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Simple Summary: Experimental evidence suggests that CSF-1/CSF-1R signaling attracts immune
cells called macrophages into the tumor microenvironment which promote the capacity of cancer
cells to spread. In this study, we investigated CSF-1R protein expression on breast cancer cells and
macrophages and their relationship with other immune cells and breast cancer survival. Our results
show that cases with high CSF-1R expression on cancer cells, but not macrophages, are associated
with inferior survival, particularly in the common hormone receptor-positive breast cancer group,
which persists even in the presence of an active anti-tumor host immune response.

Abstract: Colony-stimulating factor-1 receptor (CSF-1R) signaling promotes an immune suppressive
microenvironment enriched in M2 macrophages. Given that CSF-1R inhibitors are under investiga-
tion in clinical trials, including in breast cancer, CSF-1R expression and association with immune
biomarkers could identify patients who derive greater benefit from combination with immunother-
apies. TIMER2.0 and bc-GenExMiner v4.7 were used to assess the correlation of CSF1R mRNA
with immune infiltrates and prognosis. Following a prespecified training–validation approach,
an optimized immunohistochemistry assay was applied to assess CSF-1R on carcinoma cells and
macrophages on breast cancer tissue microarray series representing 2384 patients, coupled to com-
prehensive clinicopathological, biomarker, and outcome data. Significant positive correlations were
observed between CSF1R mRNA and immune infiltrates. High carcinoma CSF-1R correlated with
grade 3 tumors >2 cm, hormone receptor negativity, high Ki67, immune checkpoint biomarkers, and
macrophages expressing CSF-1R and CD163. High carcinoma CSF-1R was significantly associated
with poor survival in univariate and multivariate analyses. Adverse prognostic associations were
retained in ER+ cases regardless of the presence of CD8+ T cells. CSF-1R+ macrophages were not
prognostic. High carcinoma CSF-1R is associated with aggressive breast cancer biology and poor
prognosis, particularly in ER+ cases, and identifies patients in whom biomarker-directed CSF-1R
therapies may yield superior therapeutic responses.

Keywords: colony-stimulating factor-1 receptor; immunohistochemistry; prognosis; estrogen
receptor-positive breast cancer; invasive breast cancer; immune check points; tumor-associated
macrophages; CSF-1/ CSF-1R inhibitors

1. Introduction

Colony stimulating factor-1 receptor (CSF-1R) is a class III receptor tyrosine kinase
that is encoded by the CSF1R gene, previously called the c-fms protooncogene [1]. CSF-1R
is normally expressed in a wide range of cells derived from hematopoietic progenitors,
including monocytes, tissue-resident macrophages, dendritic cells, and osteoclasts [1]. En-
gagement of CSF-1R with its ligands, CSF-1 or the more recently identified interleukin-34,
causes receptor homodimerization and progressive autophosphorylation of the tyrosine
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residues on its cytoplasmic tail. The subsequent downstream signaling involves the activa-
tion of MEK, PIK3, and PLC-γ2 pathways that regulate the lineage commitment, survival,
proliferation, and biological functions of a myriad of cells, including macrophages that
constitute the mononuclear phagocyte system [1–3].

Preclinical studies have demonstrated a critical role of CSF-1 [4] and CSF-1R [5] in
normal breast development. In clinical studies, it has been shown that compared to low
expression in the normal breast epithelium, high expression of CSF-1 and CSF-1R is found
in the lactating breast epithelium, supporting a potential role of this cytokine–receptor pair
in ductal morphogenesis [4]. Aberrant expression of CSF-1 and CSF-1R has been linked
with unfavorable outcomes in hematological and solid organ malignancies [6–8]. In breast
cancer specifically, preclinical studies suggest that this could be attributed to oncogenic
paracrine signaling, whereby tumor cell-derived CSF-1 facilitates the recruitment of CSF-1R
expressing polarized macrophages into the tumor microenvironment, thereby promoting
angiogenesis, tumor cell migration, and invasion [9–13]. Additionally, an autocrine signal-
ing mechanism has also been described in xenograft models of the claudin-low subtype
of breast cancer, where TGF-β-driven CSF-1R expression maintains the claudin-low phe-
notype but promotes invasive potential by suppressing junctional proteins; inhibition of
CSF-1R signaling in the same model leads to the upregulation of luminal cytokeratins with
a reduction in tumor cell invasiveness but enhanced proliferative capacity [14].

Immune checkpoint inhibitor therapy in combination with chemotherapy has emerged
as a promising therapeutic modality for early and metastatic triple-negative breast can-
cer [15–17]. Clinical benefit has been demonstrated with regards to higher rates of patho-
logical complete responses [15,18,19] and a modest increase in objective response rates [16],
though improvement in progression-free survival and overall survival has been pre-
dominantly achieved in PD-L1-enriched, treatment-naïve metastatic tumors [16,17,20].
Durable responses with immune checkpoint blockade have been reported in diverse tumor
types [21]; however, such evidence is limited in breast cancer [16,22]. Primary tumor refrac-
tiveness and acquired resistance contribute to inconsistent responses, even in histologically
similar tumor types [23]. Factors enabling immune escape are complex and include mecha-
nisms creating an immune-tolerant microenvironment consisting of but not limited to reg-
ulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages [24].

