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Abstract

Through long-term interactions with their hosts, bacterial pathogens have evolved unique

arsenals of effector proteins that interact with specific host targets and reprogram the host

cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into

the host cell nucleus for modulation of nuclear processes is an emerging theme among bac-

terial pathogens. These unique pathogen effector proteins have been termed in recent

years as “nucleomodulins.” The first nucleomodulins were discovered in the phytopatho-

gens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukary-

otic transcription factors or integrated themselves into host cell DNA to promote tumor

induction, respectively. Numerous nucleomodulins were recently identified in mammalian

pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins

that evolved to target specific components of the host cell command center through various

mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA

methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleo-

modulins may induce short- or long-term epigenetic modifications of the host cell. In this

extensive review, we discuss the current knowledge of nucleomodulins from plant and mam-

malian pathogens. While many nucleomodulins are already identified, continued research is

instrumental in understanding their mechanisms of action and the role they play during the

progression of pathogenesis. The continued study of nucleomodulins will enhance our

knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcrip-

tional landscapes, and the overall host cell epigenome.

Author summary

Bacterial pathogens have evolved a repertoire of diverse effector proteins that are secreted

or injected into the host cell cytosol, reprogramming the host cell into a more favorable

environment. Many of these pathogens possess nuclear-targeted effector proteins (nucleo-

modulins) that modulate host cell gene expression without altering the cellular genomic

sequence. By utilizing nucleomodulins obtained through evolution, pathogens can manip-

ulate host cell gene regulation and alter host immune response to infection. Here, we
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provide a comprehensive review discussing a diverse array of nucleomodulins that target

and modulate the host genome through interference with chromatin dynamics, histone

modifications, regulation of transcription, interference of the cell cycle, and regulation of

cell signaling pathways for immune response. This unique targeting of host cell gene regu-

lation through bacterial nucleomodulins is an emerging theme and likely the tip of an ice-

berg regarding host–pathogen interactions at the level of the host command center.

Introduction

Bacterial pathogens harbor a plethora of virulence factors/toxins that aid in and promote infec-

tion, replication, and persistence within host cells. A group of these virulence factors, termed

effectors, are secreted or injected/translocated from bacteria into the host cell cytoplasm

through various secretion pathways and systems (Sec-pathway, Tat-pathway, and type I to VII

secretion systems). Upon entering the host cell cytosol, these effectors interact with specific

host proteins and modulate a wide range of cellular processes and organelle functions [1]. By

secreting or injecting effector proteins, pathogens can consequentially exploit host cell func-

tions and alter host pathways [2,3]. Host pathways altered by pathogen effector proteins

include, but are not limited to: interactions with lipids and cellular membranes, vesicular traf-

ficking, cellular metabolism, autophagy, posttranslational modification, transcription, transla-

tion, and innate and cellular immune response and signaling pathways [4–10].

Studies throughout the last 3 decades illustrate how chromatin structure and dynamics are

fundamental participants in cellular gene regulation and emerging as key targets for bacterial

pathogens. Chromatin is a nucleoprotein complex composed of DNA wrapped around an

octamer of 4 core histones proteins (H2A, H2B, H3, and H4) [2,11,12]. These DNA–histone

interactions form nucleosomes with repeating subunits which, through effective compaction

and shortening of each DNA polymer, contribute to the accessibility of DNA within chromatin

[2,11]. By inducing fine structural alterations at the nucleosomes, access to chromatin DNA is

modulated by large supramolecular complexes, such as the transcription or replication

machinery [13]. The accessibility of DNA within chromatin is highly regulated by multiple

processes, which include modification of DNA and core histones by various covalent modifi-

cations as well as by noncoding RNAs and the cell cycle [12]. Histone proteins exposed outside

of the nucleosomes are subject to various posttranslational modifications such as: methylation,

acetylation, phosphorylation, sumoylation, and ubiquitination [14]. Multiprotein complexes

that regulate chromatin structure are subjected to posttranslational modifications that govern

the accessibility of DNA to bind other supramolecular complexes involved in replication, tran-

scription, and DNA repair [12,15]. In response to infection, host cells may undergo stable,

long-lasting epigenomic changes and chromatin modifications that allow for cellular dediffer-

entiation, carcinogenesis, tolerance, and trained immunity [16]. By influencing chromatin

dynamics, pathogens can alter the host cell genome and interfere with cellular processes and

defense [3,17].

In the context of infection, pathogen effector proteins may be targeted towards and modu-

late cellular functions compartmentalized into various organelles or in the cell cytoplasm

[1,3,14]. It is becoming increasingly evident that a diverse array of effector proteins induce

intracellular events within organelles or the cytosol [18–20]. Through induction of these intra-

cellular events, pathogens can modulate the host cell genome, or “epigenome,” without altering

the host DNA sequence [18–20]. Effector proteins exhibiting these epigenetic changes to the

host cell epigenome without altering DNA sequences have been termed by Berger and col-

leagues as “epigenetors” [21]. Some of the most common and well-known examples of
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epigenetic changes induced by epigenetors include histone acetylation and deacetylation, his-

tone methylation, and DNA methylation [18–20,22]. While these are the most well-known

instances of epigenetic modifications, it is important to note that not all epigenetic changes

induced by pathogens fall under these examples [18–20,22]. Studies have defined the previ-

ously listed examples as direct strategies for inducing epigenetic modifications via altering host

chromatin. However, pathogens are also capable of indirectly modulating the host cell epigen-

ome and gene expression via targeting of host cell signaling pathways, illustrating sophisticated

cross-talk between host cell epigenetic and signaling events (Fig 1) [19].

Recently, studies reveal that various bacterial pathogens have evolved numerous effectors

allowing them to target host cell nuclei and modulate host epigenetic regulators. As a result,

these pathogens can alter host cell transcription, translation, and overall cellular gene regula-

tion and immune response by acting directly within the nucleus [2]. With this, there is an

emerging theme that numerous bacterial effectors injected or secreted into the host cell cytosol

are nuclear-targeted and have been designated by Bierne and colleagues as “nucleomodulins”

[2]. These nucleomodulins function within the host cell nucleus to modulate various nuclear

processes and consequently influence the host cell epigenome [2]. For this activity, nucleomo-

dulins may directly bind host chromatin or indirectly modify chromatin structure and tran-

scription via mimicry of transcription factors, chromatin regulatory factors, or gene

expression regulators [2,3,23].

Eukaryotic proteins that translocate to the nucleus harbor a peptide motif, termed a eukary-

otic nuclear localization signal (NLS), which mediates the transport of proteins into the

nucleus through nuclear pore complexes [24,25]. Interestingly, several but not all bacterial

nucleomodulins harbor NLS sequences that direct transport to the host nucleus [1,2]. The

functional NLS is located on either the N or C terminal of a nucleomodulin and interacts with

nuclear importins to enter the nucleus [26]. Terminal NLS may vary in terms of their length

Fig 1. Strategies utilized by nucleomodulins to enter the nucleus and modulate host cell response and gene

expression. Nucleomodulins can enter the nucleus by (A) diffusion through nuclear pores, (B) using an NLS to

interact with the nuclear pore complex for import, (C) hijacking host proteins in the cytosol containing an NLS that

localize to the nucleus, or (D) currently unknown mechanisms. After entry into the nucleus, nucleomodulins can

modulate the host cell epigenome by (1) altering the nuclear ubiquitination and signaling pathways, (2) dysregulating

protein localization and accumulation in the nucleus or nucleolus, and/or (3) directly targeting and modifying host

DNA and histones. NLS, nuclear localization signal.

https://doi.org/10.1371/journal.ppat.1009184.g001
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and features, but nearly all have short stretches of basic amino acids with the consensus

sequence K-K/R-X-K/R [25]. Multiple NLS classes have been identified throughout the years,

indicating there is flexibility in these signals [24]. While NLSs mediate the transport of eukary-

otic proteins into the nucleus, multiple nucleomodulins are reported to enter the nucleus with-

out a predicted NLS on either terminus (Fig 1) [2,27]. Because of this, the mechanisms used by

a large number of nucleomodulins for nuclear trafficking and entry still remain unclear [2].

In this review, we discuss the currently identified nucleomodulins and explore their diverse

mechanisms for nuclear-mediated modulation within eukaryotic cells (Fig 1). By doing so, we

aim to share the exciting and sophisticated strategies that have evolved in different bacterial

pathogens to promote survival and consequently take advantage of the host cell epigenome.

Here, we will also provide speculation on the shared function and potential evolutionary con-

vergence shared between different nucleomodulins and eukaryotic factors.

The discovery of bacterial nucleomodulins

The first nucleomodulins ever discovered were identified in phytopathogens [28]. Phytopatho-

gens in the genus Agrobacterium are best known by their direct mechanisms for manipulation

of host cell gene expression [2,28,29]. These nucleomodulins were identified to function as

transcription factors, directly interfering with host cell transcription or integrating themselves

into host cell DNA to induce tumors, respectively [30,31]. Using T-DNA, a mobile segment of

DNA, the species A. tumefaciens can alter genomic expression in plant host cells and promote

uncontrolled cell proliferation [3,29]. For this activity to occur, the type IV secretion system

(T4SS) of A. tumefaciens injects T-DNA and associated Vir proteins into the host cell cytosol

[2]. Once in the cell cytosol, Vir proteins coating the T-DNA interact with host cell factors to

promote nuclear localization of T-DNA. After localizing to the nucleus, the T-DNA of A.

tumefaciens is incorporated into the plant cell genome through the induction of double-strand

breaks and nonhomologous end-joining repair [2,28,29].

Virulence protein D2 (VirD2) serves as a chaperone for intracellular T-DNA transport and

facilitates host genomic transformation. VirD2 contains an N-terminal and C-terminal NLS

and is attached to the 50 end of T-DNA to promote T-DNA release from the bacterium,

[32,33]. VirE2 proteins comprise majority of the protective T-DNA protein coating, play an

important role in packaging T-DNA into a nucleoprotein transfer complex for transport, and

interact with the host plant transcription factor VirE2 interacting protein 1 (VIP1) [2,34].

