .6 46.6 ± 5.9 35.9 ± 7 .3
KJ16*, CD4* 6 .0 ± 0.9 23.6 ± 0.2 12.3 ± 0.4
KJ16*, CD8* 3 .0 ± 0.6 19.3 ± 1.9 8.5 ± 0.3

KJ16*, CD4*/CD4+* 19 .9 ± 1 .7 56.7 ± 2.2 26.8 ± 1 .3
KJ16*, CD8*/CD8+t 27.6 ± 2.0 42.6 ± 10.4 24.7 ± 4.9
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Unresponsiveness of 11,2 production in SEB-primed spleen.
Single cell spleen suspensions ofSEB-primed or control mice were stimu-
lated with SEB (10.0 lAg/ml) . Supernatants were collected after 48 h and
were tested for growth promotion of the I162-dependent cell line CTLIA.
Data are indicated as arithmetic means of triplicate samples .

B cell lymphoma (A20-2J) when 10.0 wg/ml ofSEB was added
to the culture . The observed cytotoxicity was cell dose de-
pendent, and rose to >40% at an E/T ratio of 80 (Fig. 4
a) . Cytotoxicity from SEB-primed spleen cells was as high
as the control group and was SEB dose dependent . The CD
phenotypes of these SEB-specific cytotoxic T cells, in both
control and SEB-primed spleen, were determined by cyto-
toxic assays on T cells positively selected for CD4 or CD8
expression . Also, the negative fraction obtained from the se-
lection of CD4+ or CD8+ T cells was tested for SEB-specific
killing (shown in Fig. 4, b and c) . In control mice, cytotox-
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icity was dominantly demonstrated by the CD4+ and the
CD8- cell fractions . The profile of cytotoxic effector T cell
phenotype was inverted in 50.0 Ftg SEB-primed mice, where
the CD8+ and the CD4 - cell fractions are dominantly cyto-
toxic. Inhibition studies by anti-CD4 mAb blocked the cy-
totoxicity of the control spleen cells, but the cytotoxicity of
SEB-primed spleen cells was not inhibited . In contrast, anti-
CD8 antibody was not effective in inhibition of cytotoxicity
in either case (data not shown) .

7.0
® SEB not added' Table 2. Proportional Study of V,Q8' T Cells in CD4' and

SEB 1 .0vg CD8' T Cells of SEB-primed Mice
SEB 10 .Okg

6.0 IIIII SEB 50 .ONg Percent
control

Reagents expressing
f
a 5.0 II

primed T cells Origin V08U
c0

4.0 PBS KJ16+,' CD4+ CD4+ 20.3 ± 1.6

U F23.1 +,t CD4+ CD4+ 31 .0 ± 1.2
3.0dc KJ16+, CD8+ CD8+ 28.5 ± 1.3

E
2.0 F23.1+, CD8+ CD8+ 36.6 ± 0 .6

i17
SEB (1 .0 Wg) KJ16+, CD4+ CD4+ 16.3 ± 0.7

1 .0 KJ16+, CD8' CD8+ 27.5 ± 0.8

1110 SEB (10.0 jig) KJ16+, CD4+ CD4' 14.5 ± 1.3
50.0 25 .0 12 .5 KJ16+, CD8' CD8+ 25.3 ± 5.9
Concentration of Supernatant (oro)

SEB (50.0 Ftg) KJ16+, CD4+ CD4+ 14.2 ± 2.8

L

L

Figure 3. Proliferative unresponsiveness of CD4+ T
cells in SEB-primed spleen. BALB/c byJ mice were given
one intravenous injection of 50 .0 kg of SEB in 0.2 ml
PBS. 1 wk later, the separated CD4' and CD8+ spleen
T cells were mixed (1 :1) with the CD4 - , CD8- fraction

C° Ilk o° s~, o° sF of spleen cells to examine the SEB-specific proliferation .

or '°~i ~r, e°i or"or o, . Data from two separate experiments are presented . (')

Imo" ~w .lea .~eo"
10.0 ug/ml SEB; (t),M pre-injected; (S) SEB 50.0 wg

S pre4njected ; (-) SEB not added; (+) 10.0 14g/ml SEB
Exp. 2 Exp.1 Exp. 2 added.
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Cytotoxic response of
SEB-primed spleen cells to SEB.
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In the studies cited above, we have observed the in vitro
proliferation and cytotoxicity of CD4+ and CD8+ T cells
in response to SEB. In vivo priming with SEB abrogates the
response of V08+,CD4+ T cells despite the fact that these
cells exist in significant number. This supports the previous
observation of anergy occurring in V06+,CD4+ T cells in
Mls-1b mice immunized with Mls-1'-expressing cells re-
ported by Rammensee et al . (20) . We also determined that
IIT2 production was suppressed in SEB-primed spleen cells,
which further supports SEB-specific anergy, since it parallels
the results of Rammensee. However, in contrast to Mls-specific
anergy and our in vitro results, we consistently observed a
decreased proportion of V08+, CD4+ T cells in vivo. This
occurred in lymph nodes as well as in spleen (data not shown) .
This observation may reflect an in vivo regulatory mecha-
nism to prevent the expansion of particular Va+ T cells by
an idiotypic network . Detailed studies of this reduction of
V08+ T cells in SEB-primed spleen and lymph nodes are
in progress (Kawabe, Y and A. Ochi, manuscript submitted
for publication) .

In primary cytotoxicity assays, CD4+ T cells from con-
trol spleens were-more active than their CD8+ counterparts,
but in cells derived from SEB-primed mice, CD8+ T cells
were dominant in cytotoxicity. This may reflect the need of
CD8+ cytotoxic T cells for "help" from CD4+ T cells to
mature functionally (25) . It is an intriguing question whether

20 -

these functionally mature CD8+ T cells have any connec-
tion with the SEB-induced suppressor T cells that have been
previously reported (2, 26) . While no significant suppressor
activity has been observed from these cells with regard to
SEB-specific primary proliferation, the effect may be B cell
specific.
The major question on how CD4+ T cells can be induced

to anergy while CD8+ T cells remain active in vivo remains
to be answered . The observation that CD4+ T cells recog-
nize SEB and la in association with the CD4 molecule (27,
28) may indicate that the induction of anergy requires the
recognition of the antigen-MHC complex by the TCR and
the interaction ofsupporting elements such as CD4 and CD8 .
These molecules may indeed mediate "coanergic" signals since
it has been reported that they are capable oftransducing both
positive and negative signals (29-31) . Therefore, since CD8+
T cells fail to generate these putative coanergic signals, due
to the lack of the CD4-Ia interaction, this may then explain
the observed tolerance to anergy of CD8+ T cells .

In summary, an experimental system using a soluble, well-
characterized TCR VO-specific antigen that stimulates both
CD4+ and CD8+ T cells in vitro will provide us with an
unique opportunity to elucidate the mechanism of positive
and negative regulation ofT cell response in the post-thymic
environment .
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