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Abstract: Recently, the high demand for marble stones has progressed in the construction industry,
ultimately resulting in waste marble production. Thus, environmental degradation is unavoidable
because of waste generated from quarry drilling, cutting, and blasting methods. Marble waste is
produced in an enormous amount in the form of odd blocks and unwanted rock fragments. Absence
of a systematic way to dispose of these marble waste massive mounds results in environmental
pollution and landfills. To reduce this risk, an effort has been made for the incorporation of waste
marble powder into concrete for sustainable construction. Different proportions of marble powder
are considered as a partial substitute in concrete. A total of 40 mixes are prepared. The effectiveness of
marble in concrete is assessed by comparing the compressive strength with the plain mix. Supervised
machine learning algorithms, bagging (Bg), random forest (RF), AdaBoost (AdB), and decision tree
(DT) are used in this study to forecast the compressive strength of waste marble powder concrete.
The models’ performance is evaluated using correlation coefficient (R2), root mean square error, and
mean absolute error and mean square error. The achieved performance is then validated by using
the k-fold cross-validation technique. The RF model, having an R2 value of 0.97, has more accurate
prediction results than Bg, AdB, and DT models. The higher R2 values and lesser error (RMSE, MAE,
and MSE) values are the indicators for better performance of RF model among all individual and
ensemble models. The implementation of machine learning techniques for predicting the mechanical
properties of concrete would be a practical addition to the civil engineering domain by saving effort,
resources, and time.

Keywords: waste; concrete; marble powder; compressive strength; machine learning algorithms

1. Introduction

Iran, Italy, China, Turkey, India, Egypt, Spain, Brazil, Algeria, Sweden, and France
are the main marble-producing countries [1–4]. India is the third most marble-producing
country around the globe, and almost 10% of the worldwide marble powder is quarried
here [5]. In addition, the import and processing of stone are majorly done in countries such
as Pakistan, the United States, Egypt, Saudi Arabia, Portugal, Germany, France, Norway,
and Greece [6]. During different stages of stone mining and processing procedures, a bulk
quantity of marble waste is generated. Out of which, up to 60% is generated as a result
of marble quarrying only [7]. Marble dust in finer form that is produced as a result of
its sawing and cutting can cause harmful health issues. Furthermore, the dumping of
this marble dust can result in poor soil properties and the fertility reduction of respective
land [8]. Almost 30% of marble waste is produced during the working of marble stone [9].
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The global annual production of marble and granite was nearly 140 million tonnes in 2014,
as per USGS [10]. There were approximately 2 billion tonnes of marble resources in India
only, as of April 2015, as per the UNFC system. Only 0.23% were reserved resources,
and 99.77% were under the remaining resources category [11]. In 2015, China produced
around 350 million sq. meters of marble planks, depicting China as World’s largest marble
producer [12]. Chauhdary [13] reported the availability of almost 160 million tonnes of
marble reserves and around 2 billion M.T granite reserves in Pakistan as of 2006. In the
mining industry of Iran, there were approximately 4.8 million tonnes of raw and/or semi-
processed stone in the year 2012–2013 from a total of 473 quarries of marble stone [14].
Egypt used to export nearly 13 lac tonnes of stones annually as unprocessed and processed
stones. From Shaq Al–Thoban industrial/site areas of Egypt, nearly 7 lac tonnes waste
is generated annually [15]. As far as the marble reserves of Turkey are concerned, these
are around 3.8 billion cubic meters [16]. In Turkey, Binici, et al. [17] reported an emerging
threat to agriculture and health in the form of marble wastes usually left in situ or settled
by sedimentation. Approximately 47 thousand tonnes of solid waste powder is collected
annually from quarries in Jordan every year [18]. The same is the case with Spain and some
other countries [19]. In past years, the marble powder is usually used in mortar, concrete,
tiles, cement, embankments, and pavements [20], in addition to the desulfurization process,
soil stabilization, ceramics, and asphalt and polymer-based composites [21]. In Italy,
a group of researchers also developed a consortium to rehabilitate and restore the Oresei
marble chain in Sardinia. This chain was being exploited for quarrying and landfilling [22].
As per the definition of sustainable development by Brundtland [23], keeping in mind
the environmental perspective, the addition of mineral admixtures and different waste
materials has gained much importance with the aim to reduce the consumption of natural
resources. However, the natural resources consumption for the production of concrete
is still inevitable. In addition, the extraction of local natural resources within limited
surrounding region is unable to meet the said needs; thus becoming un-sustainable in
near future. Accordingly, the usage of waste materials in concrete production should
be promoted in construction sector. In addition, the alternative sustainable approaches
should also be introduced for reducing the consumption of natural materials at national
as well as international level [24–27]. Whereas, at local level, recycled aggregates are
usually used for road materials stabilization. This is a rare approach due to the less feasible
crushing process with respect to traditional approach. The extraction of natural resources
is required in traditional approach. Bottom ash and marble dust (MD) are some locally
and abundantly available by-products that are usually treated as waste materials and thus
ultimately causing environmental pollution.