Dense infiltration with tumor-associated macrophages portends aggressive disease
biology and poor prognosis in breast cancer [25]. Tumor-associated macrophages enhance
the metastatic potential of carcinoma cells and facilitate remodeling of the extracellular
matrix [26]. Equally important is the modulation of the immune microenvironment that
contributes to poor treatment responses. A substantial body of experimental evidence
indicates that tumor-associated macrophages impair the cytotoxic function of T cells by
several mechanisms that include depletion of the metabolic substrate L-arginine via expres-
sion of arginase-1, production of reactive oxygen species (which in turn induce expression
of PD-L1 on macrophages), and recruiting regulatory T cells [27]. It has also been sug-
gested that TGF-β produced by the macrophages promotes a desmoplastic response in the
tumor stroma, which impedes the intratumoral recruitment of cytotoxic T cells [28]. In
preclinical models, tumor-associated macrophages contribute to resistance to chemother-
apy [29,30], endocrine therapy [31], radiation [32], anti-HER2 [33], and immune-targeted
therapies [34,35]. Combination therapies to either deplete or repolarize tumor-associated
macrophages have shown encouraging results [36]. In particular, small molecules and
monoclonal antibodies targeting CSF-1/CSF-1R signaling have been found to decrease
macrophage infiltration and the cancer stem cell pool, enabling the restoration of the anti-
tumor activity of the cytotoxic T cells [37,38]; their clinical efficacy is under investigation in
several ongoing clinical trials [36].

Previously, limited studies have reported the prognostic impact of CSF-1R expression
in human breast cancers [39–41], and the significance of its expression on tumor-associated
macrophages in clinical breast cancer specimens is not known. Except for a single study
of moderate sample size (n = 581) [39], the remaining studies were inadequately powered
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(fewer than 70 clinical samples each), limiting statistical inferences [40,41]. Given that CSF-
1R inhibitors are under active study in clinical trials, including in breast cancer, positive CSF-
1R staining in clinical breast cancer specimens and its association with immune cells could
help identify which patients might best benefit from combination with immunotherapies.
Of particular interest are ER+ breast cancers, where emerging data are suggestive of the
presence of a unique microenvironment characterized by tolerant, protumorigenic immune
contexture that is rich in tumor-associated macrophages [42]. Hence, the present study was
undertaken first to investigate the prognostic significance of CSF1R mRNA expression and
its correlation with immune cell infiltrates. Subsequently, we applied an in-house optimized
CSF-1R immunohistochemistry assay on a particularly large tissue microarray series linked
to detailed biomarker and clinical data using a training–validation approach. We sought to
test the hypothesis that the expression of CSF-1R protein on carcinoma cells will identify
tumors with aggressive features and provide prognostic information in ER+ breast cancers,
identifying a subgroup of patients associated with poor clinical outcome. Furthermore, we
also determined the prognostic significance of CSF-1R+ tumor-associated macrophages and
their association with lymphocytic infiltrates expressing immune checkpoint and CD163+
M2 macrophage biomarkers in the context of ER+ breast cancers.

2. Materials and Methods
2.1. Bioinformatic Analyses: Correlation of CSF1R mRNA with Stromal Immune Infiltrates,
Tumor-Associated Macrophage Gene Signature, and Prognosis

Tumor IMmune Estimation Resource (TIMER) is a web-based portal comprised of
three fundamental components, i.e., immune, exploration, and estimation [43,44]. Each of
these components has different modules that provide an exhaustive approach for analyzing
the tumor-immune interactions across 32 different cancer types from the TCGA database.
We accessed the Gene_Corr module to investigate the correlation of CSF1R mRNA with the
37-gene set described for tumor-associated macrophages [26]. The purity-adjusted partial
Spearman’s rho values and associated p-values were generated, representing the degree of
the correlation. The Gene module was used for analyzing the correlation between the CSF1R
mRNA and immune infiltrate levels through a statistical deconvolution method described
previously [45], and the results were displayed as scatter plots with the purity-adjusted
partial Spearman’s rho values and the associated p-values.

The Breast Cancer Gene-Expression Miner v4.7, an open-access, web-based tool [46],
was utilized to explore the expression of CSF1R mRNA in the invasive breast cancer cases
represented in the TCGA cohort (n = 1033) [47] and validated in the Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) cohort (n = 1980) [48]. Targeted
analysis was selected, prognostic significance of CSF1R mRNA was estimated by applying
a univariate Cox proportional hazard model, and results were presented as Kaplan–Meier
survival curves for disease-free survival. The median threshold was selected for classifying
CSF1R mRNA expression levels as high versus low.