While the presence of NLSs has been identified on VirE2, their roles in nuclear import have

yet to be fully established [32]. Host VIP1 is suggested to be exploited during A. tumefaciens
infection for its ability to interact with the nuclear import machinery for enhanced entry of

T-DNA into the nucleus. Host VIP1 also interacts with core histones to mediate T-DNA tar-

geting of host chromatin, and interactions with other bacterial proteins such as VirF, F-box,

and VirE3 (a VIP1 mimic) to promote uncoating of T-DNA with host proteasomal degrada-

tion machinery [2,34]. Agrobacterium nucleomodulins are described to mimic host factors and

function as transforming factors [32,33]. While Agrobacterium is the source of the first

reported nucleomodulins, little is known regarding the mechanisms used by Agrobacterium
nucleomodulins during pathogenesis and the full extent of their long-term epigenetic modula-

tion within the host cell.

Activation of host transcription by nucleomodulins of phytopathogens

Since the discovery of the first nucleomodulins in Agrobacterium, other phytopathogen species

were observed to control host genes through the use of transcription activator-like effector

nucleases (TALENs) [28,29,35]. Xanthomonas and Ralstonia phytopathogens inject TALENs
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into host plant cells via a type III secretion system (T3SS). Within the cell cytosol, the TALENs

translocate to the nucleus where they bind TAL-specific DNA sequences in the host genome

and induce specific host gene expression by mimicking host transcription activators [35,36].

While the contribution of TALENs to Xanthomonas pathogenesis has been largely character-

ized, their functional role during Ralstonia pathogenesis has yet to be explored [37].

The first nucleomodulin identified with specificity for binding directly to a eukaryotic pro-

motor element, and the founder of the TALEN family, is AvrBs3 of Xanthomonas [35,37].

AvrBs3 was first discovered during the study of Xanthomonas campestris infection in pepper

plant cells [37]. After AvrBs3’s initial discovery, an AvrBs3-like effector protein, named PthA,

was later identified to elicit a similar disease phenotype as AvrBs3 from Xanthomonas axono-
podis and gall-forming Pantoea agglomerans [38]. Together, AvrBs3 and PthA formed the

AverBs3/PthA family of effectors distributed between Xanthomonas and Ralstonia spp. that

was later renamed to “TALENs” [3,33,36].

When TALENs are injected into host cells, their translocation to the cell nuclei is mediated

by 2 or 3 functional NLSs located in their C-terminal regions [33]. During X. campestris infec-

tion, AvrBs3 directly targets a conserved UPA box of the upa20 promoter region within the

host genome, resulting in an increase of upregulated by AvrBs3 (upa) gene expression [35–37].

Within the eukaryotic genome, upa20 encodes a transcription factor and functions as a master

regulator of cell enlargement upon activation and up-regulation of upa7, an α-expansin-

encoding gene [35–37,39]. Research findings indicate that AvrBs3 activity induces a transcrip-

tional cascade within the host cell nucleus, reprogramming host cell development and facilitat-

ing pathogen replication and dispersal [37].

TALENs were previously proposed to be the sole effector family capable of activating plant

host transcription pathways [39,40]. However, while P. agglomerans is reported to inject

AvrBs3-like PthA into host cells for mimicry and modulation of host transcription factors, P.

agglomerans also injects a second type of T3SS-injected effector family constituted of HsvG

and HsvB with similar function [39,40]. Like TALENs, HsvG and HsvB are suggested to func-

tion as potential transcription factors within plant host cells [39,40]. HsvG and HsvB are para-

logous effectors found in P. agglomerans pv. gypsophilae and P. agglomerans pv. betae,
respectively [40]. Both effectors contain 2 NLSs at their N- and C-terminal regions for translo-

cation into host nuclei. They are distinguished from each other by the presence of 2 direct

repeat sequences of amino acids in the transcription activation domain of HsvG compared to

the single direct repeat in the transcription activation domain of HsvB [40]. HsvG and HsvB

are described as DNA-binding proteins that have been previously observed to activate tran-

scription within yeast and are hypothesized to do the same within plant host cells [33,40].

Recent studies performed with P. agglomerans infection of gysophila and beet cells have identi-

fied potential transcription activator-like activity of HsvG and HsvB, respectively, after translo-

cation to host cell nuclei [33,40]. With this potential identification, research has focused on

determining how HsvG alters transcription within gysophila cells.

Upon injection of HsvG into gysophila cells, HsvG was found to target genes within the

DnaJ protein family, termed “HSVGT” [40]. The DnaJ family of proteins is known to be widely

distributed among both prokaryotes and eukaryotes [40]. DnaJ proteins typically possess a J-

domain responsible for performing chaperone activity and act as co-chaperones for the heat-

shock protein, Hsp70, involved in the cellular chaperone network and cellular stress response

[40]. However, unlike most proteins within the DnaJ family, HSVGT lacks the characteristic J-

domain; therefore, HSVGT is not expected to be involved in activation of Hsp70 [40]. Instead,

HSVGT is hypothesized to serve as a transcription factor within plant cells [40]. HsvG report-

edly binds to the HSVGT promotor of the gysophila genome and, as a result, represses tran-

scription of defense-associated plant genes to promote P. agglomerans infection [39]. The
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capacity of HsvG to bind HSVGT, and the induction of further HSVGT expression after HsvG

translocation to the plant nucleus, supports the hypothesis that HsvG of P. agglomerans acts as

a host transcriptional factor during infection [37]. While the target of HsvG for host transcrip-

tion activation has been identified, further studies are necessary to better characterize the

mechanism used by P. agglomerans to manipulate host cell gene expression.

Altogether, this information evaluates how both TALENs and HsvG nucleomodulins

evolved in phytopathogens and consequently alter host transcription activation. By harboring

nucleomodulins capable of mimicking and modulating host transcription factors, Xanthomo-
nas, Ralstonia, and Pantoea spp. may induce short- or long-term epigenetic effects on the host

cell epigenome that promote pathogenesis. A more comprehensive list of nucleomodulins

identified in phytopathogens and their functions is summarized in Table 1.

Table 1. Phytopathogen effectors that target the nucleus.

Pathogen Effector Effector Function Source

Agrobacterium
tumefaciens

VirD2 Binds to and chaperones bacterial T-DNA into host cell nucleus [41,42]

VirE2 Interacts with host VIP1 transcription factor to promote T-DNA import into the nucleus. Potentially acts as a plant

transcriptional activator through interacting with the plant-specific transcription factor (pBrp)

[27,34]

VirE3 Mimics host VIP1, facilitates nuclear import of VirE2, and interacts with host pBrp. Suggested to modulate plant gene

activation

[27,43]

VirF Mimics the substrate recognition subunit of the SCF and hijacks the SCF to strip the T complex of its escort proteins.

Functions as an F-box protein and host transformation factor

[44,45]

Protein

6b

Reportedly targets the nuclear proteins NtSIP1, NtSIP2, histone H3, SERRATE, and AGO1. Disrupts the host cell

microRNA pathway cells and interferes with gene expression

[2,46]

Pantoea agglomerans HsvB DNA-binding protein; likely acts as a transcription factor [39,47]

HsvG Binds to the HSVGT promotor of host DNA and represses transcription of defense-associated plant genes; likely acts

as a transcription factor

[39,40,47]

PthA AvrBs3-like effector; mimics host transcription factors to modulate cell development [38]

Phytoplasma Sap11 Binds and destabilizes TCP 1 and 2 transcription factors of Arabidopsis. These control plant development and

promote expression lipoxygenase (LOX) genes which are involved in jasmonate (JA) synthesis

[48]

Pseudomonas syringae HopAI1 Represses host defense signaling by deactivating MAPK [49]

HopBB1 Interacts with transcription factor TCP14. Uses this interaction to target TCP14 to the SCFCOI1 degradation complex

by connecting it to JAZ, a JA signaling repressor

[50]

HopQ1 Contains nucleoside hydrolase-like domain; Induces cell death in certain hosts and enhanced disease in others

through unknown mechanisms

[51,52]

Ralstonia
solanacearum

Brg11 Transcription activator-like effector [53]

PopP2 Alteration of host gene transcription through acetylation; Regulation of host cell defense machinery through (de)

acetylation

[54]

RipAB Suppresses Ca2+ signaling pathway at the transcriptional level to promote infection [55]

Xanthomonas AvrBs3 Targets the master regulator of cell enlargement, upa20; induces transcriptional cascade and modulates host cell

development

[35,37]

AvrHah1 Transcription activator-like effector; triggers Bs3-dependent hypersensitive response [56]

AvrXa5 Transcription activator-like effector [38]

AvrXa7 Transcription activator-like effector that activates members of the SWEET sucrose uniporters through recognition of

effector-binding elements located in promoter regions

[57]

AvrXa10 Transcription activator-like effector [38,58]

PthXo1 Transcription activator-like effector; acts as a transcription factor and induces expression of SWEET11 [59]

XopD Alters host gene transcription through binding and modifies chromatin structure; expression in nucleus results in

redistribution of nuclear proteins

[60,61]

JA, jasmonate; LOX, lipoxygenase; MAPK, mitogen-activated protein kinase; SCF, SKP1-CULLIN1-F-box; VIP1, VirE2 interacting protein 1; VirD2, Virulence protein

D2.

https://doi.org/10.1371/journal.ppat.1009184.t001
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Alteration of host nuclear homeostasis by nucleomodulins

Besides phytopathogens, the number of nucleomodulins identified in mammalian pathogens

has been increasing throughout the years. Mammalian bacterial pathogens have recently been

identified to target and modulate eukaryotic nuclear ubiquitination and signaling pathways

necessary for regulating nuclear protein homeostasis [62,63]. Orientia tsutsugamushi, Borde-
tella pertussis, Shigella flexneri, Salmonella enterica, and Escherichia coli are all pathogens

found to secrete effector proteins that localize to host cell nuclei and alter cellular homeostasis

by targeting ubiquitination. Yersinia and other nucleomodulins of E. coli, on the other hand,

modulate nuclear protein homeostasis through other methods such as targeting nuclear signal-

ing pathways and ribosomal biogenesis. O. tsutsugamushi (previously Rickettsia tsutsugamu-
shi) [64,65] secretes one of the largest repertoires of ankyrin (Ank) protein paralogs through a

type I secretion system (T1SS). Of this repertoire, 2 Ank groups are reported to be involved in

modulating host cell ubiquitination pathways in the nucleus [3,66–68]. Ank1 (specifically the

1A, 1B, 1E, 1F, 1U4, 1U5, and 1U9 paralogs) and Ank6 are 2 groups of O. tsutsugamushi Ank

proteins found to localize in the nuclei of HeLa cells and primary macrophages [3,66–68].