On a rough estimate, the global annual concrete production is approximately 25 bil-
lion tons. Concrete has a very low embodied energy and carbon footprint compared to
other building materials. However, due to its wide use in many applications, concrete
production has a considerable carbon footprint, contributing to 8% of global carbon diox-
ide emissions [28,29]. Globally, concrete production accounts for 7.8% of nitrogen oxide
emissions, 4.8% of sulfur oxide emissions, 5.2% of particulate matter emissions smaller
than 10 mm, and 6.4% of particulate matter emissions smaller than 2.5 microns [30]. It is
worth noting that only half of the cement is used in concrete [31], and the remaining is used
in blocks, mortar, and plaster [32]. Nonetheless, due to the widespread use of concrete in
modern civilization, concrete production accounts for a significant portion of global CO2
emissions through construction [32]. Aiming toward sustainable development, the usage of
environment-friendly by-products is considered an effective strategy toward reducing CO2
emissions [31,33–35]. Marble dust (MD), having abundant availability in Turkey, China,
Iran, Italy, and India, is also an alternative which can be used as a replacement for cement
in the production of concrete. Marble, due to its durable properties, is usually used in
multiple non-structural applications such as cladding, floors, architectural decoration for
indoors and sculpture etc. Considerable waste is generated during the shaping and cutting
processes of various marble applications in the form of dust particles. These materials are
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contaminating the natural resources in terms of environmental damage. Partial replace-
ment of cement and other constituents of concrete has already been made extensively by
industrial by-products in various studies [36–44]. The reuse of MD, due to its chemical
nature, in the production of concrete came out to be an alternative sustainable approach.
The use of MD, either as a natural aggregate [9,45,46] or as a replacement for Portland
cement (PC) [16,47–49], has been studied in various research. Generally, MD has been
used as up to 60% replacement in different forms. Gesoğlu, et al. [50] reported a 20%
decreased slump due to MD as a PC replacement. Concrete having MD showed similar
consistency with respect to reference mix as reported by Seghir, Mellas, Sadowski, and
Żak [4]. Contrary to this, Alyamac, Ghafari, and Ince [19] stated that the incorporation of
MD in concrete improved its fresh properties. In addition, the strength of concrete having
MD is still questionable. Topcu, et al. [51] reported the decreased compressive strength
with an increase in MD content. The same behavior was also reported by Gencel, et al. [52].
The 5% of MD replacement in concrete production came out to be an optimum content
for compressive strength, as reported in several studies [50,53,54]. However, Li, et al. [55]
reported the same with 10% MD replacement in concrete. Li, Huang, Tan, Kwan and
Liu [12] and Li, Huang, Tan, Kwan and Chen [55] also proposed a paste replacement
method for reducing significant (i.e., 33%) cement content and enhancing the utilization of
MD waste, having enhanced durability and strength. Seghir, Mellas, Sadowski and Żak [4]
reported an enhancement of marble powder porosity by 15% in result of reduced hydration
products. The major focus of existing studies is on replacement of cement with alternative
sustainable materials for reduction in emissions, caused by PC. Marble waste is used as
cement replacement in concrete by various researchers [9,46,50,52,54,56]. Rodrigues, De
Brito and Sardinha [46] investigated the incorporation of marble dust having 5, 10, and
20% content as cement replacement in concrete. The study reported positive effect on
compressive strength of concrete with cement replaced up to 10% marble dust; however,
reduced compressive strength is observed in concrete having 25% of marble dust. The
compressive strength is reduced by 13.46% with 20% marble dust content, as reported
by Gesoğlu, Güneyisi, Kocabağ, Bayram and Mermerdaş [50]. Another study reported
decrement in compressive strengths by 91%, 86%, and 76% having cement replaced by 20%,
30%, and 40% marble dust contents, respectively [52]. Şanal [57] reported enhancement
of pore structure due to an increase in the capillary structure of concrete by adding 10%
marble dust as cement replacement, ultimately resulting in reduced mechanical properties
of concrete.