2.2. Breast Cancer Clinical Cohorts for Optimizing Immunohistochemistry Protocol and
Hypothesis Testing

Assessment of CSF-1R protein was initially performed on a local population series
called the UBC cohort to finalize the immunostaining protocol, interpretation, and optimal
scoring criteria before applying to the larger BC Cancer cohort. The patients included in the
UBC cohort (n = 330) were diagnosed with early invasive breast cancer at the University
of British Columbia Hospital between 1989 and 2002. The clinicopathological features,
surgical procedures, adjuvant radiation/systemic treatments, and clinical outcomes for a
median follow up of 13 years have been described previously [49].

The BC cancer cohort represents our independent, main series (n = 2384). These
patients were diagnosed with stage I–III invasive breast cancer between 1986 and 1992 at the
British Columbia Cancer Agency, Vancouver. The adjuvant treatments recommended for
these patients were in accord with the provincial guidelines at the time and preceded anti-
HER2 and immune checkpoint inhibitor therapies. The median follow-up of the patients is
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12.5 years. This cohort has been comprehensively profiled for several key biomarkers, [50]
including those related to immune-oncology, i.e., stromal tumor-infiltrating lymphocytes
(assessed on hematoxylin- and eosin-stained slides), CD8, FOXP3, TIM3, LAG-3, PD-1 (on
intraepithelial tumor-infiltrating lymphocytes (iTILs)), PD-L1 (on carcinoma cells), and
CD163 (on macrophages), and assessed by immunohistochemistry [51–55]. The patient
population of the BC Cancer cohort has been split into internal training and validation
sets as described previously [56]. For the purpose of this study, the training set (n = 1183)
was used to perform correlative and prognostic analyses for testing our prespecified
hypothesis for the biomarker under study. The significant findings were re-tested for
confirmation in the validation set (n = 1201). Post-hoc analyses were then performed
on a prespecified ER+ subgroup using the combined cohort (n = 2384) to explore the
prognostic association of CSF-1R expression on carcinoma cells in the context of CSF-
1R+ macrophages and other immune infiltrates. Patients diagnosed with bilateral breast
cancers, ductal carcinoma in situ without an invasive component, and metastatic disease at
presentation, or those who received neoadjuvant chemotherapy, were omitted from the
analyses. Details about the clinicopathological characteristics, treatments, relapses, and
survival have been described previously [50].

The Clinical Research Ethics Board of the University of British Columbia and the Breast
Cancer Outcomes Unit of BC Cancer granted authorization for retrieving the archived tu-
mor samples and the corresponding de-identified clinical information for this retrospective
biomarker study, which was conducted in accordance with the Reporting Recommenda-
tions for Tumor Marker Prognostic Studies (REMARK) guidelines [57]. A flow diagram
illustrating the study design is presented as Supplementary Figure S1.

2.3. Tissue Microarrays and Immunohistochemistry

Archived formalin-fixed, paraffin-embedded tumor tissues from both the cohorts
were utilized for construction of tissue microarrays with a 0.6-mm diameter core size, as
described previously [49,58]. Briefly, the UBC cohort was represented in 3 tissue microarray
blocks consisting of duplicate cores, while the tumors from the BC Cancer validation cohort
were assembled into 17 blocks with one core per case. Sections were cut at 4 µm, and im-
munostaining was performed on a Ventana Discovery XT stainer. Following heat-induced
epitope retrieval (Cell Conditioning 1, Ventana Medical Systems, Inc., Oro Valley, AZ, USA)
in sodium citrate buffer (pH 6.0) for 10 min, the sections were incubated with anti-human
CSF-1R monoclonal antibody (clone SP211; ab183316) at room temperature for 1 h at
1:500 dilution. Sections were then incubated with secondary antibody (UltraMap anti-Rb
HRP) for 16 min, and immunoreactivity was visualized using a ChromoMap DAB detection
kit (Ventana Medical Systems, Inc.). Human colonic tissue was used as a positive control;
for the negative control, the primary antibody was replaced with phosphate-buffered
saline. Tissue microarray slides were digitally scanned at 10X objective magnification on
the BLISS system (Bacus Laboratories/Olympus America, Lombard, IL, USA) and were
visually scored by a breast pathologist (DG) who was blinded to the clinical information.
CSF-1R revealed a membranous/cytoplasmic staining pattern. The proportion of the car-
cinoma cells positively stained was recorded. High expression was defined when ≥10%
carcinoma cells stained positive while staining of <10% was considered as low expres-
sion (Figure 1A). For tumor-associated macrophages, up to 100 positively stained cells
were counted per core, and the threshold was set at 2 (low, <2 and high, ≥2) (Figure 1B).
Cores with fewer than 50 invasive cells were excluded from evaluation. Duplicate cores
were handled by estimating the mean of the positively stained cells. Images from these
slides are available for public access via the website of the Genetic Pathology Evaluation
Center (http://www.gpec.ubc.ca/csf1r (accessed on 27 September 2021)). The scoring
methodologies for the immune biomarkers have been described previously [51–55].

