
Research Article
Mobile Robot Application with Hierarchical Start Position DQN

Emre Erkan 1 and Muhammet Ali Arserim 2

1Department of Electronic Communication, Batman University, Batman 72500, Turkey
2Electrical and Electronics Engineering Department, Dicle University, Diyarbakir 21280, Turkey

Correspondence should be addressed to Emre Erkan; emre.erkan@batman.edu.tr

Received 27 April 2022; Revised 26 July 2022; Accepted 3 August 2022; Published 5 September 2022

Academic Editor: Abdul Rehman Javed

Copyright © 2022 Emre Erkan and Muhammet Ali Arserim. %is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Advances in deep learning significantly affect reinforcement learning, which results in the emergence of Deep RL (DRL). DRL
does not need a data set and has the potential beyond the performance of human experts, resulting in significant developments in
the field of artificial intelligence. However, because a DRL agent has to interact with the environment a lot while it is trained, it is
difficult to be trained directly in the real environment due to the long training time, high cost, and possible material damage.
%erefore, most or all of the training of DRL agents for real-world applications is conducted in virtual environments. %is study
focused on the difficulty in a mobile robot to reach its target by making a path plan in a real-world environment. %eMinimalistic
Gridworld virtual environment has been used for training the DRL agent, and to our knowledge, we have implemented the first
real-world implementation for this environment. A DRL algorithm with higher performance than the classical Deep Q-network
algorithm was created with the expanded environment. A mobile robot was designed for use in a real-world application. To match
the virtual environment with the real environment, algorithms that can detect the position of the mobile robot and the target, as
well as the rotation of the mobile robot, were created. As a result, a DRL-based mobile robot was developed that uses only the top
view of the environment and can reach its target regardless of its initial position and rotation.

1. Introduction

%e path planning is one of the important topics of the
robotics since navigating a robot to a desired destination
without collision is a significant task [1]. %e significance of
such a task is estimated to increase even further [2, 3] due to
evolving interaction between robots and human beings. %is
means the human beings will have more places shared with
robots giving rise to the importance of path planning. In
literature, conventional path planning techniques such as
A-star, ant colony optimization, and Artificial Potential
Field (APF) can be encountered [4] which are not efficient to
address the issues in real-time within complex environments
[5]. With respect to achieving a more robust solution, deep
learning (DL) has been successfully implemented for path
planning [6]. However, DL needs labeled data in order to
learn the environment which is a time-consuming task [7].
To overcome the latter problem, the researchers have re-
cently adopted the deep reinforcement learning (DRL)
technique as one of the efficient solutions.

Reinforcement learning (RL) tries to maximize the
numerical reward signals by focusing on actions that must be
taken depending on the specific cases [8]. Instead of guiding
the RL agent to perform a specific task, it is asked to learn
which actions are more rewarding [9]. %e RL agent,
interacting with the environment sufficiently, learns which
action contributes more to the cumulative reward. In an-
other word, it learns the best state-action pair. However,
exploring the environment becomes costly in the case of
increasing numbers of states and actions due to the curse of
dimensionality [10]. %erefore, it may become impossible to
solve some of the real-world problems with high dimensions
of action and state spaces by using traditional reinforcement
learning [11].

%e remarkable progress of the DL has also significantly
affected the RL and resulted in the DRL method, which is a
combination of both methods [12]. Significant achievements
have been reported for arcade games [13, 14], board games
[15, 16], autonomous driving [17], robots interacting with
humans [18], drones [19], unmanned surface vehicles [20],
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robot navigation problems [21], and robotic surgery [22],
which all are examples of complex systems with multiple
states.

Several recent studies on path planning of mobile robots
by using the DRL method are briefly provided below:

(i) Zheng et al. [1] proposed a method that optimizes
the path planning process of a mobile robot for an
unmapped environment. In the proposed method,
a memory module based on the special structure of
long short-term memory (LSTM) was introduced.
%anks to this method, the long-term memory
capacity of the robot was increased, and the
number of trials and calculation time required for
training was shortened.

(ii) Gong et al. [5] suggested optimizing the deep
deterministic policy gradient (DDPG) network
with LSTM to solve the path planning problem of
the mobile robot in environments with static ob-
stacles. In this method, a mixed noise along with a
more reasonable reward function was used for
quick training. %e proposed algorithm and
DDPG-based algorithms [23, 24] were experi-
mentally compared and the advantages of the
proposed algorithm were demonstrated in a
complex environment in terms of exploration ef-
ficiency, optimum path and time.

(iii) In Zhou et al. [7], an improved DQN algorithmwas
proposed for the path planning problem of pa-
trolling robots. In this study, the reward penalty
functions were improved, and the sparse reward
problem was resolved by optimizing the state-ac-
tion space by adding new reward value points. %e
advantages of the proposed algorithm over the
classical DQN algorithm were experimentally
demonstrated.

(iv) InWang et al. [25], an improved DQNmethod was
proposed by focusing on the problem of poor
exploration and sparse reward in mobile robot
path planning. %e reward function was improved
by combining the artificial potential field method
with the reward function to optimize the state-
action space. %e performances of the proposed
method and classical DQN were compared.

(v) In Xing et al. [26], the area division Deep
Q-Network (AD-DQN) method was proposed. A
mobile wireless powertrain robot was able to de-
termine the optimal path with the proposed
method in terms of charging a large number of IoT
devices.

(vi) Huang et al. [27] proposed a method that deter-
mines two reward thresholds for solving the
anomalous reward problem encountered in the
path planning process of a mobile robot in an
unknown dynamic environment. %e improve-
ment in value-based DRL algorithms was
experimentally demonstrated with the proposed
method.

(vii) Yu et al. [28] proposed a mobile robot path
planning method based on neural networks and
hierarchical reinforcement learning. %e perfor-
mance of the proposed method was evaluated for
an environment with static obstacles.