Concrete is the second most widely used commodity around the globe [58]. Due to
its multiple properties such as strength, stiffness, density, fire/thermal resistance, porosity,
and durability, concrete is being most commonly used as a building material all around
the world. Compressive strength is the most dominating factor among all these, as it
directly affects the durability of concrete [59,60]. Concrete is a heterogeneous material
constituted by cement, sand, aggregates, and water, as it has different compressive strength
values [61]. All the ingredients mentioned above and respective mixtures affect the com-
pressive strength of concrete in terms of water/binder ratio, aggregate size, binder type,
or waste composition [62]. The compressive strength of concrete is hard to predict precisely
due to its complicated mixture. The determination of concrete compressive strength can be
made in the laboratory by crushing standardized cylinders/cubes after specified curing
post to the casting of samples [63]. This is globally a standardized method. However, as a
result of advancements in technological development, laboratory tests are now insufficient
and uneconomical due to the involved time and cost. Nowadays, due to the artificial
intelligence (AI) evolution, mechanical properties of concrete can also be predicted by using
machine learning (ML) algorithms [64–66]. ML techniques such as classification, clustering,
and regression, can be used to estimate various parameters along with varied efficiency and
can also help in predetermining the accurately précised compressive strength of concrete.
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The performance prediction of various parameters using machine learning algorithms
is known for many years. As far as the field of civil engineering is concerned, this trend is
increased significantly in the past few years. It is because of the highly accurate prediction
of mechanical properties (Table 1). The working principle of machine learning is the same
as that of conventional algorithms high accuracy of nonlinear behavior with respect to the
linear one. Artificial neural networks (ANN), support vector machines (SVM), decision
trees (DT), gene expression programming (GEP), random forest (RF), and deep learning
(DL) are widely used prediction techniques in case of mechanical properties of concrete [67].
The shear strength of steel fibers reinforced concrete beams was predicted with the help
of eleven algorithms by Rahman, et al. [68]. ANN with optimizer as multi-objective grey
wolves (MOGW) was used by Behnood and Golafshani [69] for predicting the static prop-
erties of silica fume modified concrete. Güçlüer, et al. [70] used ANN, DT, LR, and SVR
to predict the compressive strength of concrete. The tensile strength and compressive
strength of waste concrete were predicted with ANN algorithm by Getahun, et al. [71].
Ling, et al. [72] used SVM to predict concrete compressive strength in marine and the
results were compared with that of DT and ANN models. Yaseen, et al. [73] also used
different ML approaches for the prediction of load carrying capacity, under compression,
of light-weight foamed concrete. A machine learning algorithm was also used by Taffese
and Sistonen [74] for assessing reinforced concrete structures’ durability. Yokoyama and
Matsumoto [75] developed an automatic crack detector for concrete structures using ma-
chine learning. Concrete samples photographs were used for learning data, whereas deep
learning was applied for crack detection. The accuracy level of ML models was determined
by Chaabene, et al. [76]. Ahmad, et al. [77] performed ensembled machine learning (EML)
and standalone techniques for the prediction of concrete’s compressive strength and accu-
racy comparison. It is reported that the outcome predicted from EML techniques has more
accuracy than that by standalone technique. However, the range of standalone technique
results was also acceptable. Song, et al. [78] determined the compressive strength of ceramic
waste modified concrete both experimentally and with standalone techniques. Marginal
variation in experimental results and prediction model’s outcomes was reported. Neural
networks and decision trees, which are also called classification trees, are two popular
ways to model data. These two models have different ways of modeling data and finding
relationships between variables. The nodes in the neural network make it look like the
human brain and very complex structure is formed. While the decision tree is an easy
way to look at data from the top down. Decision trees have a natural flow that is easy to
understand and are also easy for computer systems to program. The data point in decision
tree models at the top of the tree has the most effect on the response variable in the model.
On the other hand, the visual representation of neural network models does not make it
easy to understand the working. For neural network model, it is hard to make computer
systems, and it is almost impossible to make an explanation because of complex structure.
Therefore, decision tree-based algorithms (AdaBoost and bagging) are considered in the
study because these trees are so easy to understand, they are very useful for modeling and
showing the data visually without any complex structure. Accordingly, the current study
aims the usage of advanced techniques for forecasting the concrete properties.