http://www.gpec.ubc.ca/csf1r
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Fisher exact test was used to determine the correlations between CSF-1R expression and 
clinicopathological characteristics or immune cell infiltrates. The Kaplan–Meier method 
was applied for the evaluation of cumulative survival probabilities using breast cancer-
specific survival (defined as the period between the date of diagnosis and the date of death 
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either alive at the end of the follow-up or died due to non-breast cancer-related causes 
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estimated by the log-rank test. For our hypothesis testing using a training–validation 
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20-year follow up data. Hence, these analyses were performed by limiting the breast 
cancer-specific survival time up to 10 years. For multivariate analysis, Cox proportional 
hazard models were developed for reporting hazard ratios with 95% confidence intervals 
after correction for traditional clinicopathological characteristics that included age, tumor 
size, grade, axillary lymph nodal status, and lymphovascular invasion. A p-value of <0.05 
was regarded as statistically significant. The Bonferroni correction was applied to address 
the concerns of multiple comparisons during correlative analyses (involving 10 or more 
variables), making the criterion for statistical significance p < 0.005. Kaplan–Meier survival 
curves for exploratory analyses are presented on the combined cohort of n = 2384 patients, 
for whom 20-year follow-up data was available.  

Figure 1. Representative photomicrographs for immunohistochemical staining of CSF-1R expression in breast carcinoma
tissue microarray cores. (A) Cytoplasmic/membranous expression of high CSF-1R showing ≥10% positivity on carci-
noma cells; (B) cytoplasmic/membranous expression of CSF-1R on tumor-associated macrophages (red arrows) showing
≥2 positive macrophages; (C) negative expression on tumor cells and macrophages (images acquired at 10×). The inserts
show CSF-1R+ carcinoma cells (A) and CSF-1R+ tumor-associated macrophages (B) at high magnification.

2.4. Statistical Analyses

SPSS (IBM SPSS Statistic, Version 25.0) was used for statistical analyses. Descriptive
statistics were estimated for categorical and continuous variables. A chi-square test or
Fisher exact test was used to determine the correlations between CSF-1R expression and
clinicopathological characteristics or immune cell infiltrates. The Kaplan–Meier method
was applied for the evaluation of cumulative survival probabilities using breast cancer-
specific survival (defined as the period between the date of diagnosis and the date of
death due to breast cancer) as the predetermined main survival endpoint. All patients
who were either alive at the end of the follow-up or died due to non-breast cancer-related
causes were censored. Differences in the survival probabilities between the groups were
estimated by the log-rank test. For our hypothesis testing using a training–validation
approach, the assumptions for the Cox proportional hazard model were violated by the
20-year follow up data. Hence, these analyses were performed by limiting the breast
cancer-specific survival time up to 10 years. For multivariate analysis, Cox proportional
hazard models were developed for reporting hazard ratios with 95% confidence intervals
after correction for traditional clinicopathological characteristics that included age, tumor
size, grade, axillary lymph nodal status, and lymphovascular invasion. A p-value of <0.05
was regarded as statistically significant. The Bonferroni correction was applied to address
the concerns of multiple comparisons during correlative analyses (involving 10 or more
variables), making the criterion for statistical significance p < 0.005. Kaplan–Meier survival
curves for exploratory analyses are presented on the combined cohort of n = 2384 patients,
for whom 20-year follow-up data was available.

3. Results
3.1. Correlation of CSF1R mRNA Expression with Immune Cell Abundance and Prognosis

We first assessed the correlation of CSF1R mRNA expression in the tumor microen-
vironment with the level of immune infiltration using the TIMER2.0 web server [43,44].
Our results showed a significantly positive correlation of CSF1R mRNA expression with



Cancers 2021, 13, 5769 6 of 19

immune cell abundance comprising B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells (Figure 2A).
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Figure 2. Correlation of CSF1R mRNA expression with immune cell infiltrates and prognosis in breast cancer. TIMER2.0
web server was used to evaluate the correlation between CSF1R mRNA expression and immune cell infiltrates. The
left-most panel (A(i)) shows CSF1R mRNA expression against tumor purity (proportion of cancer cells in the sample),
showing a significantly negative correlation. Scatter plots (A(ii–vii)) show the purity-adjusted partial Spearman’s rho
value and statistical significance for positive correlation of CSF1R mRNA with immune cell types (Spearman’s rho: 0, no
correlation; 0.1–0.3, weak; 0.4–0.6, moderate; 0.7–0.9, strong; 1, perfect; p-value < 0.05). Five-year Kaplan–Meier curves
show an insignificant association of CSF1R mRNA with disease-free survival (DFS) in the TCGA (B) and METABRIC (C)
invasive breast cancer cohorts. The p-value and hazard ratios (HR) with corresponding 95% confidence intervals were
estimated by the log-rank test. The survival curves for TCGA and METABRIC cohorts were generated using Breast Cancer
Gene-Expression Miner v4.7.