(viii) Wang et al. [29] proposed a DDQN-based method
with prioritized experience replay (PER) for mo-
bile robot path planning. Simulation experiments
were shown that this method had a better con-
vergence rate and success rate than classical DQN
in unknown environments.

(ix) Zhang et al. [30] focused on similar sample re-
dundancy problems that negatively affect the
training of the DQN algorithm for environments
with static obstacles. An algorithmwas proposed in
this study in order to optimize the training samples
using similarity scanning matrix such that more
useful training examples can be used.

(x) Ruan et al. [31] proposed a D3QN-based LN-
D3QN algorithm for mobile robots that avoid the
obstacles. %e proposed algorithm accelerated the
neural network training by normalizing the layers
of the neural network. In addition, it was observed
that the learning time was reduced by using prior
experience repetition. Experiments showed that
the robot trained with the LN-D3QN algorithm
can adapt to unknown environments faster than
that of the D3QN algorithm.

(xi) Kim et al. [32] proposed a DQNmethod combined
with a Gated Recurrent Unit (GRU) to solve the
path planning problem of a mobile robot.

On the contrary to the above listed works, in this study, a
DRL agent was trained in a discrete virtual environment with
sparse rewards and focused on the real-world targeting problem
of a mobile robot using these DRL network parameters. %e
contributions of this study can be listed as follows:

(i) An improved DQN algorithm is proposed for large
environments with sparse rewards in order to in-
crease the convergence rate and success rate
according to the classical DQN algorithm.

(ii) Network parameters of the agent trained in the
Minigrid virtual environment were used for the first
time in the real environment.

(iii) A pixel-based image processing algorithm is pro-
posed to detect the rotation of the mobile robot.

(iv) %e model trained in the virtual environment is
used to provide a more efficient operation in the real
environment.

(v) %e proposed design allows the mobile robot to be
used in swarm robotics and multi-agent systems
with the advantage of low cost and long-range
controllability from a central computer.

%e rest of the article is organized as follows. Section 2
introduces the virtual environment used in DRL agent
training. In Section 3, the DQN algorithm with hierarchical
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starting position is presented as an efficient method, in terms
of training time and successfulness rate, compared to the
conventional DQN algorithm. Section 4 describes the design
and control of the mobile robot used in the real environ-
ment. Section 5 explains how to pair a discrete virtual en-
vironment with a real-world environment and the mode of
operation of the DRL-based mobile robot which can achieve
its target regardless of its starting position and rotation.
Section 6 explains the implementation stage and presents the
performance analyses. Finally, the paper is concluded in
Section 7.

2. Structure of Virtual Environment

OpenAI Gym is a toolkit designed for RL research. Creating
a common interface, OpenAI Gym contains many different
tasks and environments [33]. %is study uses one of the
OpenAI Gym platforms, the Minimalistic Gridworld En-
vironment (MiniGrid). %e MiniGrid Environment plat-
form has numerous environments with increasing difficulty
levels [34].

%e studies regarding natural language processing
[35–37], reinforcement learning for environments with
sparse reward signals [38–45] and hierarchical-based rein-
forcement learning in natural language processing [46] can
be found for MiniGrid environment. But the studies were
limited to the virtual environment.%is study focuses on real
environment application by using the agent trained in
virtual environment.

%e environments shown in Figure 1 are used in the
application. Both environments represent an empty room,
and the agent’s goal is to reach the green target plot in an
environment that provides sparse reward. %e only differ-
ence between the two environments is the number of plots
constituting the environment. %erefore, this section where
virtual environment analysis is performed explains the
structure of MiniGrid-Empty-8× 8-v0 environment.

2.1. States. %e MiniGrid-Empty-8× 8-v0 environment
consists of 8× 8 plots. %e state of the virtual environment
can be obtained in three different ways. As shown in Fig-
ure 2, these include;

(i) RGB image consisting of a combination of 32
pixels× 32 pixels plots by default,

(ii) String structure in which each plot is encoded with
two characters,

(iii) 3-dimensional matrix where each plot is encoded
with numerical values.

In the application, the state of the virtual environment is
obtained as a 3-dimensional matrix. As the number of
parameters is much less compared to the RGB image, and
the parameters consist of numerical values, it is easy to make
them suitable for artificial neural network (ANN) use. As the
number of data entered in the ANN increases, the network
becomes more complex and the outer wall whose state never
changes is removed to make the network simpler. %e state
parameters of the environment of a 3-dimensional matrix

structure are flattened as in Figure 3 so that they can be used
in ANNs.

As shown in Figure 3, each plot has three parameters
(object, color, direction). %ese parameters are added
consecutively as in the figure, resulting in an array of 108
parameters showing the state of the environment. %e array
created for the MiniGrid-Empty-16×16-v0 environment
has 588 parameters.

2.2. Actions. Practically, the agent can make 3 different
movements. A numerical value is defined for each move-
ment made by the agent. %ese are

(i) Turn 90° left⟶ 0.
(ii) Turn 90° right⟶ 1.
(iii) Move forward 1 unit⟶ 2.

2.3. Reward Function. In the application, the total reward
value that the agent can receive in a level ranges from 0 to 1.
In order for the agent to complete the episode, the agent
must either reach its target or take the maximum number of
steps.%emaximum number of steps for the application was
determined as 50. If the agent reaches at its target, the reward
function is as shown in the following equation:

R � 1 − 0, 9∗
Number of steps

Maximumnumber of steps
. (1)

According to the reward function, as the number of steps
increases, the reward earned decreases, thus the agent should
find the shortest path to maximize its reward. If the agent
takes the maximum number of steps, the episode ends and
the agent gets 0 points because it fails.

