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Abstract

The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB) samples using
high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) could be used for
predicting pathologic response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer.
After institutional review board approval and informed consent were obtained, CNB tissue samples were collected
from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were
performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the
Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant
analysis (OPLS-DA). Various metabolites including choline-containing compounds were identified and quantified by
HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite
concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different
between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine
ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the
non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR
metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-
DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be
used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical
significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS
MR metabolic profiling of CNB samples for a large number of cancers.
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Introduction

Neoadjuvant chemotherapy (NAC) is well established as a
standard treatment for locally advanced breast cancer [1-3].
The use of NAC makes primarily inoperable tumors suitable for
surgery, and allows more patients to undergo breast-
conserving surgery instead of mastectomy [4]. The
heterogeneous character of breast cancer, however, results in
varied responses to NAC [5,6]. Pathologic complete response

(pCR), which is obtained in less than 30% of patients receiving
NAC [7], is strongly associated with improved long-term
outcomes and has been suggested as a prognostic indicator
[2,8,9]. In contrast, NAC could be ineffective in patients with
significant residual disease by surgical pathology, considering
the substantial toxicity of NAC regimens [10]. Further local and
systemic therapy should be carefully considered for a subgroup
of patients according to the residual burden of disease.
Although pathologic response information could be used as a
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prognostic indicator or a guide for further treatment after
surgery, it may not be available before surgical removal of the
tumor. Pretreatment prediction of pathologic response to NAC
could enable development of personalized treatment protocols,
reducing unnecessary exposure of patients to chemotherapy
toxicity and improving long-term patient outcome.

Several studies have focused on identifying reliable markers
to predict pCR in breast cancer patients receiving NAC. Some
researchers have reported that the change in tumor size
(diameter/volume) assessed by dynamic contrast enhanced
magnetic resonance imaging (MRI) early during NAC treatment
(i.e. size measurement after first or second cycles of treatment)
could be a predictor of pCR [11,12]. Diffusion weighted imaging
(DWI) and in vivo proton magnetic resonance spectroscopy
(MRS) have also been proposed to predict pCR to NAC
[12-14]. Other studies have shown that overexpression/
amplification of HER2 (a receptor for human epidermal growth
factor) and lower expression levels of estrogen receptor (ER)
were associated with pCR [15-17]. However, to date, there is
no powerful marker for predicting pCR before starting NAC
treatment or early in NAC treatment.

Ex vivo high-resolution magic angle spinning (HR-MAS)
MRS provides highly resolved spectra of tissue samples. In
addition, it requires less sample treatment and does not
damage tissue integrity. The HR-MAS MR spectra of tissue
samples consist of numerous peaks that reflect their metabolic
composition. Metabolic profiling of numerous HR-MAS spectral
data using multivariate statistical analysis can provide a way to
analyze complex samples such as human tissues, and can be
used for a non-targeted analysis to identify surrogate markers
to predict the malignant transformation or treatment response.
Recent studies have shown that HR-MAS metabolic profiling of
tissue samples may be used for diagnoses or treatment
monitoring of several human diseases, because HR-MAS MRS
can display metabolic alteration of the tissue in response to
external stress [18,19]. The assessment of metabolic
composition by HR-MAS MRS has been applied in studies of
breast cancer, and could be a promising approach for the
diagnosis and characterization of breast cancer [20-24]. Recent
studies have also reported that HR-MAS MR metabolic profiles
could assist monitoring of treatment response to NAC and
prediction of long-term survival in locally advanced breast
cancer patients [25,26]. However, these studies conducted HR-
MAS MRS using surgically obtained tissue specimens.
Therefore, their results may not be directly applicable to the
preoperative decision making stage concerning the best
treatment approach for breast cancer patients.