Higher expression of a recently described 37-gene tumor-associated macrophage gene
signature, derived from whole-tumor RNA sequencing of 47 breast cancers, has been
shown to associate with aggressive subtypes and poor clinical outcomes [26]. We correlated
the expression of CSF1R with the tumor-associated macrophage gene set and observed
a highly significant positive correlation for all 37 genes (Supplementary Table S1). These
data support the role of CSF1R in regulating the biological functions of tumor-associated
macrophages as has been shown in previous preclinical studies [12,59]

No significant prognostic association was observed between CSF1R mRNA expres-
sion in the bulk tumor tissue and clinical outcomes in the TCGA cohort. This lack of
significant association was further validated in the METABRIC cohort of invasive breast
cancers (Figure 2B,C).

The immune cell infiltration was also associated with significant positive correlation
with CSF1 mRNA expression (Supplementary Figure S2A). However, no significant prog-
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nostic associations were observed for CSF1 mRNA in the TCGA and METABRIC cohorts
(Supplementary Figure S2B,C).

3.2. Correlation of CSF-1R+ Carcinoma Cells with Clinicopathological Features, Immune Cell
Infiltrates, and Prognosis in The BC Cancer Cohort

The locked down immunohistochemistry protocol was applied to the BC Cancer
series. The selection of the optimal positivity threshold and the correlative and prognostic
associations of CSF-1R on carcinoma cells and macrophages were first assessed in the
training cohort (n = 1183) of the BC Cancer series (Supplementary Tables S2–S4 and
Supplementary Figure S3) before confirming the results in the validation cohort, presented
in this section.

In all, there were 1201 scorable cases in the validation set of the BC Cancer series,
of which 23.1% (277/1201) were positive for CSF-1R expression on carcinoma cells, and
high expression was significantly associated with tumor size > 2 cm, grade 3 histology,
Ki67 index ≥ 14%, negative hormone receptor status, HER2 positivity, and non-luminal
subtypes (Table 1). CSF-1R+ carcinoma cells are significantly associated with stromal
tumor-infiltrating lymphocytes; intraepithelial lymphocytic infiltrates expressing CD8,
FOXP3, TIM3, LAG3, and PD-1; and PD-L1+ carcinoma cells (p < 0.001) (Table 2). In
addition, a significantly positive correlation (p < 0.001) is also observed between CSF-1R+
carcinoma cells and macrophages expressing CSF-1R and CD163 (Table 2), supporting
the plausible existence of a CSF-1/CSF-1R paracrine signaling mechanism as has been
suggested in the preclinical studies [9].

Table 1. Validation set of BC Cancer cohort: correlation of CSF-1R+ carcinoma cells with clinicopatho-
logical features.

Clinicopathological Variables
CSF-1R Expression on Carcinoma Cells

p-ValueLow (<10%)
n = 924 (76.9%)

High (≥10%)
n = 277 (23.1%)

Age at diagnosis
0.57<50 307 (33.2) 87 (31.4)

≥50 617 (66.8) 190 (68.6)

Tumor size (cm)
0.001 *≤2 484 (52.7) 113 (41.1)

>2 434 (47.3) 162 (58.9)

Tumor grade
<0.001 *1 and 2 404 (45.4) 86 (31.9)

3 486 (54.6) 184 (68.1)

Axillary lymph node status
0.11Negative 519 (56.2) 140 (50.7)

Positive 404 (43.8) 136 (49.3)

Lymphovascular invasion
0.37Negative 459 (51.2) 144 (54.3)

Positive 437 (48.8) 121 (45.7)

ER expression
<0.001 *Negative 201 (21.8) 131 (47.3)

Positive 720 (78.2) 146 (52.7)

Progesterone receptor
expression

<0.001 *Negative 392 (44.7) 169 (63.5)
Positive 484 (55.3) 97 (36.5)
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Table 1. Cont.

Clinicopathological Variables
CSF-1R Expression on Carcinoma Cells

p-ValueLow (<10%)
n = 924 (76.9%)

High (≥10%)
n = 277 (23.1%)

HER2
overexpression/amplification

<0.001 *Negative 816 (89.9) 203 (74.9)
Positive 92 (10.1) 68 (25.1)

Ki-67 proliferation index
<0.001 *<14% 502 (58.3) 92 (35.8)

≥14% 359 (41.7) 165 (64.2)

Breast cancer subtypes

<0.001 *

Luminal NOS 37 (4.0) 5 (1.8)
Luminal A 438 (47.4) 58 (20.9)

Luminal B/HER2-/Ki67+ 217 (23.5) 64 (23.1)
Luminal/HER2+ 47 (5.1) 20 (7.2)

HER2+ 44 (4.8) 45 (16.2)
Basal 66 (7.1)) 53 (19.1)

Additional basal by TNP 50 (5.4) 18 (6.5)
Unassignable 25 (2.7) 14 (5.1)

* Denotes differences between low and high CSF-1R groups that are significant at the Bonferroni-corrected
p-value of <0.005 (0.05/10); ER, estrogen receptor; HER2, human epidermal growth factor receptor; TNP, triple-
negative phenotype.

Table 2. Validation set of BC Cancer cohort: correlation of CSF-1R+ carcinoma cells with immune
biomarkers.