3. DQN and HSP-DQN

With the advancement in DL, the Markov Decision Process
can be solved with deep neural networks [47]. As one of such
methods, DQN is successful in some areas at the human level
[13]. DQN is a DRL algorithm combining supervised
learning and RL techniques [13]. %e structure of DQN,
which is frequently used in fields such as games [13], robotics
[48], and natural language processing [49], is shown in
Figure 4.

MiniGrid-Empty-8x8-v0

MiniGrid-Empty-16x16-v0

Figure 1: Environments to be used in the application.
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In the DQN algorithm, the agent makes random
movements at the beginning of the training and records its
experiences about the environment in the experience replay
memory. How much reward (r) the action (a) brings in a
state (s) and the new state (s′) after the action are recorded in
this recording field. When the experiences obtained in this
way reach a sufficient number, the experience equal to the

size of the mini-batch is randomly selected from the ex-
perience replay memory and used for the training of the
Q-network. So, the network is not affected by local mini-
mums. Also, in the DQN algorithm, the agent determines its
action using Epsilon-Greedy (∈). It ∈ can take values be-
tween 0 and 1. ∈ A value close to 1 indicates that the agent
focuses on exploration, while a value close to 0 indicates that

RGB Image String 3D Matrix
Object
Color
Direction

Figure 2: Virtual environment status obtained in three different ways.
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it focuses on making the best action determined by its expe-
rience. For this reason, at the initial stage of training, ∈ the agent
is allowed to explore the environment by choosing a value close
to 1. As the episodes progress, ∈ its value is proportionally
reduced, allowing the agent to choose the best action using its
experience. %e DQN algorithm is very practical for discrete
and small-sized environments due to its described structure.

In the application, MiniGrid-Empty-8× 8-v0 and Mini-
Grid-Empty-16×16-v0 environments are used as virtual en-
vironments. %e agent was trained separately for the specified
environments with the DQN algorithm and the HSP-DQN
(Hierarchical Initial Position DQN) algorithm proposed by us,
and the algorithm performances were examined. %e network
architecture in Figure 5 is used for both algorithms.

In the real environment application, it is desired that the
mobile robot reaches its target, regardless of its starting
position and direction. %erefore, in the training with DQN,
the position and the direction of the agent are chosen
randomly in each new episode.

However, in the training with HSP-DQN, a region where
the agent has a high probability of reaching the target with
random movements is determined, and the training is
started in this region. %e agent is started in a random
position and direction, provided that it stays in the deter-
mined region in each new episode. After the network is
sufficiently trained for this region, a new training region is
determined and ∈ value is increased, allowing for the agent
to re-explore. %ere are two regions at this stage; the region
where the training was performed for the first time and the
region where the training was already performed. Both
regions are used during training. In each new episode, one of
the two episodes is chosen alternately and the agent is started
in a random position and direction. In this way, the previous
information of the network can be kept up to date and new
regions can be explored. At this stage, after the network is
sufficiently trained, the region trained for the first time is
included in the previously trained region. ∈ value is in-
creased again and a new exploration region is determined.
%us, the network is trained gradually.%ese stages continue
until the network learns the whole environment. Figure 6
shows the application of the HSP-DQN algorithm in the
MiniGrid-Empty-8× 8-v0 environment.

Figure 7 shows DQN and HSP-DQN reward graphs for
MiniGrid-Empty-8× 8-v0 environment. As the HSP-DQN
algorithm focuses on exploration in each new region defi-
nition, sections where it fails or gets low scores are observed.
However, the graphics show similarity after 1500 s.

Table 1 shows performance data of DQN andHSP-DQN.
In both algorithms, successful results were obtained at the
end of 3000 sections. Although the total number of steps of
HSP-DQN is slightly less than that of DQN, it does not
provide an obvious advantage.

As the MiniGrid-Empty-8× 8-v0 environment area is
not large, the DQN algorithm has been successful in learning
the environment.

Algorithm performances are also compared for the
MiniGrid-Empty-16×16-v0 environment with a larger area.
Figure 8 shows the application of the HSP-DQN algorithm
in the MiniGrid-Empty-16×16-v0 environment.

Figure 9 shows DQN and HSP-DQN reward graphs for
MiniGrid-Empty-16 ×16-v0 environment. For the DQN
algorithm, the number of successful episodes in the first
2000 episodes is quite low. At the end of 8000 episodes, it is
observed that it often fails. In the HSP-DQN algorithm,
successful and unsuccessful episodes are observed up to
6000 episodes, but in the following episodes, it is seen that
the failures became sparse and the reward interval tended to
narrow, that is, the agent explores short paths.

Table 2 shows performance data of DQN andHSP-DQN.
Accordingly, the successful episode rate of HSP-DQN is
quite high compared to DQN. %e total number of steps of
DQN at the end of 8000 episodes is approximately 84%more
than HSP-DQN. In other words, the training period of the
DQN, which has a low success rate, is also quite long
compared to the HSP-DQN. Also, at the end of 8000 epi-
sodes, the Epsilon-Greedy value decreases to 0.018 in DQN,
while this value is 0.178 for HSP-DQN. So, the HSP-DQN is
likely to explore shorter paths.

4. Robot Design

4.1. General Structure of the Robot. Maneuverability is an
important feature for mobile robots [50]. Omni-wheeled
robots have high maneuverability due to their ability to
move directly from one position to another without being
redirected [51].

As shown in Figure 10, a mobile robot with high ma-
neuverability was designed to use the agent trained in the
virtual environment in the real environment application.
%e robot consists of five layers. %e 1st and 2nd layers are
the visual layers and are used for the determination of the
robot’s position and rotation. %eir intended purposes will
be explained in the next sections.

%e 3rd layer has two serial connected Li-ion batteries
with a current capacity of 2500mAH and a voltage value of
3.7 V, which provide for the energy needs of the robot.