While these potential nucleomodulins are found within host cell nuclei, the mechanisms

behind their nuclear translocation have yet to be determined. Nearly all Ank proteins of O. tsu-
tsugamushi harbor N-terminal Ank repeats and a C-terminal F-box domain addressed as the

“pox protein repeats of ankyrin C terminus” (PRANC) motif. This domain interacts with

CULLIN-1 and SKP1 core components of the SKP1-CULLIN1-F-box protein (SCF) E3 ubi-

quitin ligase complex [3,62,66,67]. The Ank domain of Ank1 is suggested to bind cell-specific

target substrates in the nucleus, while the F-box binds and recruits SKP1 to promote substrate

degradation [3,66–68]. By interacting with host ubiquitin ligase complexes, the multiple para-

logs of Ank1 localizing to the nucleus are suggested to modulate diverse host cell functions

during O. tsutsugamushi infection [67].

More recently, Ank1 and Ank6 of O. tsutsugamushi and the T3SS-injected BopN effector of

B. pertussis are described to modulate host cell NF-κB by inhibiting nuclear accumulation of

the p65 subunit of NF-κB [68,69]. Ank1 and Ank6 translocate to host cell nuclei via the

nuclear importin β1 pathway [3,68]. The method used by BopN for nuclear translocation is

still unknown. The domains of Ank1, Ank6, and BopN responsible for nuclear import have yet

to be identified. Upon entering the nucleus, Ank1, Ank6, and BopN are suggested to directly

bind and inhibit nuclear p65 or promote the nuclear export of p65 through interactions with

exportin 1 [68,69]. By inhibiting nuclear accumulation of p65, these nucleomodulins can

manipulate the NF-κB pathway and repress the antimicrobial response of host cells [68].

While the specific molecular mechanisms used by Ank1, Ank6, and BopN have yet to be thor-

oughly characterized, these effectors are hypothesized to interact with ubiquitin ligase com-

plexes and antagonize or mediate ubiquitination of host cell NF-κB. BopN is also suggested to

promote nuclear translocation of the p50 subunit of NF-κB for up-regulation of host IL-10

production and alter MAPKs, allowing BopN to regulate various host cell transcription factors

[69]. By sharing similar function as Ank1/Ank6 and altering host immune response, BopN

activity promotes an immunosuppressive host environment and facilitates the colonization

and proliferation of B. pertussis [69]. While more research is necessary to characterize the

molecular mechanisms utilized by Ank1, Ank6, and BopN for regulation of host NF-κB path-

ways, the current understanding of these nucleomodulins suggests the potential of pathogens

sharing epigenetic-altering effector function obtained through convergent evolution or hori-

zontal gene transfer.

S. flexneri secretes effectors proteins from a T3SS to promote invasion of intestinal epithelial

cells. Of the 5 nucleomodulins reported to be secreted from S. flexneri, two are involved in
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altering nuclear ubiquitination. IpaH9.8 is the only effector of the Shigella IpaH effector group

described to be a nucleomodulin. While IpaH9.8 lacks a predicted NLS, studies of intestinal

epithelial cells have found that IpaH9.8 nuclear localization is dependent on host cell microtu-

bules [70–72]. However, the molecular mechanism behind microtubule-mediated import of

IpaH9.8 into the nucleus has yet to be described. IpaH9.8 contains leucine-rich repeat (LRR)

motif, also described as the LPX-domain, present on its N-terminus responsible for recogniz-

ing cell substrates and acting as a protein-binding domain [66,73,74]. As a member of IpaH

shigella effectors, IpaH9.8 possesses a C-terminal E3 ubiquitin ligase domain (NEL domain)

necessary for ubiquitination of the nuclear U2AF mRNA splicing factor and inhibits U2AF-

dependent splicing reactions [3,71–73]. As a result of binding and ubiquitinating U2AF,

IpaH9.8 negatively regulates the expression of genes involved in proinflammatory response and

neutrophil recruitment to the site of infection [73]. Genes repressed by U2AF ubiquitination

include, but are not limited to, il-8, RRANTES, GM-CSF, and il-1β [71,73,74].

IpaB is a second nucleomodulin of Shigella involved in altering nuclear ubiquitination.

Unlike the 4 other Shigella nucleomodulins, IpaB is unique in its ability to function as a cyclo-

modulin that alters the host cell cycle. While IpaB localizes to the nuclei of infected HeLa and

intestinal epithelial cells, IpaB lacks a predicted NLS [75,76]. Because of this, IpaB is hypothe-

sized to rely on complex formation with Mad2L2 for nuclear import [75,77,78]. Mad2L2 is an

NLS-containing inhibitor of the anaphase-promoting complex/cyclosome (APC) ubiquitin

ligase complex responsible for aiding in cell cycle progression [3,75,77,78]. Interaction of IpaB

with Mad2L2 in the nucleus promotes activation of APCCdh1, results in a premature degrada-

tion of APCCdh1 substrates, and delays mitotic progression [75]. This IpaB/Mad2L2-mediated

arrest is suggested to promote Shigella colonization of intestinal epithelial cells [78]. By inter-

acting with Mad2L2, IpaB modulates host cell ubiquitin complex activity and, as a result, pro-

motes Shigella colonization of normally rapid-proliferating epithelial cells.

SspH1 of S. enterica serovar Typhimurium is another nucleomodulin, like IpaH9.8 from Shi-
gella, identified to contain an LPX and NEL domain. During infection, SspH1 is translocated

into the host cell by both the SPI1 and SPI2 T3SS of S. enterica [79–83]. After translocation

into the host cell cytosol, SspH1 is then trafficked to the host cell nucleus [84–87]. Because

SspH1 lacks a classical NLS, nuclear import of SspH1 is suggested to be mediated by interac-

tions with human serine/threonine protein kinase 1 (PKN1), responsible for phosphorylation

of TNF receptor-associated factor 1 (TRAF1) when activated [85,86]. By phosphorylating

TRAF1, PKN1 suppresses TRAF1 function in IKK/NF-κB and JNK signaling and inhibits the

NF-κB signaling pathway [86,87]. The specific molecular interactions used by SspH1 to inhibit

the NF-κB signaling pathway through PKN1 activation has yet to be thoroughly characterized,

but the NEL domain of SspH1 is found necessary for this inhibition to occur [85]. Due to

SspH1’s similarities with IpaH9.8 and description as an IpaH9.8 orthologue, SspH1 is suggested

to function as an ubiquitin ligase responsible for targeting and ubiquitinating PKN1

[2,3,84,86]. By modulating the NF-κB pathway through PKN1 activation, SspH1 represses NF-

κB-dependent gene expression and inhibits the host inflammatory response to promote S.

enterica pathogenesis.

Members of the T3SS-injected NleG effector family of EPEC and enterohemorrhagic

(EHEC) E. coli share functional similarity to IpaH effectors from Shigella [88,89]. The NleG

effector family comprises majority of the core effector repertoire in E. coli and is the largest

family of effectors injected by EHEC [90–94]. Recently described as a family of U-Box E3 ubi-

quitin ligases, NleG effectors target distinct host proteins for degradation and provide versatile

scaffolding for host–pathogen interactions [90,95]. E. coli NleG effectors possess a unique N-

terminal domain necessary for substrate interactions and has yet to be found in any other E3

ubiquitin ligases [91]. The C-terminal domain of NleG effectors is reportedly analogous to
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eukaryotic RING/U-box domains and necessary for NleG E3 ligase activity [96]. NleG5-1 is an

effector of the NleG family recently identified as a nucleomodulin [91]. While NleG5-1 lacks a

predicted NLS, it is smaller than 60 kDa in size and hypothesized to enter host cell nuclei

through nuclear pore diffusion [91]. In the nucleus, NleG5-1 targets the Mediator complex

member MED15, responsible for serving as an end point where various cell signaling pathways

for RNA polymerase II-dependent transcription converge [3,91]. TGF-β and SREBP1 are two

of the transcription signaling pathways affected by NleG5-1 targeting of Med15 [3,91]. By dis-

rupting TGF-β and SREBP1 signaling pathways, NleG5-1 promotes disruption of epithelial

cell tight junctions and intracellular lipid homeostasis, respectively [91]. By performing ubi-

quitin-mediated degradation of Med15, NleG5-1 is yet another E3 ubiquitin ligase nucleomo-

dulin representing a multifunctional mechanism shared by various pathogens for modulating

host epigenetics and promoting a favorable niche for pathogenesis.

EPEC and EHEC are also recently reported to inject a novel T3SS effector protein called

cyclin-inhibiting factor (Cif). Cif is a modular protein composed of an exchangeable N-termi-

nal secretion and translocation signal. During E. coli infection of epithelial cells, Cif is

described to localize within host cell nuclei where, like IpaB, it functions as a cyclomodulin

[2,3,7,97]. After localizing within the nucleus, Cif demonstrates deaminase enzymatic activity

targeted towards the host ubiquitin-like protein, NEDD8 [7,98]. NEDD8 deamination, medi-

ated by Cif, impairs NEDD8 conjugation with CULLIN and results in an inhibition of

NEDD8-modified CULLIN-RING ubiquitin ligase (CRL) activity [3,7,98]. As a consequence

of Cif-mediated inhibition of CRL activity, the host cell fails to ubiquitinate proteins p21 and

p27 for ubiquitin-dependent degradation by the 26S proteasome, an event necessary for cell

cycle progression [2,7,98]. Injection of Cif and induction of cell cycle arrest delays gut epithe-

lial cell turnover and promotes E. coli colonization [2,7,98]. Cif homologues presenting similar

function were recently identified in Yersinia pseudotuberculosis, Photorhabdus luminescens,
Photorhabdus asymbiotica, and Burkholderia pseudomallei [7]. The Cif and IpaB nucleomodu-

lins demonstrate a unique evolutionary convergence between various bacterial pathogens used

to modulate host cell homeostasis through epigenetic strategies. Because these pathogens uti-

lize a T3SS for nucleomodulin injection, it is interesting to speculate how a shared epigenetic

strategy for infection persistence came to be.