Variables
CSF-1R Expression on Carcinoma Cells

p-Value
Low (<10%) High (≥10%)

H&E sTIL count (%)
<0.001<10 723 (84.8) 194 (73.8)

≥10 130 (15.2) 69 (26.2)

CD8 iTIL count
0.001<1 602 (67.7) 149 (56.4)

≥1 287 (32.3) 115 (43.6)

PD-1 iTIL count
<0.001<1 809 (91.7) 219 (81.7)

≥1 73 (8.3) 49 (18.3)

PD-L1+ carcinoma cells (%)
<0.0010 814 (94.1) 215 (81.4)

≥1 51 (5.9) 49 (18.6)

FOXP3 iTIL count
<0.001<2 624 (70.1) 141 (52.8)

≥2 266 (29.9) 126 (47.2)

TIM3 iTIL count
<0.001<1 804 (90.5) 212 (78.5)

≥1 84 (9.5) 58 (21.5)

LAG3 iTIL count
<0.001<1 793 (89.5) 208 (77)

≥1 93 (10.5) 62 (23)
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Table 2. Cont.

Variables
CSF-1R Expression on Carcinoma Cells

p-Value
Low (<10%) High (≥10%)

CD163+ M2 macrophages
<0.001≤5 336 (40.5) 61 (24.2)

>5 493 (59.5) 191 (75.8)

CSF-1R+ M2 macrophages
<0.001<2 532 (61.2) 108 (39.6)

≥2 337 (38.8) 165 (60.4)
H&E, hematoxylin- and eosin-stained; iTILs, intraepithelial tumor infiltrating lymphocytes; sTILs, stromal tumor-
infiltrating lymphocytes; PD/L1, programmed cell death protein/ligand 1; FOXP3, forkhead box P3; TIM3,
T cell immunoglobulin domain and mucin domain 3; LAG3, lymphocyte activation gene 3 protein; CSF-1R,
colony-stimulating factor-1 receptor.

Breast cancers with high expressions of CSF-1R on carcinoma cells are associated with
significantly poor breast cancer-specific survival compared to tumors with low expression
(Figure 3A) (HR 1.63; 95% CI 1.26–2.09; p < 0.001). However, the expression of CSF-
1R+ macrophages did not reveal any significant prognostic associations in either the
training (Supplementary Figure S3B) or validation sets of the BC Cancer series (HR 1.0,
95% CI 0.80–1.27; p = 0.97) (Figure 3B).

We next performed a prespecified subgroup analysis to investigate the prognostic
impact of CSF-1R+ carcinoma cells in cases stratified by ER status. We found that CSF-1R+
carcinoma cells are associated with significantly adverse outcome in patients with ER-
positive status (HR 1.82, 95% CI 1.30–2.54; p < 0.001) but not in those with ER-negative status
(HR 1.08, 95% CI 0.73–1.60; p = 0.71) (Figure 3C,D). The subsequent multivariate analysis
confirms that high CSF-1R expression on carcinoma cells is independently associated with
unfavorable outcome (HR 1.58; 95% CI 1.21–2.05; p = 0.001) (Table 3).
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Table 3. Multivariate analysis for CSF-1R+ carcinoma cells in the validation set of BC Cancer cohort.

Co-Variates in the Model
Breast Cancer Specific Survival

Adjusted HR (95% CI) p-Value

Age at diagnosis (years)
0.70<50 1

≥50 1.05 (0.81–1.36)

Tumor size (cm)
<0.001≤2 1

>2 1.65 (1.26–2.15)

Tumor grade
<0.0011 and 2 1

3 2.03 (1.52–2.71)

Axillary LN status
<0.001Negative 1

Positive 1.84 (1.38–2.44)

LVI
0.02Negative 1

Positive 1.40 (1.05–1.88)

CSF-1R+ carcinoma cells
0.001Low (<10%) 1

High (≥10%) 1.58 (1.22–2.05)
LN, lymph node; LVI, lymphovascular invasion; CSF-1R, colony-stimulating factor-1 receptor.

3.3. Exploratory Analyses: Prognostic Association of CSF-1R-Expressing Carcinoma Cells with
Immune Infiltrates in ER-Positive Breast Cancers