In the 4th layer, there is the robot control circuit that
executes commands from the computer via the RF con-
troller, as shown in Figure 11.

RF control circuit and robot control circuit are micro-
controller-based circuits. Both circuits use Atmel’s ATme-
ga328P microcontroller. %e robot control circuit is
designed so that it can control DC motors with encoder,
control the PWM speed, and give audible and visual
warnings. For the communication between the controller
and the robot, the SX1278 transceiver module that operates
in the 433MHz frequency band and communicates with
Long Range (LoRa) modulation is used.

%e 5th layer is the layer containing four DCmotors with
N20 encoder and four 8-cylinder omni wheels with a 50mm
diameter, which are controlled by these motors.

4.2. Movements and Calibration of Mobile Robot. In this
study, the agent was trained in the empty virtual environ-
ment. %ere are three movements the agent can make for
this environment (go forward 1 unit, 90o turn right, 90o turn
left). Empty environment is a discrete environment.

Computational Intelligence and Neuroscience 5
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Figure 6: Application of HSP-DQN algorithm to minigrid-empty-8× 8-v0 environment. (a) Episodes 0–500. (b) Episodes 500–1000.
(c) Episodes 1000–3000.
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Nevertheless, because the real environment is a continuous
environment, the mobile robot can be in numerous different
angular and positional positions. In order for the mobile
robot to use the information it receives from the discrete
environment, the real environment should be likened to a
discrete environment. In other words, the mobile robot
should be able to move in a way that can bring to a desired
position. %e mobile robot was designed to make 6 different
movements, as shown in Figure 12, to go to the desired
location. It can make turns with an accuracy of approxi-
mately 3° and linear movements with an accuracy of about
1 cm in the range of 0°–360°.

Although omni-wheeled robots have high maneuver-
ability, the floor under them can negatively affect their
movements [52]. Although the designed mobile robot has
motors with encoder, encoder signals cannot guarantee the
position of the robot. Due to the floor under the robot and
the standing positions of the omni wheels, undesirable
situations such as idle rotation of the wheels during take-off
may be encountered. To reduce the mentioned problems
relatively, the mobile robot calibration program shown in
Figure 13 was prepared. By using this program, the number
of signals from the encoder for 1 unit step of the robot
(determined as 30 cm for this study), and the number of

First Time Trained
Previously Trained

(a)

First Time Trained
Previously Trained

(b)

First Time Trained
Previously Trained

(c)

First Time Trained
Previously Trained

(d)

First Time Trained
Previously Trained

(e)

First Time Trained
Previously Trained

(f)

First Time Trained
Previously Trained

(g)

Figure 8: Application of HSP-DQN algorithm in the Minigrid-Empty-16×16-v0 environment. (a) Episodes: 0–500. (b) Episodes:
500–1000. (c) Episodes: 1000–2000. (d) Episodes: 2000–3000. (e) Episodes: 3000–4000. (f ) Episodes: 4000–5000. (g) Episodes: 5000–8000.

Table 1: Comparison of DQN and HSP-DQN (MiniGrid-Empty-8× 8-v0).

Minigrid-Empty-8× 8-
v0

DQN

Episodes 1–500 500–1000 1000–2000 2000–3000
Epsilon-greedy 1> ε> 0.779 0.779> ε> 0.606 0.606> ε> 0.368 0.368> ε> 0.223

Total number of steps 10646 4127 7373 7305
Number of successful episodes 387 499 1000 1000

Success rate (%) 77.40 99.80 100 100
Total number of steps 29451

Average number of steps per episode 9.82

HSP-
DQN

Episodes 1–500 500–1000 1000–2000 2000–3000
Epsilon-greedy 1> ε> 0.779 0.800> ε> 0.623 0.800> ε> 0.485 0.485> ε> 0.294

Total number of steps 6083 5037 9847 7659
Number of successful episodes 441 483 993 1000

Success rate (%) 88.20 96.60 99.30 100
Total number of steps 28626

Average number of steps per episode 9.54

Computational Intelligence and Neuroscience 7



signals from the encoder for 90o rotation can be found.
Multiple movements can be sent and it can be waited for the
specified time or not waited in transition between move-
ments depending on the selected mode (discrete, continu-
ous). Angular and linear movements at different values can
be determined and the speed of motors can be controlled
with PWM.

To control the abovementioned features of the mobile
robot, a data package is designed as in Figure 14. %is data
packet is prepared according to the action to be taken by the
robot and sent with RF signals, and the robot can perform
the necessary actions by decoding these signals.

Table 3 shows the experimentally obtained encoder
signal values to be used in the study.

For example, the data packet required for the mobile
robot to move 1 unit forward and turn 90° left is shown in
Figure 15.

5. Real Environment Application with HSP-
DQN

%is section shows that the HSP-DQN network trained in a
discrete empty environment can also be used in a real envi-
ronment.Here, theHSP-DQNnetworkwas trained in a discrete
environment and its application was performed by likening the
real environment of the application to a discrete structure.

Figure 16 shows the real environment, which will be
likened to a discrete structure. %e environment data are
obtained by the IP camera that takes the top view of the
environment. However, the mobile robot used in the real
environment receives the action commands from the
computer via RF signals.

Simulation of real environment to discrete structure:

(i) Detection of mobile robot and target with con-
volutional neural networks,

(ii) Plotting the real environment as in the virtual
environment,

(iii) Correction of the position and angle of the mobile
robot to fit in the discrete environment,

(iv) %e real environment is matched with the virtual
environment in stages.

At the end of these stages, the mobile robot is able to use
the HSP-DQN network trained in the virtual environment.
Explanations about the stages are given in this section.