EspF is a third T3SS-injected effector protein translocated from EPEC into host cell nuclei

and is the first bacterial effector recognized to target the nucleolus [99]. EspF is previously

described as a mitochondrial-targeted effector protein involved in the disruption of intestinal

epithelial cell junctions, inducing cell injury, and promoting apoptosis during EPEC infection

[100,101]. During early stages of infection, EspF accumulates in the host cell mitochondria in a

functional mitochondrial membrane potential (MMP)-dependent manner and results in a loss

of MMP [99–102]. However, during late stages of infection, EspF is reported to traffic to the

nucleolus [102]. Nucleolar translocation of EspF is dependent on the N-terminal NLS, specifi-

cally located at residues 21 to 41 [102]. How EspF translocates from the host cell mitochondria

to the nucleolus is still unclear. After localization to the nucleolus of HeLa cells, EspF activity

induces a significant redistribution of an abundant nonribosomal protein, nucleolin [102].

Nucleolin is redistributed from the cellular compartments of transfected and infected cell cul-

tures into the cytoplasm [102]. In correlation with EspF-induced loss of nucleolin from the

nucleolus, HeLa cells exhibit an altered distribution of small nuclear RNA U8 and inhibition

of pre-RNA processing [99,102]. Overall, EspF translocation to the nucleolus of HeLa cells

results in a shutdown of host ribosome biogenesis and increased access of nutritional resources

for EPEC. As the first bacterial effector identified to target the nucleolus, EspF illustrates a

novel mechanism evolved in EPEC that consequently alters nuclear protein homeostasis and

promotes pathogen growth and intracellular persistence.
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YopM of Yersinia (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) is a third nucleo-

modulin that possesses an LPX domain similar to that found in IpaH9.8 and SspH1 [103].

After injection via a T3SS, YopM localizes to host cell nuclei through a vesicular-associated

pathway [104,105]. YopM from Y. enterocolitica is described to contain 2 putative NLSs within

its sequence and rely on DDX3/CRM1 interactions for nuclear export [104,105]. YopM is pro-

posed to function as an E3 ubiquitin ligase in 1 strain of Y. pestis [3,106]. However, due to the

lack of an NEL domain, YopM is suggested to primarily serve as a scaffolding protein that

interacts and forms a complex with ribosomal S6 protein kinase 1 (RSK1) and protein kinase

C-like 2 (PRK2) within host cell cytosol and nuclei [107–110]. YopM recruits RSK1 and PRK2

into the YopM-RSK1-PRK2 complex through binding interactions with its C-terminal amino

acids and LPX domain, respectively [105,108,111,112]. Upon complex formation, YopM

induces hyperphosphorylation of the YopM-RSK1-PRK2 complex and reportedly protects

RSK1 from dephosphorylation [107,110]. Hyperphosphorylation of RSK1 via YopM in the

nucleus is associated with an increased expression of immunosuppressive cytokine genes

including IL-10 [105]. As for PRK2 activation, it is suggested that cytosolic PRK2 in complex

with YopM and RSK1 is phosphorylated by RSK1 [107]. Once activated, PRK1 and RSK1

activities induce phosphorylation of the cytosolic substrate pyrin, which serves as an important

regulator for inflammasome formation [113–115]. By inducing downstream phosphorylation

of pyrin, YopM inhibits pyrin inflammasome formation and promotes Yersinia evasion of the

host inflammatory response [113–116]. Another function that is partially elucidated for YopM

is that it suppresses the transcription of the proinflammatory cytokine TNFα and is associated

with decreased production of IFN-γ and increased levels of IL-18 [104,108]. However, more

research is required to fully understand the molecular mechanisms behind this function. Over-

all, YopM serves as a multifunctional nucleomodulin crucial for dampening the host inflam-

matory response and promoting Yersinia virulence within the host. While the functions of

YopM vary based on its subcellular localization, host protein target, and infected cell type, it

remains to be explored how these complex features of YopM contribute to the pathogenicity

of Yersinia, and to what extent YopM alters host gene expression, throughout the course of

infection.

Recently, a small group of zinc metalloproteases were identified in S. enterica serovar

Typhimurium and E. coli (EPEC and EHEC) that function to preserve host cell homeostasis by

targeting nuclear signaling pathways. GtgA, GogA, and PipA from S. enterica and NleC from

E. coli are T3SS-injected nucleomodulins that reportedly contain short metal-binding motifs

for active-site zinc [66,117]. While these metalloproteases were identified to localize to the

nuclei of transfected and infected cells, there is little known regarding the mechanisms used

for nuclear translocation [118,119]. Studies have shown that PipA, GtgA, GogA, and NleC

redundantly target components involved in the NF-κB signaling pathway [117,119,120]. PipA,

GogA, and GtgA cleave RelA (p65), RelB, and occasionally cRel nuclear transcription factors,

but do not cleave NF-κB1 (p105/p50) or NF-κB2 (p100/p52) [117]. NleC, on the other hand,

reportedly cleaves all 5 NF-κB subunits and is the first bacterial effector described to facilitate

cleavage and degradation of histone acetyltransferase p300 [3,18,121]. Without an accumula-

tion of p300 in the nucleus, NleC contributes to the suppression of IL-8 secretion of host cells

[121]. As a result of targeting substrates of the NF-κB pathway, PipA, GogA, GtgA, and NleC

promote regulation of the host cell transcriptional response and inhibit IL-8 gene expression.

While these metalloproteases from S. enterica and E. coli share some degree of substrate speci-

ficity, they present few similarities in sequence identity. Due to sharing low sequence identity,

S. enterica and E. coli are speculated to have separately evolved similar strategies for regulating

host nuclear homeostasis to promote pathogenesis [117]. Further studies are required to fully

comprehend the advantage of nucleomodulin-mediated regulation of host cell homeostasis
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and how host substrate recognition is evolutionarily shared among several S. enterica and E.

coli effectors for epigenetic regulation within host cells.

Association of nucleomodulins with nuclear proteins and modulation of

host responses

During infection, several nucleomodulins from Listeria monocytogenes, S. flexneri, Chlamydia
psittaci, and Legionella pneumophila associate with nuclear proteins and indirectly impact host

chromatin structure and regulatory processes. Listeria nuclear targeted protein A (LntA) is the

first nucleomodulin identified in L. monocytogenes [3,23,122]. LntA contains a central NLS

and induces host epigenetic modifications by interacting with components of chromatin-asso-

ciated complexes [122,123]. Research to identify a binding partner for LntA led to the charac-

terization of a novel chromatin repressor, bromo adjacent homology domain-containing 1

(BAHD1) protein. BAHD1 serves as a scaffolding protein and complexes with heterochroma-

tin proteins, histone methyltransferases, and histone deacetylases (HDACs) to condense chro-

matin into heterochromatin and silence gene expression [3,23,122]. While the genes silenced

by BAHD1 activity vary depending on cell type and cell signaling, BAHD1 is identified to

repress the expression of interferon stimulated genes (ISGs) in epithelial cells [3,123]. To do

so, BAHD1 complexed with HADC is recruited to ISGs and induces histone H3-targeted dea-

cetylation and transcriptional repression [23]. When epithelial cells are infected with L. mono-
cytogenes, LntA binds to a proline rich region of BAHD1 via an elbow domain in its 5-helix

bundle structure and inhibits complex formation with HADC [123]. By inhibiting BAHD1--

complex formation, BAHD1 is unable to bind ISG promotors or deacetylate histone H3 for

gene silencing [1]. Thus, LntA of L. monocytogenes prevents BAHD1-mediated gene silencing,

promotes H3 acetylation, and stimulates the expression of ISGs for modulation of the host cell

immune response [23,66,124].

After LntA, OrfX is the second nucleomodulin to be discovered in L. monocytogenes
[3,23,66,124]. Like many other nucleomodulins, OrfX lacks a predicted NLS, and its mecha-

nism for entering the nucleus has yet to be identified. However, once inside the nucleus, OrfX

reportedly targets the Ring1 YY1-binding protein (RYBP) [66,124]. RYBP is a conserved, mul-

tifunctional zinc finger protein responsible for regulating gene expression at the transcrip-

tional level and is an essential regulator for vertebral embryonic development [23,124].

Overall, RYBP’s functions include, but are not limited to: (1) mediating protein–protein inter-

actions in epigenetic complexes such as the BCL6 corepressor (BCOR) complex and (2) medi-

ating interactions between YY1 and E2F transcription factors for activation of the Cdc6

promotor involved in DNA replication [3,23,66,124]. RYBP also functions by preventing pro-

teasomal degradation of the p53 tumor suppressor via binding with ubiquitin E3 ligase MDM2

and promotes cell apoptosis through interactions with cell and viral proteins (procaspase-8,

procaspase-10, Fas-associated death domain (FADD), fibronectin type III and ankyrin repeat

domains 1 (FANK1), and viral apoptin) [3,23,66,124]. It is important to note that the

p53-MDM2 pathway modulates intracellular levels of reactive nitrogen species (RNS) and

reactive oxygen species (ROS) for immune defense within macrophages [3,23,66]. With this in

mind, it is proposed that OrfX indirectly dampens the oxidative activity of macrophages in

vitro and, potentially, other cell functions through targeting RYBP [66,124]. Because increased

OrfX expression in macrophages correlates with reduced levels of RYBP in infected macro-

phages, it is hypothesized that OrfX targets RYBP for degradation and, as a result, inhibits p53

activity and other downstream functions of RYBP to promote intracellular pathogen survival

[66]. The specific mechanism of action used by OrfX to interact with RYBP has yet to be eluci-

dated. Together, LntA and OrfX modulate host gene expression by indirectly targeting host
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chromatin and regulating the activity of host nuclear proteins, promoting Listeria
pathogenesis.

Of the many effector proteins injected by S. flexneri, 5 different effectors are currently pro-

posed as nucleomodulins and are critical in promoting pathogenesis [3]. While one of these

effectors, OspC1, has been identified to localize to the nucleus and influence epithelial and

HeLa cell signaling for polymorphonuclear neutrophil (PMN) migration, there has yet to be

conclusive evidence suggesting OspC1’s specific mechanism of action within the nucleus

[70,125,126]. Two other Shigella nucleomodulins reported to target and modify important

nuclear proteins are OspF and OspB [3,70,126]. OspF is a nucleomodulin that down-regulates

the host innate immune response during S. flexneri infection [125]. No obvious NLS has been

detected for OspF. However, OpsF is hypothesized to possess a novel nuclear transit peptide in

its C-terminal domain that serves as a nonclassical NLS [125]. This transit peptide was found

to bind nuclear importin α1 in HeLa cells and promote nuclear transportation of OspF in an

importin α1-dependent manner [125]. The role of this transit peptide during nuclear localiza-

tion of OspF in epithelial cells has yet to be explored.