In contrast to triple-negative breast cancers, immune-enriched ER-positive breast can-
cers are characterized by a distinctive immune profile which is dominated by TGF-β signal-
ing, dysfunctional CD8+ T cells, and enrichment of M2 tumor-associated macrophages [42].
Clinical studies have shown that high levels of FOXP3- and CD8-positive lymphocytic sub-
sets are linked with inferior clinical outcomes in ER-positive breast cancers [52,60]. Here,
we performed an exploratory analysis to examine the prognostic impact of CSF-1R+ carci-
noma cells in the context of iTIL subsets expressing CD8 or FOXP3 in ER-positive breast
cancers in the combined cohort of the BC Cancer series with complete 20-year follow-up
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information (n = 1666). Our results show that high CSF-1R expression on carcinoma cells is
associated with significantly inferior survival in cases harboring CD8+ iTILs (HR 1.65, 95%
CI 1.21–2.26; p = 0.002) (Figure 4A). When analyzed for regulatory T cells, the cases with
concurrent low CSF-1R+ carcinoma cells and low FOXP3 iTILs exhibit the best outcome
(HR 0.71, 95% CI 0.60–0.86; p = 0.001) (Figure 4B). Together, these results suggest an associa-
tion of CSF-1R+ carcinoma cells in supporting an immune-suppressed microenvironment.
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We and others have previously shown that CD163+ M2 macrophages are associated
with poor prognosis in breast cancer [25,54]. We performed an exploratory analysis to
examine the relationship of carcinoma cells expressing CSF-1R in the context of tumor-
associated macrophages stratified by ER expression. We observed that in ER-positive
cases, concomitant high expression of CSF-1R on carcinoma cells and macrophages is
associated with significantly poorer clinical outcome (HR 1.57, 95% CI 1.13–2.17; p = 0.006),
compared to ER-negative cases (HR 1.09, 95% CI 0.75–1.57; p = 0.66) (Figure 5A,B). Similar
results are observed when analysis is performed in CD163+ M2 macrophage-enriched ER-
positive breast cancers (Figure 5C,D). Together, these results show a negative prognostic
association linked with the concurrent expression of CSF-1R+ carcinoma cells and CSF-1R+
macrophages in ER-positive breast cancers.
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4. Discussion

We report the prognostic significance of CSF-1R protein expression on carcinoma cells
and tumor-associated macrophages in a large, well-characterized cohort of early breast
cancer patients. Key findings of our study include (a) poor clinical outcome associated
with high expression of CSF-1R+ carcinoma cells that was maintained in ER-positive
breast cancers despite the presence of infiltrating lymphocytes expressing CD8 and (b) a
significant positive correlation between CSF-1R+ carcinoma cells and tumor-associated
macrophages in a manner that suggests that its expression on carcinoma cells could be a
factor driving poor outcome in the ER-positive subgroup, whereas a lack of its expression
on malignant epithelial cells corresponds with significantly improved outcome regardless
of the presence of CSF-1R+ tumor-associated macrophages.

Our analysis of TCGA and METABRIC data sets in contrast did not reveal a significant
prognostic association for CSF1R or CSF1 at the mRNA level. These observations are not
necessarily surprising. Since bulk tumor-derived transcriptomic data quantify total gene
expression from heterogenous cell types, CSF1R and CSF1 transcripts could be mostly
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derived from the stromal tumor-associated macrophages (which express this highly in com-
parison to relatively low expression in carcinoma cells); CSF1, in addition, is also expressed
by several stromal cells such as fibroblasts, endothelial cells, and smooth muscle cells [61].
Our findings in this regard are important, as using immunohistochemistry, we were able to
distinguish between carcinoma cell and macrophage cell CSF-1R expression. We believe
that our data, showing a lack of prognostic association of CSF-1R on macrophages, are in
agreement with the results of transcriptomic analysis on the TCGA and METABRIC data
sets (Figure 2B,C).

Previously, few studies [39–41,62] have investigated CSF-1R expression in clinical sam-
ples showing prognostic relevance with regards to ipsilateral breast cancer recurrence [62]
and nodal involvement [39]. However, these studies, being underpowered, either failed to
show statistically meaningful results [40] or could not confirm the independent prognostic
significance of CSF-1R beyond standard clinical factors [39].

The oncogenic role of CSF-1R has been described mostly in relation to its ligand, CSF-1.
However, a ligand-independent protumorigenic role for CSF-1R has also been shown in
preclinical models, where activating mutations in the c-fms protooncogene have shown
transforming potential in NIH 3T3 cells independent of the CSF-1 ligand [63]. Likewise,
using an MCF10A cell line model, it has been shown that constitutively active CSF-1R
can alter acinar morphology by inducing destabilization of cell-to-cell adhesions via a
mechanism that involves src kinases [64]. Together, these data suggest that constitutively
active CSF-1R may potentially drive oncogenesis. However, these observations warrant
further investigation in clinical breast cancer specimens.

Our immunohistochemistry results are particularly relevant in the context of ER-
positive breast cancers, which comprise approximately 70% of all newly diagnosed invasive
breast cancers [65]. Whether CSF-1R signaling predominantly regulates the luminal pheno-
type needs further investigation. However, preclinical studies do suggest that CSF-1R sig-
naling may have a role in regulating luminal differentiation, as mice bearing homozygous
mutations in CSF1R have defects in mammary ductal branching [5], and that hyperstimu-
lation of CSF-1R disrupts the formation of ductal acini, inducing hyperproliferation in a
non-malignant luminal cell line model [64].