5.1. Detection of Objects with Convolutional Neural Networks.
Convolutional Neural Networks (CNN) form the basis of
image classification by DL [53]. %e effectiveness of CNNs
was proven in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) competition held in 2012 [54]. After
this success, studies with CNN gained acceleration [55–59].

Today, CNNmodels developed for object detection have
reached an enormous position due to their success in
classification. However, model sizes are also increasing. %is
limits its use in real-world applications where latency and
resource usage are important, such as autonomous robots.
%erefore, model efficiency is becoming increasingly im-
portant in real-life applications [60].

In our study, EfficientDet D0 CNN model was used for
object detection. %is model, which uses the EffiCientNet
model as the backbone network, has a good performance in
image classification by scaling the network width, depth, and
input resolution together. As the number of parameters of
the model is optimized, it is also advantageous in terms of
using system resources [60–62].

%e CNN model was trained to detect the agent and
target objects shown in Figure 17. 117 and 32 images were
used for training and testing, respectively, in different res-
olutions and light conditions.

%e total-loss graph of the model trained on 30,000
epochs is shown in Figure 18. %e graphs show that the
model has been trained to a large extent after 6,000 epochs.

Using the CNN model, the presence of the Agent and
target in the environment, the position and the center in-
formation of the objects in the image are determined. In
addition, the pixel distance of the environment can be
converted by taking the agent image as a reference.

5.2. Plotting of Real Environment. %e environment where
the HSP-DQN network is trained is a discrete environment.
However, in order for the mobile robot to use the trained
HSP-DQN network, the real environment should be likened
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to the discrete environment. %e steps of the simulation
process are described below;

Stage-1: Real environment data are obtained using only
the top view of the environment. Using the CNN from
this image, the positions of the agent and the target are
determined as in Figure 19.
Stage-2: Centers of the target (Goalx, Goaly) and the
agent (Agentx,Agenty) are calculated for use in the
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Figure 10: Omni-wheeled mobile robot.

Figure 11: RF controller.

Turn Le� Turn Right

Forward

Right

Back

Le�

Figure 12: Movements of mobile robot.

Figure 13: Mobile robot calibration program.
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next stages. %e area of each plot in the real envi-
ronment is determined as 30× 30 cm2. In other words,
the mobile robot should travel 30 cm to pass from the
center of one plot to the center of the other plot. %e

step distance set as 30 cm (Stepd) is calculated by taking
the agent image as a reference. %e diameter of the
circular agent image is 16 cm and the length of one side
(d) of the frame that detects the agent is approximately
equal to the diameter of the agent image. So 1 cm is
approximately equal to d/16 pixels. %e step distance of
the mobile robot in pixels is shown in the following
equation:

Stepd � 30 cm⟶ Stepd �
30
16
∗ dpixel. (2)

Stage-3:%e centers of the plots in the real environment
including width (Imagew) and length (Imageh) of the
environment image are determined using equation (3).
As the location of the agent is fixed when the real
environment is plotted, a list of the plot centers
(Gcenters) is created by taking the center of the target as a
reference, and the real environment is plotted.

Gcenters � a, b | a, b ∈ Ν, 0<Goalx ± a∗ Stepd < Imagew, 0<Goaly ± b∗ Stepd < Imageh .  (3)

Stage-4: %e location of the agent may not match the
center of any plot because the center of the target is
used as the reference in the plotting process. For this
reason, the mobile robot should be positioned

according to the nearest plot. Using equation (4), the
distances of the mobile robot to the plot centers
((Centerd)) are listed.

Centerd � (k, l) ∈ | Gcenters

���������������������������

Agentx − xk( 
2

− Agenty − yl 
2
,



  (4)

%e element of the Gcenters list Centerd as the minimum
value in the list shows the plot center closest to the mobile
robot. %is plot also shows the initial position of the mobile
robot.

%e plotted real environment is shown in Figure 20.
After the real environment is plotted, the location where
the center of the robot should be at the beginning is
determined.

Signal Range

Encoder Signal

(0, 9999]

1 Unit Step Length

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 n...

90 Degree
Turning Length Standby Time PWM Value Mod Movements

(0, 9999] [0, 9999] (0, 255] [1, 2] [1, 6]

Encoder Signal Milliseconds Mod
1: Discrete Mode
2: Continuous Mode

Movement
1: Go Forward
2: Return Le�
3: Return Right
4: Go Back
5: Go Le�
6: Go Right

Figure 14: RF data packet.

Table 3: Experimentally obtained encoder signal values.

Action Encoder signal
1 cm linear motion 22
30 cm linear motion (one unit) 2070
3° turning motion 10
90° turning movement 900

2 0 7 0 0 9 0 0 0 2 5 0 2 5 5 1 1 2

Standby Time: 250 ms
PWM: 255
Discrete Mode

Figure 15: Sample data package.
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5.3. Determination of the Rotation of the Mobile Robot.
CNNs have become the main method in the field of image
recognition thanks to their strong feature extraction ability.
Most CNNs do not deal with the angle of the image and just
focus on image recognition. However, angle data are also
crucial in robot applications [63].

In the present study, the agent was trained with HSP-DQN
in a discrete virtual environment. Only four directions exist for
the virtual environment. However, in the real environment, the
mobile robot can take an unlimited angular position. In order
for the mobile robot to use the information in the virtual en-
vironment, it should adjust its direction to resemble the most
suitable direction in the virtual environment. For this reason, a
structure that can detect the angle of the mobile robot is re-
quired. %e image used by CNN for the detection of the mobile
robot is also used in the algorithm created for the detection of the
mobile robot’s angle. %e angle and direction of the isosceles
triangle on the mobile robot are also the same as the angle and
direction of the mobile robot.%e purpose of the algorithm is to
determine the direction and angle of the mobile robot by de-
termining the direction and angle of the triangle in the image.

Figure 21 shows the stages of the algorithm.