After entering the nucleus of epithelial cells, OspF targets and irreversibly dephosphorylates

mitogen-activated protein kinases (MAPKs) through its phosphothreonine lyase activity [127].

OspF inhibits host MAPK signaling through beta elimination of a phosphate group and con-

verts the MAPK phosphothreonine residue to dehydrobutyrine (Dhb) lacking a vital -OH

group and locking MAPK in an inactive conformation [2,127,128]. By inhibiting MAPK along

with ERK1/2 signaling pathways, OspF prevents downstream phosphorylation of histone H3

at a group of NF-κB-regulated promotors [2,126,127]. As a result, chromatin conformation is

modified in such a way where access to NF-κB-regulated gene promotors for proinflammatory

chemokines and cytokines is blocked, preventing transcription activation [1,2,124,126]. OspF

inhibition of MAPK and ERK1/2 signaling pathways also prevents downstream phosphoryla-

tion of heterochromatin protein 1γ (HP1-γ), a chromatin regulator for posttranslational modi-

fications (PTMs) [1,129]. This further disrupts active transcription of proinflammatory genes

and inhibit the host’s response to infection [1,129].

The OspF and OspB effectors of Shigella both lack an obvious NLS domain [71]. However,

it is speculated that a nuclear transit peptide on the N-terminus functions as a nonclassical

NLS or interacts with host proteins to target the nucleus from the cytoplasm [71]. OspB, along

with OspF, interact with nuclear human retinoblastoma protein (pRB) of epithelial cells

[66,71,129]. pRB plays an important role in regulating the cell cycle, repressing gene transcrip-

tion, and modulating chromatin dynamics and structure by binding with chromatin-remodel-

ing factors [129,130]. While the molecular mechanisms of OspF and OspB interaction with

pRB have yet to be identified, these 2 nucleomodulins likely function in synergy to alter chro-

matin structure at specific genes and down-regulate host innate immunity [66,71,129].

Secreted inner nuclear membrane-associated Chlamydia protein (SinC) is a novel nucleo-

modulin injected by C. psittaci into host cells through a T3SS [131,132]. Unlike the currently

known Chlamydia effector proteins, SinC possesses 2 unique properties. First, SinC is found to

localize to the inner nuclear membrane during the late stages of infection where it interacts

with the nucleoporin ELYS, lamin B1, LEM (LAP2, emerin, MAN1) domain proteins, lamin-

associated polypeptide 1 (LAM1), and lamin B receptor (LBR) [133,134]. Due to SinC lacking

a predicted NLS or transmembrane domain, the mechanism of its nuclear translocation has

yet to be determined [131]. Second, SinC undergoes intercellular transmission to neighboring

cells, where it will localize to the host cell inner nuclear membrane [131,133]. During studies

with HeLa and HEK293 cells, SinC was found to specifically target 4 inner nuclear membrane

proteins (emerin, MAN1, LAP1, and LBR) [131]. Because emerin, MAN1, LAP1, and LBR

play a major role in regulating nuclear structure and chromatin organization, it is speculated
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that SinC interacts with these proteins to indirectly alter chromatin structure and silence spe-

cific host response genes [131,135]. While SinC orthologues with similar function have been

identified in Chlamydia caviae and Chlamydia abortus, the SinC orthologue of the well-known

Chlamydia trachomatis does not localize to the nuclear envelope [133,136,137]. Injection of

SinC into the host cell cytosol modulates gene expression in infected and neighboring host

cells, promoting virulence and pathogenicity of C. psittaci. To date, the molecular interactions

between SinC and host nuclear proteins during C. psittaci infection have yet to be fully

assessed.

AnkH, SnpL, and AnkX are effector proteins injected by L. pneumophila through a T4SS

that target host nuclear proteins and interfere with transcriptional events. While all 3 are

found to localize within host cell nuclei, none of them harbor an identifiable NLS and the spe-

cific mechanism for their nuclear translocation has yet to be determined [138,139]. In the

nucleus, AnkH interacts with host La related protein 7 (LARP7) through the β-hairpin loops

of the third ankyrin repeat domain [140]. LARP7 is a highly conserved component of the

eukaryotic 7SK small nuclear ribonucleoprotein (snRNP) transcriptional regulatory complex

involved in regulating the pausing and transcriptional activity of RNA polymerase II [3,141–

143]. The pause of transcriptional elongation by the 7SK snRNP complex is mediated by

sequestration of the P-TEFb component, which prevents phosphorylation of RNA polymerase

II to maintain a paused state [142,143]. As a result, the process of transcriptional elongation is

halted at RNA polymerase II pause sites. The interaction between AnkH and LARP7 inhibits

the formation of the 7SN snRNP complex [3,66,138]. This inhibition results in a prolonged

pause of transcriptional elongation and an overall global reprogramming of the host transcrip-

tional landscape [3,66,138]. Since AnkH promotes intracellular proliferation of L. pneumophila
within amoeba and macrophage hosts, the AnkH-LARP7 interaction demonstrates how path-

ogens have evolved to target and modulate the host transcriptional response for facilitation of

pathogen replication.

The SnpL nucleomodulin of L. pneumophila is another example of pathogen evolution with

nucleomodulin-mediated control of RNA polymerase II activity. During L. pneumophila infec-

tion or ectopic expression, SnpL targets and directly binds host cell Suppressor of Ty5

(SUPT5H) upon localization within the nucleus [139]. SUPT5H is a component of the

5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) sensitivity-inducing (DSIF) complex

and acts as a selective inhibitor in regulating the promotor proximal pausing of RNA polymer-

ase II [3,66,139]. While SnpL activity results in an up-regulation of a variety of cell activities

due to global gene activation in macrophages, the role of SnpL during L. pneumophila infec-

tion of amoeba has yet to be elucidated [139]. The SnpL-SUPT5H interaction up-regulates

genes for fundamental biological processes (i.e., cell division, adhesion, survival) [139]. SnpL is

hypothesized to drive mRNA expression in amoeba and influence the cell cycle phase for facili-

tation of pathogen replication at the cost of host cell survival [139]. However, more research is

required in order to fully comprehend the biological consequences of SnpL activity on the host

transcriptome in macrophages and amoeba.

AnkX is a potential nucleomodulin injected by L. pneumophila targeted towards host

nuclear proteins, resulting in modulation of the host epigenome. AnkX is previously described

as a phosphocholine transferase that targets and covalently modifies host cell Rab1 and Rab35,

interfering with endocytic recycling and preventing fusion of the Legionella-containing vacu-

ole (LCV) with host cell lysosomes [144,145]. Recently, AnkX was discovered to colocalize

with host cell PLEKHN1 in the nucleus. PLEKHN1 is an endogenous cell protein found to

speckle the inside of HEK293T cell nuclei [3,146]. During ectopic expression, the central

region of AnkX was necessary for the targeting and binding of PLEKHN1 [146]. While little is

known regarding the consequences of AnkX-PLEKHN1 interactions, PLEKHN1’s association
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with various proteins involved in the inflammatory response has led to the hypothesis that

AnkX potentially functions as a novel nucleomodulin capable of simultaneously preventing

LCV-lysosomal fusion in the cytosol and manipulating host inflammatory response from

within the nucleus [146].

Modification of host DNA by nucleomodulins

Along with utilizing interactions with nuclear proteins to indirectly modulate the host

response, few nucleomodulins from Anaplasma phagocytophilum, Ehrlichia spp., Coxiella bur-
netii, Mycoplasma hyorhinis, and Mycobacterium tuberculosis may also target and directly bind

to host DNA. The first Rickettsial nucleomodulin identified to directly bind host DNA and

recruit histone modifying enzymes to chromatin was ankyrin repeat protein A (AnkA)

[1,147,148]. AnkA is a T4SS effector protein injected by A. phagocytophilum. After injection

into the host cell cytosol, AnkA translocates to the nucleus of granulocytes and directly associ-

ates with host cell DNA [1,147,148]. While AnkA is confirmed to localize within infected cell

nuclei, studies have yet to identify a clear NLS [147,149]. However, studies show ANK repeats

are capable of functioning like an NLS [147]. In support of this assessment, transfection of

HEK293T cells with modified AnkA revealed the N-terminal region of AnkA potentially serves

as an NLS or possesses NLS-like function [147]. As a result, it was concluded that the N-termi-

nal region of AnkA is necessary for the translocation of AnkA to the nucleus [147]. After

AnkA translocates to infected cell nuclei, it binds to host DNA in a sequence-independent

manner at regions of long stretches of A, T, and C nucleotides. As a result of AnkA binding to

these matrix attachment regions (MARs), AnkA induces 3-dimensional alterations in chroma-

tin organization that modulates host transcriptional events, such as transcription of genes

involved in granulocyte respiratory burst [148]. AnkA is described to specifically target and

bind regions of the CYBB promotor that are similar to MARs in both sequence and function

[148]. By targeting the CYBB promotor, AnkA initiates recruitment of histone deacetylase-1

(HDAC1), leading to downstream deacetylation of histone H3 [147]. Unlike LntA of L. mono-
cytogenes, AnkA acts by recruiting HDAC-associated complexes as opposed to inhibiting them

[3]. By HDAC1-mediated deacetylation of histone H3, AnkA indirectly alters binding interac-

tions with RNA polymerase 2 and results in targeted silencing of genes and repression of gran-

ulocyte response to infection [147,148]. By altering chromatin organization and

reprogramming the transcriptional landscape of host cells with AnkA interactions, A. phagocy-
tophilum creates an environmental niche favorable for prolonged intracellular survival.