Percutaneous image-guided core needle biopsy (CNB) is a
minimally invasive standard procedure for the diagnosis of
breast cancer before surgery [27]. Breast cancer samples
obtained by CNB are clinically important not only for pathologic
diagnosis but also for immunohistochemical (IHC) analysis of
histologic prognostic factors such as hormone receptor status
[28]. Recent studies have shown that HR-MAS MRS using
breast tissue samples obtained with CNB could differentiate
cancer from non-cancer samples and predict tumor
aggressiveness prior to surgery, by quantification of choline-
containing compounds [29,30]. The purpose of our study was

to determine whether metabolic profiling of CNB samples using
HR-MAS MRS could be used for predicting pathologic
response to NAC in patients with locally advanced breast
cancer.

Materials and Methods

Patients and sample preparation
This study was approved by the institutional review board of

Yonsei University College of Medicine, and written informed
consent was obtained from all patients.

Between October 2009 and November 2011, 109 patients
with 114 breast lesions assessed by the Breast Imaging
Reporting and Data System as stage 4c or 5 and larger than 1
cm in diameter on mammographic or ultrasound (US) were
initially enrolled. We obtained the breast tissue sample for each
lesion when these patients underwent US-guided CNB for
pathologic diagnosis. The criteria for selection among these
initial patients included: 20 years of age or older; having a
breast lesion pathologically diagnosed as malignant by core
biopsy; treated with NAC and underwent subsequent surgery;
and not pregnant at the time of diagnosis. Finally, 37 patients
with 37 locally advanced breast cancers (mean age 50.5 years;
age range 30-67 years) fulfilled the inclusion criteria.

For each patient, one of four radiologists (with 6-13 years of
experience) performed US-guided CNB using a 14-gauge dual-
action semiautomatic core biopsy needle (Stericut with coaxial
guide; TSK Laboratory, Tochigi, Japan). In patients with large
and heterogeneous cancers, the homogeneously solid areas
were targeted for biopsies. The mean number of tissue
samples obtained by US-guided CNB was six (range 5-8)
samples. All samples except for one core of each lesion were
used for pathologic diagnosis and IHC analysis. For HR-MAS
MRS, one CNB sample was placed in a cryogenic vial and
immersed in liquid nitrogen immediately after biopsy. CNB
samples were stored at -162°C for one to five months prior to
HR-MAS MRS. All 37 patients were diagnosed with locally
advanced cancer based on the CNB result and imaging
findings obtained from breast US, mammography, and MRI.
They were treated with anthracycline- and/or taxane-based
NAC, and subsequently underwent surgery.

Histopathologic analysis
All 37 breast lesions were pathologically diagnosed as

malignant by CNB performed before NAC. After completion of
NAC, the final pathologic diagnosis and the residual tumor size
were established surgically in all patients. The pathologic
response to NAC was assessed by comparing tumor size
measured using breast imaging prior to NAC and that
measured using the surgical specimen. In this study, pCR was
defined as no invasive cancer present including two categories:
no residual malignancy and no invasive cancer cell, but
presence of ductal carcinoma in situ [31]. Axillary lymph node
status was not taken into consideration for this analysis. When
a residual tumor was present, the cases were classified into
three categories: partial response (PR) with at least 30% size
reduction, progressive disease (PD) with at least 20% size
increase, and stable disease (SD) with neither sufficient
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shrinkage for PR nor sufficient increase for PD [32]. Histologic
grade, ER, progesterone receptor (PR), HER2, Ki-67, and
lymph node metastasis data were based on pathologic reports
of CNBs performed before NAC. The histologic grade of each
cancer lesion was determined with modified Bloom-Richardson
classification [33]. ER and PR positivity was defined as more
than 10 fmol/mg cytosol protein, or as 10% or more nuclear
IHC staining. HER2 IHC using the HercepTest TM (DAKO) was
interpreted as 0, 1+, 2+, or 3+, and was defined as positive in
cases with 2+ or 3+ according to the ASCO/CAP guidelines
[34]. IHC staining of Ki-67 was scored by counting the number
of cells with positively stained nuclei and was expressed as a
percentage of the total tumor cells. Staining results for Ki-67
were classified as follows: low, 0–29%; high, ≥ 30% [29].