Stage-1: A top image of the mobile robot and the
environment where the target is located is taken.
Stage-2:%e coordinates of the agent are determined by
CNN and this part is taken from the image. Just below

the agent image, a white layer is used, which visually
covers the part under the robot. %us, while the al-
gorithm is running, it is not affected by the colors on
the ground and the mobile robot can use the algorithm
on any color ground.
Stage-3: Bilateral Filter is applied to reduce noise and
sharpen edges in the image [64].
Stage-4: As the mobile robot image is in the shape of a
circle, the frame determined by CNN is roughly like a
square, the center of the frame always remains inside the
triangle shape. R, G, and B values are listed separately by
retrieving the RGB values of the pixel in the center of the
image and its eight neighbors. %e values in each list are
ordered in ascending order. %e reference RGB values of
the triangle image are obtained by retrieving the 5th ele-
ments of the lists created for R,G, and B.%is process aims
to establish a structure that can work in different light
environments. A two-color image is obtained by assigning
red color value to pixels that are close to the reference RGB
values and white color value to other pixels.
Stage-5:%e pixels where the red color is first detected are
determined by scanning the image separately from the
right, left, bottom, and top.%us, four points are obtained.
Stage-6: %e closest two points within the four detected
points show the same corner. Only one of the two
points can be used. To make a selection, the distances of
two points to other points are calculated separately and
the point that is farther from other points is selected as
the 3rd corner point because being further away implies
that the point is further away.

Stage-7: %e distances between the corner points are
calculated. As the twin sides of the triangle are longer
than the base side, the side with the two closest vertices
shows the base of the triangle and the other vertex
shows the vertex of the triangle. By drawing a line to the
midpoint of the vertex and the base, a Pythagorean
triangle is formed as in Figure 21 Stage-7, and the angle

IP
Camera

Wi-Fi 4 (802.11n)

Wi-Fi 4 (802.11n)

Control Computer

RF Remote
Control

433 Mhz

Goal

Real Environment

433 Mhz

Mobile Robot

USB Connect
ion

Figure 16: Real environment structure.

Figure 17: Agent and target objects.
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of the triangle, hence the angle of the mobile robot, is
determined by Arctangent.

If the angle found is 0°, the position of the mobile robot
in real environment and virtual environments can be
matched. If the angle found is different from 0°, the direction
of the mobile robot can be in one of the four regions as
shown in Figure 22. %e triangle direction determines which
region the mobile robot is in. %e direction to which the
mobile robot will turn is determined by comparing which
direction it is angularly close to.

Using the algorithm, it is determined in which region the
mobile robot is, how much the robot should turn angularly
to the right or left to match the most suitable direction in the
virtual environment, and in which position the mobile robot
will be after the rotation is corrected.

%e mobile robot autonomously adjusts its angle using
the values determined in this episode and then positions it to
the initial position determined in the previous episode with
linear movements (right, left, forward, backward). After the
mobile robot corrects its angle and position, both the mobile
robot and the target are located in the center of the plot they
are in, as shown in Figure 23. %e mobile robot is also
positioned in one of the four directions it can take, as in the
virtual environment.

As the mobile robot and the target are located only in the
centers of the plots and there are four directions that the
mobile robot can take, as shown in Figure 24, the real en-
vironment and the discrete virtual environment can be
matched.

5.4. Matching the Real Environment with the Virtual Envi-
ronment and Determining the Path Plan. To use the HSP-
DQN network trained in the virtual environment in the real
environment, it is necessary to match the position of the
mobile robot with the position of the virtual agent, and the
position of the real target with the position of the virtual
target. For the virtual environment, the agent can be in any
position and direction at the beginning, and the target is
located in the lower right corner of the virtual environment
as in Figure 25.

However, in the real environment, the mobile robot can
be in any direction and position around the target. In other
words, many situations exist where the real and virtual
environments cannot match. To solve this problem, the real
environment is divided into four regions, as in Figure 26,
according to the position of the mobile robot to the target.
%e virtual environment is rotated so that it can match the
real environment.

0.18

Loss/total_loss
tag: Loss/total_loss

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

0 5k 10k 15k 20k 25k 30k

Figure 18: Total-loss graph.

Figure 19: Detection of agent and target with CNN.
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To match the rotated virtual environment with the real
environment, the initial direction and the position of the
virtual agent are converted according to the region as in
Figure 27.

As a result of these conversions, all states in the real
environment can be matched with the virtual environment
and the trained HSP-DQN network can be used for the real
environment, as in Figure 28.

%e path plan is determined in the virtual environment
before the mobile robot takes action. With the trained HSP-
DQN, an action is generated for the current state of the agent
and applied in the virtual environment, enabling the agent to
move to its new position. %e HSP-DQN continues to
generate action until the agent reaches its target, and these

Figure 20: Plotting of the real environment.

Stage-1 Stage-2 Stage-3

Stage-5 Stage-6 Stage-7

Stage-4

Figure 21: Stages of angle determination algorithm.

Real Environment

Zone-2 Zone-1

Zone-3 Zone-4

Virtual Environment
0 1 2 3

3

1

2 0

Figure 22: Directions in real environment vs. virtual environment.

Figure 23: Positioning the mobile robot to the initial position.

2 310Direction
Value

Figure 24: Directions for mobile robot and virtual agent.

14 Computational Intelligence and Neuroscience



actions are listed for the mobile robot to use. In this way, the
path plan of the mobile robot is obtained.

After the path plan is drawn, the actions to be taken are
sent to the mobile robot in order. After each action, the angle
and the position of the mobile robot are checked and de-
viations are corrected. Whether the mobile robot completes
its current action or not is determined by the background
difference method. %e mobile robot is ensured to reach the
target by sending the next action it needs to do after each
completed action.