Materials 2022, 15, 4108 5 of 28

Table 1. Machine learning algorithms in the literature.

Algorithm Name Notation Prediction Properties Year Waste Material Used Ref.

Individual (decision tree)
and ensemble algorithm

(bagging)
DT and Bg Compressive Strength 2021 FA [79]

Ensemble modelling
(bagging and boosting) Bg and AdB Compressive strength 2021 FA [22]

Individual Algorithms
(decision tree) DT Chloride Concentration 2021 FA [18]

Data Envelopment
Analysis DEA

Compressive strength
Slump test
L-box test

V-funnel test

2021 FA [80]

Multivariate MV Compressive strength 2020 Crumb rubber with SF [81]

Support vector machine SVM

Slump test
L-box test

V-funnel test
Compressive strength

2020 FA [82]

Adaptive neuro fuzzy
inference system ANFIS with ANN Compressive strength 2020 POFA [83]

Random forest RF Compressive strength 2020 - [84]

Intelligent rule-based
enhanced multiclass

support vector machine and
fuzzy rules

IREMSVM-FR
with RSM Compressive strength 2019 FA [85]

Random forest RF Compressive strength 2019
FA

GGBFS
FA

[86]

Decision tree DT Compressive strength 2021 Ceramic waste [62]

2. Research Significance

The incorporation of waste materials in concrete to improve its mechanical charac-
teristics has been done in various studies. However, the stepwise laboratory procedure,
i.e., casting of specimens, curing for a specified time, and testing is still a concern in terms
of cost and time. Novel machine learning techniques are being introduced for forecasting
the behavior of waste concrete in terms of mechanical properties to overcome the issues
mentioned above, i.e., the excessive consumption of time and cost. However, the results of
different machine learning models are still inconsistent depending on the type of material,
data set, and other contributing input/output parameters. Therefore, this paper aims to
investigate marble dust concrete with the intention of marble dust waste management
and identify the optimal machine learning technique. The novelty and significance of the
current study are to conduct experimentation on waste marble (powder-based) concrete
(WMC) and development of WMC prediction model by computational methods. Addition-
ally, this study is focused on predicting and comparing the compressive strength of WMC
through supervised ML approaches. The AdB, RF, Bg, and DT approaches are employed to
predict and compare outcomes against actual results. Twenty sub-models are developed in
EML modelling to have more accuracy in R2 value for the optimization. Prediction perfor-
mance of each technique is done by using these applications. This research is significant for
understanding the input parameter’s role and accuracy for the outcomes obtained through
ML algorithms. Individual ML and ensemble approaches are also compared against the
results obtained from experimental work. The k-fold cross-validation and statistical checks
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are also used to evaluate the performance of each model. A discussion on the use of marble
for sustainable construction is made.

3. Experimentation and Data Description

Cement, marble powder, and fine and coarse aggregates are used to prepare 40 mixes.
Type-I Ordinary Portland Cement (OPC) is used. ASTM C150 is used to conduct the entire
investigation in this research. The chemical composition of used marble and cement is
listed in Table 2. The properties of fine aggregate are also determined as per the ASTM
standard. Locally available coarse aggregates having a maximum nominal size of 25.4 mm
are being used. Furthermore, the physical properties of fine and coarse aggregate can also
be seen in Table 3. Marble powder, collected from a local company, is used in this study,
as shown in Figure 1. The Blaine fineness value was 2196 m2/kg, and the relative density
was 2.43 g/cm3. The marble powder has a large specific surface area, suggesting that
adding it to concretes would improve their cohesiveness.

Table 2. Chemical composition of cement and marble powder.

Components Details Cement Marble Powder

Calcium Oxide (CaO) 61.81 42.14

Magnesium Oxide (MgO) 1.96 2.77

Silica (SiO2) 22.07 0.79

Potassium Oxide (K2O) 0.46 0.63

Alumina (Al2O3) 6.96 2.69

Sodium Oxide (Na2O) 0.11 0.61

Iron Oxide (Fe2O3) 3.62 1.94

Sulfur Trioxide (SO3) 2.14 0.042

LOI 1.2 42.28

Table 3. Physical properties of sand and aggregates.