HR-MAS MRS experiments
HR-MAS MRS was performed on the CNB specimens with

an NMR (nuclear magnetic resonance) spectrometer (Agilent,
VNMRS 500) operating at a proton NMR frequency of 500.13
MHz (11.74 T). The temperature was set to 19°C after
calibration with methanol. Frozen samples were thawed in the
NMR laboratory, weighed, and placed in an HR-MAS nano-
probe® (Agilent, Walnut Creek, CA, USA). The total volume of
the sample cell was 40 μl, and an average of 11.1 mg core-
biopsy samples were placed in the cell with the remaining
volume filled with D2O containing 0.01% trimethylsilyl propionic
acid (TSP). An inverse-detection type probe equipped with a
single Z gradient coil was used. The CNB tissue samples were
analyzed using a CPMG (Carr-Purcell-Meiboom-Gill) pulse
sequence to impose a T2 filter. All data were collected at a
spinning rate of 2 kHz. The spectral acquisition parameters
were as follows: 16K complex data points, 7961 Hz sweep
width, 1.2 s acquisition time, 1.0 s relaxation delay, 1.5 s pre-
saturation time (3.7 s total time of repetition (TR)), 1.0 ms inter-
pulse delay (2 ms time of echo (TE)), 128 number of transients,
30 receiver gain and total acquisition time of 10 min. For the
metabolite quantification, adequately long TR and short TE
were used in order to neglect the T1/T2 relaxation time
difference among metabolites and the TSP.

The spectra were processed and analyzed using ACD
software (Advanced Chemistry Development, Toronto, Ontario,
Canada). Post-processing consisted of Fourier transformation,
phasing and baseline correction. Chemical shifts were
referenced in relation to the creatine (Cr) signal at 3.04 ppm.
Spectral regions from 1.47 to 3.60 ppm [alanine (Ala), Cr, free
choline (Cho), phosphocholine (PC), glycerophosphocholine
(GPC), myo-inositol (m-Ins), taurine (Tau), and glycine (Gly)]
were selected for quantification (Figure 1). The peak
amplitudes of metabolites were measured by fitting a Voigt
(e.g., Gauss+Lorentz) line-shape function. The integration
values were normalized to the number of contributing protons
per molecule and to tissue weight. Quantification was
performed by comparing the integrated TSP signal to the signal
of interest in the tumor spectrum. Absolute concentrations were
recorded as µmol/g wet weight.

Data and Statistical analysis
Clinicopathologic characteristics of the included patients and

tumors were collected from a review of patients’ medical
records, and are listed in Table 1. Tumor size was measured
with US or MRI performed before NAC treatment.

Spectral data acquired by HR-MAS MRS were expressed
with metabolite concentrations [Ala, Cho, PC, GPC, total
choline (tCho, the sum of Cho, PC, and GPC), Cr, Gly, Tau, m-
Ins] and metabolic ratios (Cho/Cr, PC/Cr, GPC/Cr, GPC/PC,
GPC/Cho, PC/Cho). Patients were grouped by pathologic
response of the tumors to NAC. For classification of pathologic
response to NAC, PR and SD groups were combined into a
non-pCR group. The statistical differences of HR-MAS MR
spectral data between the groups (pCR vs. PR vs. SD/pCR vs.
non-pCR) were assessed using the Mann-Whitney test.
Statistical analysis was performed with SAS for Windows,
version 9.0 (SAS Institute, Cary, NC, USA). An adjusted P
value of less than 0.0167 (Bonferroni corrected P = 0.05/3) was
considered to indicate a significant difference between the
three pathologic response groups. For comparison of pCR and
non-pCR groups, a P value of less than 0.05 was considered to
indicate statistical significance.