6. Discussion and Future Work

In the previous sections of the paper, the proposed algo-
rithms have been discussed. In this section, the performance
of the system will be examined. Although DQN algorithm is
successful in MiniGrid-Empty-8x8-v0 environment, it
cannot achieve similar success in MiniGrid-Empty-16×16-
v0 environment because the agent can only receive rewards
when it arrives at the destination in MiniGrid-Empty en-
vironments. If the environment has a large area such as
MiniGrid-Empty-16×16-v0 and the rewards are sparse, it is
difficult for the DQN algorithm to generate enough
meaningful data to train the network with random move-
ments, and the convergence speed becomes very slow. In the
proposed method, the initial position of the agent is started
in the region where the probability of reaching the reward is
high and this increases the probability of the network to
reach meaningful data.%en, as the network learns the paths
in the environment the area where the agent can start is
gradually expanded. %us, for large areas with sparse re-
wards the convergence problem of the network is addressed.
Also, performance analyses are performed for MiniGrid-
Empty-16×16, which is a larger environment than Mini-
Grid-Empty-8x8.

In the experimental study, a computer with Windows 10
Pro 64 Bit operating system was used. %e hardware
specifications are provided in Table 4.

Neural networks used in DQN and HSP-DQN algo-
rithms have the same features. %e information about the
structure of the neural network is shown in Table 5 and the
hyper parameters of the algorithms are shown in Table 6.

In the DQN algorithm, the number of different states
that the agent can start is 780. While the neural network is

being trained, one of the 780 states is randomly selected as
the initial state in each new section. In the proposed algo-
rithm, as the sections progress, the area where the training
can begin is gradually enlarged. %us, the number of dif-
ferent states that the agent can initiate increases, as shown in
Table 7.

In both algorithms, the performances of the models were
examined after training 8000 sections under the above-
mentioned conditions. %e time spent by the algorithms for
training the neural network is shown in Table 8.%e training
of the proposed algorithmwas completed in 45.78% less time
than the DQN algorithm. Although the agent moved more
in the environment in the DQN algorithm, the time spent in
the sections increased as it reached fewer targets compared
to the proposed algorithm.

In order to compare the success of the trained models, all
conditions were tested in the environment with 780 different
initial conditions. %e related results are presented in
Table 9. From the table it can be seen that success rate of the
proposed algorithm is 41.28% higher than the DQN algo-
rithm. Success of the algorithms is also graphically shown in
Figure 29(a).

Moreover, the lengths of the paths detected by the al-
gorithms were also examined.%emodels trained with DQN
and the proposed algorithm were started with the same
initial conditions and the obtained path lengths were
compared as shown in Figure 29(b).%e proposed algorithm
finds a shorter path compared to the DQN algorithm in
70.1% of different initial conditions.

As a result of the tests, it was seen that the success rate
and convergence speed of the proposed algorithm are better
than the DQN algorithm for large environments with sparse
rewards. In addition, the effects of some DRL-based algo-
rithms developed with our study on success rates are shown
in Table 10.

In the real environment application of the study, only the
top view of the environment was used as the system input.
Since it was desired that the application run in real time, this
image should be used efficiently. %e object detection ca-
pability, speed, and model size of the model used for object
detection were very important. %erefore, the EfficientDet-
D0 model was used for object detection by considering these
criteria. %e performance analyses of the EfficientDet model
presented in the original article are shown in Figure 30. %e
model is considered to be suitable for mobile robot appli-
cations with limited resources in terms of model size, speed,
and object detection.

Performance of the EfficientDet model in our ap-
plication was also tested. %e model was trained as
specified in Section 5.1. %e trained model detected
objects with the image taken from the IP camera
mounted at a height of 180 cm from the ground. %e
captured image had a resolution of 800 ∗ 600 pixels and
covered an area of 2.1 × 1.6 m2. In the performed tests,
the model could successfully detect mobile robot and
target objects, provided that the ambient lighting is
appropriate. Also, it was determined that the object
recognition process was completed in the time interval of
820–920 ms.

Figure 25: Virtual environment.
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As mentioned earlier, there are 780 different initial
conditions in the MiniGrid-Empty-16×16 virtual envi-
ronment. With the employment of the structure described in
Section 5.4, the target is ensured to be in any position in the
environment, rather than just in a certain position. In other
words, the target can be positioned in 196 different positions
at the beginning. %us, the success of the trained network is
ensured for 780×196�152.880 different initial conditions.
In here, the recommended regional matching process takes
less than 1ms to complete.

%e real environment processes are performed in dif-
ferent steps. Table 11 provides the processing times for those
steps.%e designed system is capable of detecting the state of
the environment within 1–1.5 seconds in order to allow the
robot to perform a specific task.

A central computer is used for the designed system in
order to perform the semantic data extraction, determina-
tion of the mobile robot motion, and notification of the

determined motion. %e mobile robot acts as an actuator by
using the commands from the central computer. As the
mobile robot does not require any computational load, a
low-cost robot was designed with the part listed in Table 12.

LoRa-based modulation is used for the wireless com-
munication between the computer and the mobile robot.
%e LoRa has advantages such as wide coverage, low power
consumption, low cost, and no license requirement [72].
However, it has a data transfer rate of 290 kbps which is
slower than many wireless communication methods [73].
Despite the latter disadvantage, LoRa still is an ideal com-
munication method for the application reported in this work
since only small-sized data signals are transmitted for the
movement of the robot.

In the real environment experiments, the DRL-based
mobile robot was launched with different initial conditions
for the four regions that are specified in Section 5.4. As can
be observed from the following link, the mobile robot was

for zone-1,
the virtual environment
is rotated
clockwise 90 degrees

for zone-3,
the virtual environment
is rotated
clockwise 270 degrees

for zone-4,
the virtual environment
is rotated
clockwise 180 degrees

For zone-2,
the directions of
the virtual environment
and the real environment
are the same

Figure 26: Rotation of the virtual environment to obtain regions in the real environment.