Like A. phagocytophilum, Ehrlichia spp. (E. chaffeensis and E. canis) are Rickettsial patho-

gens that secrete a nucleomodulin with similar function as AnkA, known as Ank200 (or p200)

[3,150]. However, Ank200 differs from AnkA due to being a T1SS effector protein as opposed

to a T4SS effector protein [3,151]. Ank200 was found to translocate to the nuclei of mononu-

clear host cells, such as monocytes and macrophages, but lacks a classical NLS when analyzed

with prediction software [150,152]. While Ank200 lacks a known DNA binding domain,

Ank200 is suggested to directly associate with host chromatin or indirectly associate with chro-

matin via protein–protein interactions [150]. Once inside the host cell nucleus, Ank200 binds

and interacts with Alu-sx element motifs of promotor and intron segments of host genes

involved in ATPase activity, apoptosis, gene transcription, gene translation, cell response and

signaling, cytoskeletal rearrangement, structural proteins of organelles, and intracellular traf-

ficking [3,129,150,152]. Alu-sx element motifs are nonrandom, repetitive AT-rich DNA

regions comprising nearly 10% of the human genome but are more commonly found within

the 5-kb upstream region of gene transcription start sites [3,150,152]. Because genes associated

with host cell processes and immune response are down-regulated during Ehrlichia infection,
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it is hypothesized that Ank200 induces large-scale transcriptional alterations through direct

association with Alu-sx element motifs of host DNA [3,150,152]. By secreting Ank200, Ehrli-
chia spp. induces epigenetic modulation within the host cell, consequently inhibiting the cellu-

lar immune response and promoting pathogenesis. A more comprehensive understanding of

Ank200’s association with host chromatin and Alu-sx element motifs is necessary to determine

if Ank200 provides Ehrlichia spp. with multiple mechanisms for modulating host cell gene

expression.

Tandem repeat protein (TRP) 32, TRP47, and TRP120 are type one (T1)-secreted effectors

from E. chaffeensis that share similar activity as Ank200 but reportedly target and bind to spe-

cific G- or GC-rich DNA motifs [3,151–153]. The mechanism used by TRP32 and TRP120 to

localize to host cell nuclei has yet to be described, but it is noted that TRP32 nuclear localiza-

tion is dependent on TRP32 phosphorylation [154]. Within the nucleus, TRP32 and TRP120

act as multitargeted effectors capable of recognizing and binding host DNA, chromatin-associ-

ated proteins, histone methylases and demethylases, polycomb-group (PcG) proteins, and

other substrates that are involved in chromatin remodeling complexes [155]. However, the pri-

mary target supporting their nucleomodulin activity is DNA. TRP32 specifically targets and

binds G-rich motifs on DNA and either increases or represses the expression of genes related

to immune cell differentiation, chromatin remodeling, and RNA transcription events

[129,155]. TRP120 targets and binds GC-rich DNA motifs and serves as a transcriptional acti-

vator of host genes associated with transcriptional regulation, signal transduction, and apopto-

sis [3,129]. While the binding targets of TRP32 and TRP120 have been identified, their specific

mechanism of action and how they alter host gene expression is still unknown. TRP47 is the

fourth nucleomodulin discovered in E. chaffeensis. Studies in HeLa cells have determined

nuclear localization of TRP47 to be dependent on a MYND (Myeloid, Nervy, DEAF-1)-bind-

ing domain (MBD) and potential interactions with NLS-containing host proteins [3,154].

Because the MBD is also a zinc finger motif, it is hypothesized that TRP47 uses its MBD for

protein–protein interactions with host transcription regulatory proteins [154]. Once inside the

nucleus, TRP47 is suggested to closely resemble TRP120 DNA binding activity and target

genes involved in vesicular trafficking, signal transduction, and host immune response [154].

TRP47 reportedly shares similar characteristics as TRP32, TRP120, and the TAL family of

effectors [154]. Together, TRP32, TRP47, and TRP120 illustrate how individual pathogens can

secrete closely related proteins with different target sites and function to facilitate changes to

the host cell epigenome. By utilizing TRPs, E. chaffeensis modulates the expression of host

genes and establishes an intracellular environment to promote pathogenesis. Further studies

will be necessary to characterize the extent of TRP32, TRP47, and TRP120 epigenetic modula-

tion of host cells.

Another pathogen that secretes a large repertoire of proposed nucleomodulins with pre-

dicted NLSs (classical or unclassical) is Coxiella burnetii [156–158]. Effector proteins secreted

by C. burnetii through a T4SS, and identified to translocate to host cell nuclei, are: Cbu0129,

Cbu0388, Cbu0393, Cbu0781 (AnkG), Cbu0794, Cbu1314, Cbu1524 (CaeA), and CbuK1976

[156–164]. While these potential nucleomodulins are identified to localize within the nucleus

during in vitro studies and contain predicted NLSs (classical and unclassical), only three of

these nucleomodulins (Cbu1314, CaeA, and AnkG) are further characterized and have their

nuclear substrate targets identified. However, while CaeA and AnkG have been linked to intra-

nuclear interactions that delay host cell apoptosis and targeting of nuclear proteins for alter-

ation of cell processes (gene translation, gene splicing, RNA transport, RNA transcription, and

ubiquitin-proteasome regulation), how these effectors modulate nuclear function in vivo has

yet to be addressed [158,159]. So far, in vitro studies with macrophages and HEK293 cells

reveals that interactions with host protein p32 and Importin-α1 facilitate the nuclear import of
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AnkG, while CaeA relies on 2 different NLSs [158,165]. On the other hand, Cbu1314 is a

nucleomodulin conserved among C. burnetii pathotypes and was recently discovered to

directly associate with chromatin and modulate the host transcriptome [129,157,163].

Cbu1314 possesses 6 potential NLSs with the 52 to 75 residues and 181 to 186 residues neces-

sary for nuclear import [157]. While the specific molecular mechanism of action performed by

Cbu1314 has yet to be explored, studies have identified that Cbu1314 shares motifs used by A.

phagocytophilum (AnkA) and Ehrlichia spp. (Ank200/p200 and tandem-repeat containing

protein 120 (TRP120)) within identified target sequences for binding with AT-rich DNA

regions, Alu-sx elements, and GC-rich regions, respectively [157]. Studies transfecting

HEK293 and HeLa cells with Cbu1314 suggest that Cbu1314 modulates the host transcriptome

by inducing expression of antiapoptotic genes via chromatin complexes and directly associat-

ing with genes that encode zinc finger proteins, microRNAs, ubiquitination machinery,

immune response, and intracellular transport and vesicular trafficking [157]. How Cbu1314

specifically manipulates host gene expression in vivo has yet to be fully explored. However, the

large repertoire of nucleomodulins secreted by C. burnetii provides C. burnetii with multiple

strategies for manipulation of the host transcriptome and maintenance of a novel intracellular

niche for pathogen proliferation.

Methylation of host DNA by nucleomodulins

While the previously described nucleomodulins for A. phagocytophilum, Ehrlichia spp., and C
burnetii induce epigenetic events in host cells by directly binding to DNA, other nucleomodu-

lins have evolved to target DNA and modulate the host epigenome by serving as mammalian

DNA methyltransferases (DNMTs). These unique DNMT nucleomodulins are identified as

effector proteins secreted by M. hyorhinis and M. tuberculosis [3]. M. hyorhinis secretes 3

DNMTs known as Mhy1, Mhy2, and Mhy3 [3,66,166,167]. While all three have been found to

translocate to host cell nuclei, studies have yet to determine if Mhy1, Mhy2, and Mhy3 carry

classical or unclassical NLSs [166,167]. After localization into host cell nuclei, these M. hyorhi-
nis DNMTs target specific recognition sites of host DNA and generate methylated sites that

serve as epigenetic modifications [167]. Infection of HTR8/SV neo trophoblasts identified CG-

rich sites of human DNA as targets for Mhy1 and Mhy2 methylation, while GATC-rich sites

were targets for Mhy3 methylation [3,129,166,167]. While the methyltransferase activity of

Mhy1, Mhy2, and Mhy3 in vivo has yet to be fully addressed, these DNMTs influence an up-

and down-regulation of host genes that regulate proliferation-specific pathways [66,166].

Because M. hyorhinis is found during colorectal cancer, these nucleomodulins are hypothe-

sized to play a role in methylating cancer-associated genes and promoting tumor progression

[3,66,166,167]. By altering host DNA through DNMTs and inducing long-term epigenetic

modifications, M. hyorhinis may create an environmental niche favoring proliferation and

facilitating further cell-to-cell dissemination.

Like the above M. hyorhinis nucleomodulins, Rv2966c secreted by M. tuberculosis functions

as a DNMT. Because Rv2966c lacks an identifiable NLS, it hypothesized that residues on the

C-terminus of Rv2966c interact with host cell proteins and regulate its trafficking into host cell

nuclei [168]. Studies in HEK293 cells suggested Rv2966c utilizes host cell NPM1 for nuclear

localization due to its function as a nucleo-cytoplasmic shuttling protein [168]. Once in the

nucleus, Rv2966c reportedly targets and methylates regions of DNA at cytosine residues in a

non-CpG manner [3,168]. By serving as a novel mechanism to alter host DNA, Rv2966c mod-

ulates the host epigenome and represses transcription of host genes [3,168]. Rv2966c has also

been identified to target and modify histones H3 and H4, but its mechanism of histone modifi-

cation has yet to be determined [168]. Other than the nucleomodulins found in M. hyorhinis
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and M. tuberculosis, there has yet to be an identification of other bacterial DNMTs that target

host cell DNA [3].

Modification of histones by nucleomodulins

Bacterial pathogens utilize nucleomodulins to directly target and alter histones in eukaryotic

host cells. Pathogens identified to modify histones through nucleomodulins are: Chlamydia
spp. (C. trachomatis and C. pneumoniae), L. pneumophila, Burkholderia spp. (B. thailandensis
and B. pseudomallei), Bacillus anthracis, M. tuberculosis, and Neisseria meningitidis. NUE is a

SET domain-containing nucleomodulin secreted by C. trachomatis through a T3SS and is

identified to be the first bacterial effector that mimics host histone methyltransferases

[1,3,169]. NUE is also one of only 2 SET domain-containing effectors capable of automethyla-

tion to enhance methyltransferase activity by potentially increasing NUE’s affinity to host tar-

get substrates [169]. Both NUE and its homologue (cpnSET from C. pneumoniae) reportedly

contains an NLS for localization within host cell nuclei [1,3,14,169]. Once in the nucleus, NUE

functions as a histone lysine methyltransferase (HKMTase) to target and methylate host his-

tones H2B, H3, and H4 [1,3,66,169]. As a result of histone methylation observed in HeLa cell

studies, NUE is suggested to alter host chromatin structure and gene regulation [3,169]. How-

ever, specific host genes altered by NUE histone methylation have yet to be identified. The

cpnSET homologue of NUE was found to target and methylate histone-like proteins Hc1 and

Hc2 along with mouse histones during murine studies [14]. Even though the molecular mech-

anisms utilized by NUE to influence the host epigenome have yet to be fully characterized in

vivo, the identification of NUE in C. trachomatis is considered a pioneering discovery in the

studies of SET domain-containing effectors [3].