For multivariate analysis of spectral data, Matlab
(MathWorks, Natick, MA), SIMCA-P 11.0 (Umetrics, Sweden),
and Excel (Microsoft, Seattle, WA) programs were used.
Principal component analysis, partial least square discriminant
analysis, and orthogonal projections to latent structure-
discriminant analysis (OPLS-DA) were performed to distinguish
patient groups by pathologic response to NAC with HR-MAS
MR spectral data of CNB samples obtained before NAC. Class
discrimination models were built until the cross-validated
predictability value did not significantly increase to avoid over-
fitting of the statistical model. The statistical model was
validated by prediction of unknown samples using a leave-one-
out analysis. An a priori cut-off value of 0.5 was used to
evaluate the prediction results [35]. Signals contributing to
group discrimination were identified by an S-plot and the
corresponding HR-MAS MR spectral data were identified using
Chenomx (Spectral database; Edmonton, Alberta, Canada)
software and an in-house built database. The signals from the
pollutants like ethanol and methanol were excluded from the
statistical analysis of spectral data.

Results

Of the 37 invasive breast cancers in the 37 patients that
were included in this study (mean age 50.5 years; range 30-67
years), the most common tumor type was ductal carcinoma
(n=34), with other cancers being mucinous carcinoma (n=2)
and papillary carcinoma (n=1). The mean tumor size was 37.4
mm (range 16-111 mm). Among the patients with residual
disease at surgical pathology, no patients presented with PD.
Therefore, the patients were divided into three groups (pCR,
PR, and SD) according to their pathologic response to NAC,
and 35.1% (13/37) of the included patients achieved pCR
(Table 1). Although the clinicopathologic characteristics of each
group were not statistically different, the pCR group showed a
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trend toward smaller size compared to the non-pCR (PR and
SD) group.

HR-MAS MRS was used to identify and quantify various
metabolites in all 37 breast cancer tissue samples obtained by
CNB (Table 2). The mean and medial values of tCho
concentration were 1.18 µmol/g (range 0.003-5.626) and 0.67
µmol/g (interquartile range 0.069-1.978), respectively. In
univariate analysis, the metabolite concentrations and
metabolic ratios of CNB samples obtained with HR-MAS MRS
were not significantly different between the pCR, PR, and SD
groups (Table 3). In addition, HR-MAS MR spectral data were
not significantly different between the pCR and non-pCR
groups. However, there was a trend towards lower PC/Cr ratios

in the pCR group compared to the non-pCR group, without
statistical significance (P=0.077).

For multivariate analysis, OPLS-DA separation models were
built with the HR-MAS MR spectral data according to
pathologic response to NAC. The OPLS-DA models showed
visible discrimination between the groups by pathologic
response to NAC, although some samples crossed over the
reference line (Figure 1). In addition, an OPLS-DA score plot
showed visible discrimination between pCR and non-pCR
groups (Figure 2). Corresponding OPLS-DA loading S-plots
showed that Tau, Cho, and GPC were contributing metabolites
for the prediction of a pathologic response to NAC (Figure 1-2).
Our OPLS-DA prediction model exhibited high sensitivities with

Figure 1.  OPLS-DA score and loadinig S-plots of the HR-MAS MR spectra for predicting pathologic response to NAC.  (A)
pCR vs. PR (B) pCR vs. SD (C) PR vs. SD. pCR: pathologic complete response; PR: partial response; SD: stable disease.
doi: 10.1371/journal.pone.0083866.g001
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range 84.6%–100% for differentiation pCR from other groups
(Table 4).

Discussion

In this study, we performed MR metabolic profiling of CNB
tissue samples from patients with locally advanced breast
cancer. HR-MAS MR spectra of our patient group were

characterized with high concentrations of tCho, which is the
sum of PC, GPC, and Cho. Choline-containing compounds are
involved in biological functions such as cell signaling, lipid
metabolism, and cell membrane integrity [36,37]. Many studies
have reported that choline-containing compounds, especially
PC, are elevated in breast cancer samples compared to non-
cancer samples [21,23,24,38-40]. In addition, higher tCho
concentrations have been detected in breast cancers with high

Table 1. Clinicopathologic characteristics of the 37 patients with 37 locally advanced breast cancers in this study.