Overall, ER-positive breast cancers represent indolent tumors that are generally con-
sidered less immunogenic on account of low tumor mutational burden [66], relatively lower
expression of immune checkpoints [67], and generally low counts of tumor-infiltrating
lymphocytes [68,69]. Emerging data challenge this paradigm and support the existence of
distinct immune subsets in ER-positive breast cancers [70]. Recently, it has been shown
that, in contrast to immune-rich triple-negative breast cancers, immune-rich ER-positive
breast cancers are characterized by TGF-β signaling, which dampens host anti-tumor
immune responses by promoting the exhaustion of CD8+ T cells, infiltration with FOXP3+
T regulatory subsets, and M2 macrophage polarization [42]. Together, these data provide
some insight into the heterogenous responses of advanced stage ER-positive breast cancers
to immune checkpoint inhibition in clinical trials [71–74]. Whilst prior treatments may
possibly weigh heavily in producing sub-optimal responses, the use of immune check-
point inhibitors in the neoadjuvant setting have yielded encouraging results in hormone
receptor-positive/HER2-negative breast cancers [19].

Given the high frequency of M2 macrophages in ER-positive breast cancers [42] and
their plausible role in inducing resistance to standard adjuvant and immune checkpoint
inhibitor therapies [29,31–34], combination therapies, including those targeting tumor-
associated macrophages in breast cancers, are an attractive concept. Preclinical studies have
shown that targeting CSF-1/CSF-1R signaling depletes tumor-associated macrophages by
inducing apoptotic death [75], inhibits their recruitment from circulating monocytes [76],
and induces M2–M1 polarization [34]. The net result is a reprogrammed immune con-
texture with a switch from immune-suppressed to an immune-activated, tumoricidal
microenvironment [34,59]. While results from trials testing combined targeting of PD-1/LI
and CSF-1R are still pending [37], promising efficacy signals of CSF-1R inhibitors have
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been demonstrated in combination with chemotherapy in solid organ malignancies, in-
cluding breast cancer [77]. Of note, despite their capacity to eliminate tumor-associated
macrophages, limited anti-cancer activity has been observed with use of CSF-1R inhibitors
alone or in combination with chemotherapeutic agents [78,79]. Indeed, these observations
are in part supported by preclinical studies showing a significant impact of the timing of
initiation of anti-CSF-1R therapies, showing diminished anti-tumor activity when CSF-1R
inhibitors are administered in mice bearing established tumors versus when therapy is
started concurrent with tumor implantation [80]. It has been shown that the carcinoma cells
actively contribute to compensatory mechanisms that promote the survival of macrophages
following CSF-1R inhibitor therapy [81].

Even though several biomarkers for tumor-associated macrophages have shown
prognostic implications [25], at present, no companion diagnostic tests are available to
predict benefit from macrophage-targeted interventional therapies. Our biomarker study
demonstrates that CSF-1R expression on tumor-associated macrophages does not provide
prognostic value; however, it is likely that in vivo CSF-1R expression on both the carcinoma
cells and host macrophages contributes to the pharmacologic effects of inhibitors. Whether
combined assessment of CSF-1R expression on both the carcinoma cells and immune cells
demonstrates better predictive capacity needs further investigation in correlative studies
linked to trials of CSF-1R-targeted therapies.

Strengths of our study include the utilization of a hypothesis-driven training–validation
approach for evaluation of CSF-1R expression and the large size of the BC Cancer cohort,
for there exist previously generated extensive data relevant to immune biomarkers. Our
study has some limitations which must be acknowledged. Firstly, our study was designed
to evaluate the expression of CSF-1R on carcinoma cells and tumor-associated macrophages
using a single biomarker immunohistochemistry. However, the CSF-1R signaling axis also
influences other immune and non-immune subsets, including dendritic cells, neutrophils,
and cancer-associated fibroblasts, which may either augment or neutralize the effects of
CSF-1R inhibition [80,82]. Comprehensive evaluation of the tumor microenvironment with
multiplexed approaches might improve prognostic and predictive capacity, particularly in
the context of immune checkpoint inhibitor therapies [83]. Secondly, we did not evaluate
the immunohistochemical expression of CSF-1, a major ligand of CSF-1R that influences
the recruitment and polarization of M2 tumor-associated macrophages. Thirdly, we as-
sessed CSF-1R expression on morphologically assessed tumor-associated macrophages
and did not perform multiplex immunohistochemistry to confirm co-expression with
other macrophage biomarkers. Fourthly, our study was based on immunohistochemistry
performed on formalin-fixed tissues assembled on tissue microarray cores which were
sampled from a tumor-rich region and hence may not sufficiently capture the heterogene-
ity of the immune microenvironment [84]. Lastly, the patients included in our cohorts
received treatments that were approved by provincial guidelines that date back to more
than 30 years and do not reflect the more contemporary adjuvant treatments that are
presently recommended.

5. Conclusions

Our results demonstrate that CSF1-R expression on carcinoma cells detected by im-
munohistochemistry provides prognostic information in breast cancers, particularly in a
subset of ER-positive cases, and may represent an actionable target for patient selection
in trials evaluating CSF-1R blockade. Findings from our exploratory analyses showing a
negative association of CSF-1R+ carcinoma cells even in immune-rich ER-positive breast
cancers require validation in independent clinical cohorts.
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