After the discovery of NUE in C. trachomatis, 2 SET domain-containing homologue effec-

tors known as Regulator of methylation A (RomA, from L. pneumophila Paris strain) and

LegAS4 (from L. pneumophila Philadelphia strain) were described. Like NUE, RomA/LegAS4

exhibit HKMTase activity towards host cell histones [14,140,141]. RomA was the first T4SS-

secreted nucleomodulin identified in Legionella and the first bacterial effector described to

induce new epigenetic marks on the chromatin landscape of host cells [17,170]. Like many

nucleomodulins, RomA contains an NLS in the N-terminal region of its sequence to promote

nuclear localization [1,170,171]. Upon translocation to the host cell nucleus, RomA specifically

targets and tri-methylates the Lys14 residue of histone H3 (H3K14) [14,17]. It is important to

note that while acetylation and deacetylation regulation of histone H3K14 has been noted in

mammalian cells, the methylation of histone H3K14 was never previously described [1,14,17].

This suggests that RomA of Legionella has evolved a novel mechanism to induce a novel epige-

netic modification and subsequent inhibition of select gene transcription in host cells

[1,14,17]. It was also discovered that this novel epigenetic change induced by RomA occurs

within the amoeba hosts of L. pneumophila, indicating a coevolutionary targeting of a highly

conserved eukaryotic process [170]. By methylating histone H3K14, RomA inhibits global

transcription and negatively regulates the innate immune response of the host cell [1,3,66].

Like RomA, LegAS4 possesses an N-terminal NLS. However, the NLS of LegAS4 differs from

its RomA homologue by containing 13 extra amino acids on the N-terminus [171]. While

LegAS4 shares histone H3K14 methylation activity with RomA, LegAS4 differs from RomA by

targeting and methylating histone H3K4 [3,14,17]. LegAS4 is also hypothesized to interact

with HP1 in the nucleolus at rDNA promotors, resulting in an activation of rDNA gene

expression [3,172,173]. By utilizing RomA or LegAS4, L. pneumophila strains have evolved to

induce epigenetic changes within the host cell transcriptional landscape, repressing the host

immune response and promoting pathogenesis.
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The identification of LegAS4 and its function led to the later description of a LegAS4-like

nucleomodulin with similar function. BtSET is a LegAS4-like nucleomodulin secreted by path-

ogenic B. pseudomallei and nonpathogenic B. thailandensis through one of their T3SSs known

as the Burkholderia secretion apparatus (Bsa) [3,174,175]. While BtSET has been confirmed to

localize to the nucleolus of infected cells, a definitive NLS has yet to be identified [140]. Like

LegAS4, BtSET has H3K4 methylation activity in HeLa cells and perform mono-/di-methyla-

tion of rDNA [1,140]. By methylating rDNA, BtSET activates transcription of rDNA genes

[1,140]. The shared function of H3K4 methylation in the nucleolus between Burkholderia and

Legionella nucleomodulins highlights the potential evolution of a shared virulence strategy

among different bacterial pathogens promoting dysregulation of host ribosomal machinery

and establishing an environmental niche favorable for pathogen replication and pathogenesis.

Along with methylation of H3K4 and H3K14, H1 methylation is another unusual epige-

netic modification that has yet to be identified in mammalian cells under normal circum-

stances. The nucleomodulin responsible for this modification, BaSET secreted by B. anthracis,
localizes to the nuclei of infected HeLa cells, HEK293 cells, and macrophages [14,176–178].

The mechanism for nuclear translocation of BaSET has yet to be identified. After reaching the

nucleus, BaSET functions as a specific histone tri-methylase via targeting of 8 lysine residues of

histone H1 [1,14,178]. Research assessing BaSET-mediated histone H1 methylation led to the

hypothesis that the activity of BaSET in host cell nuclei results in transcriptional repression of

inflammatory genes [176]. This hypothesis is supported by the identification of repressed NF-

κB target gene promotors after overexpression of BaSET in mammalian cells [66,176,177].

Without the secretion of BaSET and subsequent repression of the host inflammatory response,

B. anthracis is unable to survive within host cells [176,177]. This suggests that BaSET has

evolved as an essential nucleomodulin for promoting pathogenesis of B. anthracis.
Another nucleomodulin described to target and methylate host histones is Rv1988 of M.

tuberculosis. Rv1988 is a second nucleomodulin secreted into infected host cells by M. tubercu-
losis [3,66,179,180–183]. Because of a Tat-signal sequence present within the N-termini of

Rv1988, it is suggested that Rv1988’s secretion is dependent on the Tat secretion pathway of

M. tuberculosis [179]. As for Rv1988’s localization within the nucleus, studies show the nuclear

localization of Rv1988 in macrophages is dependent on 3 sections of basic amino acids located

within its C-terminal sequence [179]. Once within the nucleus, Rv1988 acts as a unique histone

methyltransferase that targets and di-methylates a noncanonical arginine residue (R42) in his-

tone H3 (H3R42) [3,66,179,180]. It is important to note that histone H3R42 is located at a cru-

cial entry/exit region of DNA in the host nucleosome [179]. As a result of this location, H3R42

has the potential to induce dynamic changes within the nucleosome structure and alter cellular

transcription events [179]. Rv1988’s secretion from M. tuberculosis and its interaction with

host epigenetic machinery is hypothesized to modulate multiple genes responsible for host

immune response [179,180,184–186]. This hypothesis is supported by a decrease in ROS activ-

ity of THP1 macrophages and decreased expression of NADPH oxidase (NOX1 and NOX4)

and nitric oxide synthase (NOS2)) genes correlating with Rv1988 methylation of H3R42

[3,179]. Rv1988 methylation of H3R42 also represses TRAF3, a TNF receptor-associated factor

which plays a crucial role in host immune response mediated by B cells and T cells [179]. How-

ever, the influence Rv1988 has over B cell and T cell immune response has yet to be as thor-

oughly studied as in macrophages. By targeting regulatory elements of the host cell genome

and modulating host transcription, Rv1988 serves as an important virulence factor for promot-

ing pathogenesis and persistence of M. tuberculosis [187].

M. tuberculosis secretes a third nucleomodulin identified as Rv3423, but unlike Rv2966 and

Rv1988 it functions as a novel histone acetyltransferase (HAT) in vitro as opposed to a DNA

or histone methyltransferase, respectively [3,180,188]. Rv3423 is described to only be secreted

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009184 January 21, 2021 18 / 33

https://doi.org/10.1371/journal.ppat.1009184


by the virulent strain of M. tuberculosis [188]. This is hypothesized to occur as a result of an

ESX-1 type VII secretion system (T7SS) present and unimpaired in the virulent strain of M.

tuberculosis as opposed to the avirulent strain [188,189]. While Rv3423 localizes within the

nuclei of M. tuberculosis-infected macrophages, a predicted NLS has yet to be identified. Due

to Rv3423’s small size, Rv3423 is hypothesized to traffic to the nucleus via diffusion through

nuclear pores or hijack host nuclear trafficking proteins for transport [188]. Within the

nucleus, Rv3423 targets and acetylates histone H3 at the lysine 9 (H3K9) and/or lysine 14

(H3K14) positions [3,180,188]. Since histone acetylation is involved in the regulation of gene

transcription, Rv3423 is hypothesized to regulate host gene transcription in a way that pro-

motes the intracellular survival of M. tuberculosis [14,17,188]. However, the specific role of

Rv3423 during M. tuberculosis infection of macrophages has yet to be fully characterized. Alto-

gether, the ability of M. tuberculosis to secrete Rv2966, Rv1988, and Rv3423 illustrates how

bacterial pathogens have evolved multiple effector-mediated strategies that consequentially

target and inhibit host response through various epigenetic modifications.

The above nucleomodulins have been described to target and modify mammalian histones

by acting as histone methyltransferases and acetyltransferases. While this is the most com-

monly reported method for modification of host cell histones, some nucleomodulins modify

histones by acting as proteases. N. meningitidis harbors 2 chemotrypsin-like serine proteases,

adhesion and penetration protein (App) and meningococcal serine protease A (MspA/AusI),

described to share homology with human IgA1 protease and be internalized by human den-

dritic cells (DCs) in vitro [190–193]. As type Va autotransporters, App and MspA are released

from the surface of Neisseria via autoproteolytic cleavage, internalized by DCs through a man-

nose receptor-/transferrin receptor-mediated manner, and then translocated to the host cell

nuclei [3,190,192]. The α-peptide of App contains 2 NLSs, like those found in host IgA1 prote-

ase, that are necessary for nuclear localization [190]. While MspA lacks an identifiable NLS,

MspA still localizes within host cell nuclei [190]. How MspA localizes within cell nuclei with-

out a predicted NLS has yet to be determined. Once in DC nuclei, App and MspA reportedly

target and proteolytically cleave histone H3 in vitro, suggesting these nucleomodulins induce

DC apoptosis in vivo [3,190,192,193]. While more research is necessary to bridge the connec-

tion between histone H3 cleavage and DC apoptosis, App and MspA are hypothesized to inter-

fere with host pathways and promote N. meningitidis pathogenesis.

Conclusions

Throughout the last 10 years, it has become increasingly evident that bacterial pathogens have

evolved a remarkable and powerful mechanism for modulating host cell transcriptional regula-

tion and gene expression. These unique nucleomodulins promoting pathogenesis were initially

discovered in phytopathogens and have since been identified in mammalian pathogens. Here,

we discussed an expansive number of injected or secreted nucleomodulins that mimic or

directly target host transcriptional and transformation factors, ubiquitination machinery for

regulating nuclear protein homeostasis, nuclear proteins for regulation of downstream signal-

ing pathways, and host cell DNA and histones for modulating chromatin structure and gene

transcription (Fig 1). While several of the described nucleomodulins harbor an NLS for

nuclear trafficking, most nucleomodulins traffic to the nucleus via alternative mechanisms

(Fig 1). Further studies are needed to uncover the novel mechanisms behind the nuclear traf-

ficking of nucleomodulins lacking an NLS.