Patient characteristics Pathologic response

  pCR (n=13) PR (n=14) SD (n=10)

Age (mean ± S.D.) years 51.2±9.7 48.1±8.8 52.9±9.7

Tumor size (mean ± S.D.) mm 29.6±11.4 36.1±14.6 49.2±34.2

LN metastasis positive 13 14 8

 negative 0 0 2

AJCC stage II 11 10 5

 III 2 4 5

ER status positive 9 9 7

 negative 4 5 3

PgR status positive 1 3 2

 negative 12 11 8

HER2 status positive 5 4 5

 negative 8 12 5

Ki-67 status high 4 4 3

 low 9 10 7

Histologic grade positive 2 4 3

 negative 9 10 7

 N/A 2 0 0

N/A: not available; S.D.: standard deviation.
pCR: pathologic complete response; PR: partial response; SD: stable disease.
doi: 10.1371/journal.pone.0083866.t001

Table 2. HR-MAS MRS values for 37 breast cancer specimens.

Metabolite concentration (µmol/g) Metabolic ratio

Metabolite  Median (IQ range) Mean (S.D.)  Ratio Median Mean

Cho 0.15 (0.02-0.40) 0.31 (0.46) Cho/Cr 2.55 (1.73-6.49) 4.84 (5.09)

PC 0.45 (0.06-1.12) 0.71 (0.82) PC/Cr 1.79 (0.79-4.30) 6.32 (16.40)

GPC 0.06 (0.01-0.24) 0.16 (0.22) GPC/Cr 1.15 (0.69-2.38) 1.97 (2.30)

tCho 0.66 (0.07-1.98) 1.18 (1.36) tCho/Cr 7.48 (4.17-12.3) 13.14 (22.27)

Cr 0.22 (0.01-0.51) 0.32 (0.39) GPC/PC 0.54 (0.35-1.03) 1.54 (3.91)

Gly 0.62 (0.03-0.76) 0.96 (1.17) GPC/Cho 0.50 (0.19-0.92) 0.66 (0.65)

Tau 0.31 (0.03-0.78) 0.63 (0.90) PC/Cho 0.78 (0.41-1.59) 1.30 (1.48)

m-Ins 0.05 (0.01-0.28) 0.29 (0.52)    

Ala 0.26 (0.03-0.48) 0.48 (0.62)    

Data represent the median (interquartile range, IQ) and the mean (standard deviation, S.D.).
Cho: choline; PC: phosphocholine; GPC: glycerophosphocholine; tCho: total choline (the sum of Cho, PC, and GPC); Cr: creatine; Tau: taurine; Gly: glycine; m-Ins: myo-
inositol; Ala: alanine.
doi: 10.1371/journal.pone.0083866.t002
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tumor grade or higher pharmacokinetic parameters determined
from dynamic contrast enhanced MRI [41,42]. The positive
association between the concentration of choline-containing
compounds and breast cancer tissue may be a consequence of
up-regulation of choline kinase activity in response to demands
from the cancer cell under hypoxic and angiogenic conditions,
which are associated with aggressiveness of breast cancer
[40,43,44]. In this study, there was a tendency of lower levels
of the PC/Cr ratio and concentrations of choline-containing
compounds in the pCR compared to the non-pCR group,
without reaching statistical significance. The lower tendency of
pretreatment tCho concentrations of the pCR group compared
to the non-pCR group has also been observed in a previous
study using in vivo proton MRS [45]. On the other hand, a
recent study using HR-MAS MRS did not find a significant
difference between pretreatment concentrations of choline-
containing compounds in the PR and SD groups, although the
metabolite concentrations of the pCR group was not evaluated
due to a limited study population [26]. However, like our study,
these previous studies did not show statistically significant
differences in the concentrations of choline-containing
compounds between different pathologic response groups. The
lack of statistical significance may be due to the small numbers
and different pathologic response features of the enrolled
patient groups. Therefore, further studies with larger patient
groups are needed to verify the association between choline-
containing compounds and the pathologic response to NAC.