(x1,y1): Location of mobile robot
(x2,y2): Location of real goal
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Figure 27: Conversion of virtual environment according to real environment.
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able to successfully reach the target in all experiments (Please
see: https://youtu.be/bEAmJF6lD4g). %e following were
also observed in the experiments:

(i) %e omni-wheeled structure of the mobile robot has
advantages in terms of maneuvering. However, it is
prone to disturbances from the floor on which the
robot is operating. Although this situation does not
prevent the robot from reaching its target, it nega-
tively affects the time of the robot to reach the target.

(ii) %anks to the adaptive structure of the system, the
working area of the system can be changed by
changing the height of the camera from the ground.
However, excessive magnification of the area cov-
ered by the camera or improper lighting of the
environment may adversely affect the detection of
objects in the environment.

%is work forms a good basis for the future works as it
demonstrates the possibility of controlling many robots
within a long range by using a single center. %e designed
robot has the potential to be used in swarm robotics and
multi-agent systems, as it is cost-effective and long-range
controllable; thus, this work presents a good contribution to
one of the important research topics known as multi-robot
applications [74–76]. %e latter is important for accelerating
global policy education, as the use of large numbers of robots
can provide greater data diversity [77]. In the future, real-
world applications of DRL algorithms, which will include

Trained HSP-DQN

State
Le�

ACTIONS
1⇢Go Forward
2⇢Go Forward

4⇢Go Forward
5⇢Go Forward

3⇢Turn Le�Right
Forward

Figure 28: Use of HSP-DQN in real environment.

Table 4: Specifications of the computer used in the experimental
study.

Hardware Specifications
CPU Intel™ Core™ i7-9750H CPU @ 2.60GHz 2.60GHz
GPU NVIDIA GeForce RTX 2070 8GB
RAM 16GB 2667MHz

Table 5: Features of the neural network used in DQN and HSP-
DQN.

Layers Number of
neurons

Activation
function Parameters

Input layer 512 ReLU 301568
Hidden
Layer-1 256 ReLU 131328

Hidden
Layer-2 64 ReLU 16448

Output layer 3 Linear 195
Total parameters 449.539
Optimizer: RMSprop algorithm
Loss: Mean squared error
Learning rate: 0.00025
Rho: 0.95
Epsilon: 0.01

Table 6: Hyper parameters of DQN and HSP-DQN algorithms.

Hyper parameters Value
Total episodes 8000
Max step 50
Memory 2000
Epsilon greedy 1.0
Minimum epsilon greedy 0,001
Epsilon greedy decay 0,9995
Mini batch 64

Table 7: Gradual enlargement of the training area.

Education levels Episodes Area Number of different states
the agent can start

1st level 1–500 3× 3 32
2nd level 501–1000 5× 5 96
3rd level 1001–2000 7× 7 192
4th level 2001–3000 9× 9 320
5th level 3001–4000 11× 11 480
6th level 4001–5000 13×13 672
7th level 5001–8000 14×14 780

Table 8: Training times of DQN and HSP-DQN.

Algorithm Episodes Total step Training time (hours)
DQN 8000 331681 8,3 hours
HSP-DQN 8000 180214 4,5 hours

Table 9: Success rates of DQN and HSP-DQN algorithms.

Algorithm Succeeded Failed Success rate (%)
DQN 442 338 56,67
HSP-DQN 764 16 97,95

Computational Intelligence and Neuroscience 17
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Figure 29: Virtual environment (minigrid-empty-16×16-v0) performances of HSP-DQN, and DQN.

Table 10: %e effect of improved DRL-based algorithms on the success rate.

Reference Authors Compared algorithm (success rate %) Proposed algorithm (success rate %) Simulation Real
system

[65] Pfeiffer et al. IL or CPO (37) IL +CPO (90) Y Y
[66] Hsu et al. A3C (17.5) LSTM+DRL (49.5) Y Y
[67] Long et al. NH-ORCA (78) Parallel PPO (96.5) Y N
[68] Wang et al. DDPG (42.67) Fast-RDPG (97.42) Y N
[69] Lin et al. PPO (23) Improved PPO (88) Y Y
[70] Wang et al. POfD (58.5) LwH (96.5) Y N
[71] Leiva and Ruiz-del-Solar DDPG (69) PCL-LSTM (88) Y Y
[29] Wang et al. DQN (63.4) DDQN with PER (81.1) Y N
[32] Kim et al. DQN (46) DQN+GRU+ action skipping (87) Y N
[30] Zhang et al. DQN (75) Improved DQN (90) Y N
[7] Zhou et al. DDPG (84.25) LDDPG+D (94.25) Y N
[5] Gong et al. DDPG (83.5) MN-LSTM-DDPG (90.5) Y N
[26] Xing et al. DQN (75) Area division DQN (100) Y Y
Our study Erkan and Arserim DQN (56.67) HSP-DQN (97.95) Y Y
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Figure 30: Performance of the efficientdet model on the COCO dataset [60]. (a) Model size. (b) GPU latency. (c) CPU latency.
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sequential tasks to enable the agent to reach its target op-
timally in environments with static and dynamic obstacles or
control more than one mobile robot, can be performed as a
future work.

7. Conclusion

In this study, the HSP-DQN algorithm, which had a higher
convergence rate and success rate than the classical DQN
algorithm, was proposed for the environments with sparse
rewards. With the proposed algorithm, a real environment
application was performed for the first time by using the
network parameters of an agent trained in the minimalistic
grid world virtual environment. A low-cost mobile robot
that can be controlled within a long range by a central
computer was designed for this purpose. Also, a system
which can efficiently match the virtual environment with a
discrete structure and the real environment was designed.
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