It is important to note that while several of the described nucleomodulins share similar

function, most known nucleomodulins are idiosyncratic in target substrate and pathway speci-

ficity. Some of the first identified nucleomodulins (VirD2, TALENs, HsvG) function by

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009184 January 21, 2021 19 / 33

https://doi.org/10.1371/journal.ppat.1009184


Table 2. Mammalian pathogen effectors that target the nucleus.

Pathogen Effector Effector Function Source

Anaplasma AnkA Binds to long stretches of A, T, and C nucleotides of chromatin; induces change in chromatin structure,

promotes deacetylation of histone H3, and silences genes for host cell response

[147,148]

Bacillus BaSET Histone tri-methylase; targets 8 lysine residues of histone H1 for transcriptional repression [176–178]

Bordetella pertussis BopN Suggested to bind or promote export of p65 from nucleus to manipulate the host NF-κB pathway;

promotes nuclear translocation of p50

[68,69]

Burkholderia BtSET Histone lysine methyltransferase; targets H3K4 and nucleolar rDNA [1,140]

Chlamydia psittaci SinC Interacts with ELYS, laminB1, LEM domain proteins, LAM1, and LBR on the inner nuclear membrane;

indirectly modulates chromatin structure and silences inflammatory genes

[133–135]

Chlamydia cpnSET Histone lysine methyltransferase; targets histone-like proteins Hc1 and Hc2 [14]

NUE Histone lysine methyltransferase capable of automethylation; targets histones H2B, H3, and H4 [66,169]

Coxiella burnetii Cbu0129 Unknown [156]

Cbu0388 Unknown [156,163]

Cbu0393 Unknown [156]

Cbu0781

(AnkG)

Target nuclear proteins to alter host cell processes and delay apoptosis [158,159]

Cbu0794 Unknown [156,163]

Cbu1314 Binds chromatin at target sequences with AT-rich regions, Alu-sx elements, and GC-rich regions; induces

expression of antiapoptotic genes

[157,194]

Cbu1524

(CaeA)

Target nuclear proteins to alter host cell processes and delay apoptosis [158,159]

CbuK1976 Unknown [194]

Ehrlichia
chaffeensis

Ank/p200 Associates with chromatin by targeting AT-rich Alu-sx motifs of host genes; induces large-scale

transcriptional alterations

[150,152]

TRP32 Binds to G-rich DNA motifs [129,155]

TRP47 Binds to GC-rich DNA motifs [154]

TRP120 Binds GC-rich DNA motifs; acts as a transcriptional activator [3,129]

Escherichia coli Cif Cyclomodulin; exhibits deaminase activity towards NEDD8 and inhibits CRL activity necessary for cell

cycle progression

[97,98]

EspF Targets the nucleolus; induces redistribution of nucleolin and inhibits ribosome biogenesis [99,102]

NleC Zinc metalloprotease; cleaves p300, RelA, RelB, cRel, NF-κB1, and NF-κB2 nuclear transcription factors

to modulate the NF-κB signaling pathway and regulate host transcription

[18,121]

NleG5-1 U-box E3 ubiquitin ligase activity; targets MED15 and disrupts transcription signaling pathways [90,91]

Legionella AnkH Controls RNA polymerase II activity; interacts with LARP7 and inhibits host cell transcription [140,141]

AnkX Interacts with PLEKHN1; manipulates host inflammatory response [146]

LegAS4 Histone lysine methyltransferase; targets histones H3K14 and H3K4 to inhibit global transcription.

Suggested to interact with HP1 at rDNA promotors in the nucleolus

[14,17]

RomA Histone lysine methyltransferase; targets histone H3K14 to inhibit global transcription. [14,17]

SnpL Controls RNA polymerase II activity; binds SUPT5H and upregulates gene expression for fundamental

biological processes

[139]

Listeria
monocytogenes

LntA Targets and binds to the proline rich region of BAHD1 protein; inhibits BAHD1-mediated gene silencing

and histone H3 acetylation

[23,123]

OrfX Targets host cell RYBP; results in inhibition of oxidative activity of macrophages [66,124]

Mycobacterium Rv1988 Histone methyltransferase; targets histone H3R42 and reduces expression of oxidative genes [179,180]

Rv3423 Histone acetyltransferase; targets histone H3K9 and H3K14 [180,188]

Rv2966c DNA methyltransferase activity; targets cytosine residues of DNA motifs in a non-CpG manner [3,168]

Mycoplasma Mhy1 DNA methyltransferase activity; targets GC-rich DNA motifs [166,167]

Mhy2 DNA methyltransferase activity; targets GC-rich DNA motifs [166,167]

Mhy3 DNA methyltransferase activity; targets GATC-rich DNA motifs [166,167]

Neisseria App Chemotrypsin-like serine protease; targets and cleaves histone H3 [190–193]

MspA Chemotrypsin-like serine protease; targets and cleaves histone H3 [190–193]

(Continued)
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mimicking eukaryotic host transcription and transformation factors to regulate host transcrip-

tion activation [2,34]. Nucleomodulins such as Ank1 from O. tsutsugamushi or IpaH9.8 from S.

flexneri function by mimicking or directly inhibiting components of intranuclear ubiquitina-

tion pathways to alter nuclear protein homeostasis [68]. LntA of Shigella and SinC of Chla-
mydia are 2 examples of novel functioning nucleomodulins that target different nuclear

proteins for indirect influence of chromatin structure and regulatory processes, whereas AnkA

of Anaplasma binds directly to specific regions of DNA [123,134,150]. Finally, there are

nucleomodulins such as LegAS4 of Legionella and BtSET of Burkholderia which are examples

of proteins utilized by different bacterial species that share close function by methylating his-

tone H3K4 [140].

The mimicry of eukaryotic host factors, along with the shared targeting and function

observed between several nucleomodulins, suggests convergent evolution between both

eukaryotic cells and bacterial pathogens. While it is understandable to speculate the functional

redundancy of nucleomodulins is the result of natural selection or interkingdom horizontal

gene transfer, there is still the question regarding how nucleomodulin mimicry of eukaryotic

factors came to be [14,170]. Nucleomodulins illustrate a unique mimicry of eukaryotic factors

when they possess an NLS, Ank, SET, or LRR domain and share the same binding partners as

eukaryotic nuclear proteins. Could pathogens have acquired homologues of eukaryotic pro-

teins through interkingdom horizontal gene transfer that have evolved into unique nucleomo-

dulins capable of mimicking eukaryotic factors that we find today? It is still unknown how

nucleomodulins first came to be, and further studies are needed to comprehend why some

pathogen nucleomodulins mimic eukaryotic factors (NLS, Ank, SET, etc.) while others are

novel in their identity and function.

Table 2. (Continued)

Pathogen Effector Effector Function Source

Orientia Ank1 Interacts with CULLIN-1 and SKP1 components of the SCF E3 ubiquitin ligase complex; suggested to

bind or promote export of p65 from nucleus to manipulate the host NF-κB signaling pathway

[62,66–68]

Ank6 Suggested to bind or promote export of p65 from nucleus to manipulate the host NF-κB signaling

pathway

[68]

Salmonella enterica GogA GtgA

PipA

Zinc metalloproteases, cleave RelA, RelB, cRel nuclear transcription factors to modulate the NF-κB

signaling pathway and regulate host transcription

[118,119]

Ssph1 Contains an LPX and NEL domain; interacts with host cell PKN1 to inhibit the NF-κB signaling pathway [85–87]

Shigella flexneri IpaB Cyclomodulin; interacts with Mad2L2 and inhibits cell proliferation [75,77,78]

IpaH9.8 Contains an LPX and NEL domain; ubiquitinates host U2AF mRNA splicing factor and represses

proinflammatory genes

[70,72,73]

OspB Acts in synergy with OspF to target pRB and down-regulate host immune response [66,71,130]

OspC1 Modulates epithelial cell signaling for PMN migration [125,126]

OspF Exhibits phosphothreonine lyase activity towards host cell MAPKs; prevents transcription activation of

NF-κB-regulated genes. Acts in synergy with OspB to target pRB and down-regulate host immune

response

[66,71,126,127,130]

Yersinia YopM Contains an LPX domain but lacks an NEL domain; interacts with and hyperphosphorylates RSK1 and

PRK2 to inhibit pyrin inflammasome formation in cytosol, and co-opts RSK1 to increase expression of

IL-10 gene in the nucleus.

[105,107,108,113–

116]

AnkA, ankyrin repeat protein A; App, adhesion and penetration protein; BAHD1, bromo adjacent homology domain-containing 1; Cif, cyclin-inhibiting factor; CRL,

CULLIN-RING ubiquitin ligase; LAM1, lamin-associated polypeptide 1; LBR, lamin B receptor; LEM, LAP2, emerin, MAN1; LntA, Listeria nuclear targeted protein A;

MAPK, mitogen-activated protein kinase; MspA, meningococcal serine protease A; PMN, polymorphonuclear neutrophil; pRB, retinoblastoma protein; RomA,

Regulator of methylation A; RYBP, Ring1 YY1-binding protein; SCF, SKP1-CULLIN1-F-box; SinC, Secreted inner nuclear membrane-associated Chlamydia.

https://doi.org/10.1371/journal.ppat.1009184.t002
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Nucleomodulin secretion is an emerging theme shown to promote pathogen-induced epi-

genetic modification and control of the host cell epigenome via epigenetors. While the list of

discovered nucleomodulins is rapidly expanding (Tables 1 and 2), there is no doubt that the

current number of identified nucleomodulins is merely the tip of the iceberg among bacterial

pathogens. On top of this, the mechanisms used by many nucleomodulins for nuclear traffick-

ing in the absence of an NLS and modulation of the host genome are still unknown. The ability

of nucleomodulins to mimic eukaryotic proteins along with related functions of nucleomodu-

lins between different pathogens suggests an evolutionary convergence that has yet to be thor-

oughly explored. A further understanding of this unique strategy evolved in pathogens for

promoting pathogenesis will lay groundwork for an expansive field of research regarding

nucleomodulin function and host cell impact. Uncovering these mysteries on unique pathogen

weaponry will result in an enhanced understanding of how nucleomodulins came to be a ris-

ing enigma of host–pathogen interactions.
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