Besides choline-containing compounds, previous studies
reported that elevated concentrations of Tau and Gly can be
associated with breast cancer tissue [23,24,26]. Tau is an
amino acid associated with essential biological functions such
as antioxidation, membrane stabilization, and apoptosis
[12,46]. Gly is an amino acid involved in the control of protein
synthesis, and an association between higher expression of the
mitochondrial Gly biosynthesis pathway and higher mortality of

breast cancer patients has been reported [34]. Recent studies
using HR-MAS MRS have shown that Tau and Gly
concentrations of breast cancer tissue were associated with
survival after NAC treatment and with several prognostic
factors including tumor size, PR, and HER2 status [26,29].
However, we did not find statistical differences of Tau and Gly
concentrations of our CNB samples between the pCR and non-
pCR groups, although they showed a trend of lower levels in
pCR compared to non-pCR groups.

Pretreatment differentiation of responders from non-
responders to NAC is clinically important to decide whether
NAC is a proper therapeutic option for patients with locally
advanced breast cancers. However, pretreatment prediction of
the pathologic response to NAC is challenging in breast cancer
research. Recent studies found that pretreatment ADC values
assessed by DWI may be an indicator to distinguish between
responders and non-responders [12,13]. In spite of these initial
results, clinical application of breast DWI can be difficult due to
its high sensitivity to imaging artifacts and limited spatial
resolution. In addition, DWI protocols including b values, which
influence the ADC value, differ between institutions [12]. In
these circumstances, our results using OPLS-DA multivariate
analysis seem promising for prediction of patients’ pathologic
response before NAC treatment. In cancer metabolomics,
OPLS-DA has proven useful for classifying data with large
intra-group variations such as the MRS data [29,30,46]. In our
study, OPLS-DA models using HR-MAS MR spectral data of
pretreatment CNB cancer samples provided visible
discrimination between pCR and non-pCR groups. These
results suggest that MR metabolic profiling of CNB cancer
samples may be used as an indicator to predict pCR before
NAC treatment.

Although we did not find a statistical difference in
clinicopathologic characteristics between the pathologic
response groups, tumors of the pCR group tended to be

Table 3. Comparison of the HR-MAS MRS values according to pathologic response to NAC.

Metabolite or Metabolic
ratio   Pathologic response   

 pCR (n=13) PR (n=14) SD (n=10) Non-pCR (n=24) pCR vs. PR   pCR vs. SD   PR vs. SD   
pCR vs. non-
pCR

 Median Median Median Median P P P P

Cho 0.03 (0.006-0.524) 0.18 (0.054-0.518) 0.11 (0.004-0.541) 0.16 (0.033-0.373) 0.308 0.804 0.292 0.589
PC 0.12 (0.001-1.438) 0.66 (0.168-1.326) 0.21 (0.102-1.034) 0.57 (0.142-1.080) 0.145 0.577 0.320 0.215
GPC 0.04 (0.001-0.292) 0.09 (0.017-0.379) 0.06 (0.006-0.159) 0.07 (0.013-0.212) 0.174 0.951 0.198 0.356
tCho 0.19 (0.021-2.289) 0.99 (0.301-2.195) 0.74 (0.143-1.306) 0.97 (0.210-1.912) 0.207 1.000 0.219 0.408
Cr 0.05 (0.004-0.605) 0.23 (0.091-0.496) 0.20 (0.004-0.540) 0.23 (0.021-0.505) 0.528 0.951 0.725 0.656
Tau 0.05 (0.011-0.836) 0.58 (0.088-1.208) 0.28 (0.034-0.565) 0.40 (0.087-0.786) 0.167 0.733 0.208 0.279
m-Ins 0.02 (0.006-0.485) 0.17 (0.012-0.601) 0.05 (0.013-0.154) 0.12 (0.013-0.298) 0.308 0.804 0.253 0.426
Gly 0.03 (0.015-0.964) 0.48 (0.047-0.946) 0.27 (0.033-0.447) 0.34 (0.044-0.710) 0.396 0.804 0.266 0.494
Cho/Cr 5.13 (1.860-7.355) 3.32 (1.725-6.340) 2.01 (0.0730-6.143) 2.53 (1.380-5.943) 0.662 0.264 0.219 0.390
PC/Cr 1.41 (0.175-3.655) 2.59 (1.595-4.810) 2.00 (0.790-5.030) 2.38 (1.540-4.633) 0.047 0.368 0.380 0.077
GPC/Cr 1.15 (0.420-2.180) 1.89 (0.840-3.583) 0.89 (0.675-1.923) 1.26 (0.800-3.228) 0.109 0.877 0.197 0.332
tCho/Cr 7.63 (5.565-12.525) 7.83 (5.873-15.613) 4.15 (2.778-12.660) 6.80 (3.720-14.007) 0.627 0.313 0.241 0.824

Data represent the median (interquartile range) value (µmol/g). PR and SD groups were combined into the non-pCR group.
doi: 10.1371/journal.pone.0083866.t003
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smaller than those of the non-pCR group. Several clinical and
pathologic factors have been shown to be associated with a
better response to NAC. These include ER/PR negative status,
high tumor grade, high proliferative activity, and smaller tumor
size [47,48]. Among these, ER/PR negative status is
considered a useful predictor for pCR in patients receiving
NAC, because many studies have reported a significant
correlation of ER/PR negative status with achieving pCR after
NAC [49-51]. A recent study using HR-MAS MRS showed that
tissue samples of human triple negative breast cancer had a
higher GPC/PC ratio than samples of human ER/PR positive
cancer [52]. This study also found higher GPC than PC
concentrations in basal-like xenografts, whereas this pattern
was reversed in luminal-like xenografts. These findings mean
that different intrinsic subtype classified IHC analysis may have
different choline metabolic profiles. Consequently, it is
conceivable that metabolic profiles of choline-containing
compounds may be not only a predictor of pathologic response
to NAC but also a basis of a better understanding of
differences in the metabolic mechanism between pCR and
non-pCR groups. Therefore, further studies of both the
differences in metabolic profiles according to intrinsic subtype

of breast cancer, and the role of metabolic profiles in each
subtype, will be helpful to identify predictors of pathologic
response to NAC.

Many previous studies using HR-MAS MRS have used
surgically obtained tissue samples [23-26]. Therefore, the
metabolic profiles could not be used to directly influence the
pretreatment planning of therapeutic strategies. We conducted
HR-MAS MRS using 14-gauge CNB samples and performed
metabolic profiling of breast cancer without any problem. US-
guided CNB is the most frequently used method for diagnosis

Table 4. Diagnostic performance of OPLS-DA for predicting
pCR after neoadjuvamt chemotherapy.

 pCR vs. PR pCR vs. SD PR vs. SD* pCR vs. non-pCR
Sensitivity 92.3 % 84.6 % 85.7 % 100 %
Specificity 100.0 % 90.0 % 90.0 % 87.5%

pCR: pathologic complete response; PR: partial response; SD: stable disease;
non-pCR: PR and SD
* diagnostic performance for predicting PR
doi: 10.1371/journal.pone.0083866.t004

Figure 2.  OPLS-DA score and loading S-plot of the HR-MAS MR spectra for differentiating pCR from non-pCR.  (A) OPLS-
DA score and loading S-plot of the HR-MAS MR spectra from pCR and non-pCR (PR and SD) groups. Representative spectra of
the tumors showing pCR (B) and non-pCR (C) to NAC. pCR: pathologic complete response; PR: partial response; SD: stable
disease. Cho: choline; PC: phosphocholine; GPC: glycerophosphocholine; tCho: total choline (the sum of Cho, PC, and GPC); Cr:
creatine; Tau: taurine; Gly: glycine; m-Ins: myo-inositol; Ala: alanine; Suc: succinate; Lys: lysine; Ace: acetate; Val: valine; Iso:
isoleucine.
doi: 10.1371/journal.pone.0083866.g002
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of suspicious breast lesions and for IHC analysis for lesion
characterization. Accordingly, metabolic profiles of CNB
samples can be clinically applicable for pretreatment prediction
of NAC response or prognosis. In addition, HR-MAS MRS does
little damage to tissue integrity during examination, and
therefore CNB samples can be re-used for later histopathologic
examinations after HR-MAS MRS [20,30]. However, metabolic
profiling using HR-MAS MRS requires an invasive procedure to
obtain tissue samples (e.g., surgical excision, CNB, blood
sampling). Therefore, some researchers have used in vivo
proton MRS for acquiring metabolic information about breast
cancers. In vivo proton MRS is a noninvasive method that can
provide metabolic information about tumors, but a technique for
adequate shimming and accurate voxel placement is
necessary to acquire MR spectra of sufficient quality [53]. Also,
this adjunctive method requires at least an additional 10
minutes to be added to the existing breast MRI examination
time, which affects patient comfort and suitability. In
consideration of these technical and clinical aspects, we
believe that HR-MAS MRS using CNB samples is not inferior to
in vivo MRS as an adjunctive method for metabolic profiling of
breast cancer. A recent study evaluated the utility of in vivo
proton MRS for predicting NAC response in breast cancer
patients, and reported that the pretreatment tCho values
obtained with in vivo proton MRS were not significantly different
between the pCR and non-pCR groups [13]. On the other
hand, our results, especially using OPLS-DA analysis,
suggested that metabolic profiles of CNB samples using HR-
MAS MRS may be used as a predictor of NAC response.
Moreover, HR-MAS MRS using high magnetic field strength
(11.7 T) could also be used to analyze individual choline-
containing compounds, other metabolic markers such as Tau
and Gly, and metabolic ratios, which showed significant
associations with prognostic factors of breast cancer in
previous studies [29,30]. In the recent studies using tissues
from bladder cancer and head and neck squamous cell
carcinoma, HR-MAS MRS using high magnetic field strength
also showed multiple metabolic alterations, which include
increased levels of choline-containing compounds and several
amino acids compared to normal tissues [54-56]. Although we
did not find statistical significance in this study, our HR-MAS
MRS results also showed the differences in the levels of the
aforementioned potential biomarkers according to its pathologic
response to NAC. Considering previous studies with our own
results, HR-MAS MRS using breast tissue acquired with
minimally invasive CNB may be a clinically useful method to
predict NAC response and to develop more personalized
treatment protocols for locally advanced breast cancer patients,

with respect to invasiveness and data quality. In addition, if in
vivo proton MRS could be applied at a high magnetic field
strength (7.0 T) with future technological improvements, the
metabolic profiles of CNB samples using HR-MAS MRS could
be the foundation for future research regarding in vivo high-
field MRS.

We note that our study had several limitations. First, we
excluded small tumors with diameters less than 1 cm and
included a relatively small number of patients, which may have
affected the results. Therefore, further studies with large patient
cohorts are necessary for validation of our multivariate
classification models. Second, we did not assess the
associations among metabolic profiles by HR-MAS MRS,
pathologic response to NAC, and long-term outcomes such as
survival. However, previous studies have already shown that
tumor metabolic profiles by HR-MAS MRS could potentially
assist in the prediction of long-term survival in locally advanced
breast cancer patients [25,26]. Finally, we did not evaluate the
association between pathologic response to NAC and intrinsic
subtype by IHC analysis, which is considered as a predictor of
NAC efficacy [49-51].

In conclusion, this study showed that OPLS-DA multivariate
analysis using choline-containing metabolites of pretreatment
CNB samples assessed by HR-MAS MRS may be used to
predict pathologic response before NAC treatment, although
we did not identify the metabolite showing statistical
significance in univariate analysis. Therefore, our preliminary
results raise the necessity of further studies of HR-MAS MR
metabolic profiling of CNB samples for a large number of
cancers. In addition, we expect that HR-MAS MR metabolic
profiling of pretreatment CNB samples may be helpful to
develop more personalized treatment protocols for patients
with locally advanced breast cancers.
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