Property
Dry Rodded
Bulk Density

Bulk Specific
Gravity

Moisture
Content

Water
Absorption

Fineness
Modulus

Nominal
Maximum Size

kg/m3 - % % - mm

Sand 1800 2.61 1.57 2 2.72 -

Aggregate 1601 2.51 1.49 1.65 - 25.4

Followed
Standards ASTM C29 ASTM C128/C127 ASTM C566 ASTM C136 -
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In this study, two different mix designs are considered. Twenty mixes for controlled
concrete and twenty for marble replaced concrete are prepared at every 7 days and 28 days.
A total of 40 combinations with 240 specimens are prepared (120 in number for each
respective day) with a size of 150 mm3. De-molding of specimens is done after 24 h,
followed by 28 days of water curing. The compression test is performed afterwards,
as per ASTM C39, to determine compressive strength. The dataset includes six inputs, i.e.,
i. cement, ii. marble powder, iii. w/c ratio, iv. coarse aggregates, v. sand and vi. Days
for single output, i.e., compressive strength of concrete (refer Table S1 in supplementary
materials). The description of statistical analysis regarding input parameters is given in
Tables 4 and 5. Table 4 shows the mean value, the average of the numbers by adding
up, and then dividing by total number of values in a dataset. All the parameters are
considered in weight units, i.e., kg/m3, except for age, which is being considered in days.
Brief descriptive coefficients are collected to summarize descriptive statistics to produce
a result. Descriptive analysis results are based on input variables data reflecting various
information. The minimum and maximum values and ranges for each variable that is used
to run the model are also given in tables. However, other analysis parameters, such as
standard deviation, mean, mode, and summation of all data points against each variable,
are also used for depicting relevant values. Frequency dispersion for every factor that is
being utilized in mixes is shown in Figure 2. It has a close connection with distribution
probability, a widely used statistics. A relative frequency distribution shows the total
observations associated with a class of values or every single value.

Table 4. Input parameters description analysis.

Input Variables

Parameters Cement
(kg/m3)

Marble Powder
(kg/m3) Sand (kg/m3)

Aggregate
(kg/m3) W/C Ratio Days

Mean 484.396 25.4941 618.7 1202.28 0.45045 17.5

Standard Error 9.72503 2.95033 19.5542 33.6188 0.00637 1.18

Median 472.838 17.238 615.264 1116.36 0.43994 17.5

Mode 486.948 0 620.058 1201.29 0.37997 7

Standard
Deviation 86.9833 26.3886 174.898 300.695 0.05696 10.56

Range 398.65 70.89 891.174 1091.64 0.28578 21

Table 5. Input and output variables range.

Parameters Abbreviation Unit Minimum Value Maximum Value

Input

Cement C kg/m3 310.148 708.798

Marble powder MP kg/m3 0 70.89

Sand S kg/m3 129.472 1020.65

Aggregate A kg/m3 659.328 1750.97

Water to cement ratio W/C kg/m3 0.36273 0.64851

Days D Days 7 28

Output Compressive Strength C.S MPa 9.49 72.11
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Figure 2. Input parameters relative frequency distribution: (a) cement; (b) marble powder; (c) sand;
(d) aggregate.

4. Modelling Techniques Description

Concrete compressive strength prediction algorithms are described in this section.
Individual ML (DT) and ensembled ML techniques (i.e., bagging models, random forest
and AdaBoost) are employed over Anaconda software by using Python code. Spyder
(version 4.3.5) of Anaconda navigator is opted for running the random forest, bagging
models and AdaBoost. Such algorithms are usually used to predict required outcomes as
per input variables. Six input parameters against one output parameter (i.e., compressive
strength) are used for all techniques during the modelling phase. R2 values demonstrate the
accuracy/validity of all the models. The R2 statistic (also named determination coefficients)
evaluates the variance response variable as demonstrated by the model fitted against the
mean response. It can also be stated as the measurement of how well a model fits this
data. 0 value implies the comparison of fitting the mean and model, whereas 1 depicts a
perfect fit among data and model. C.S prediction is made with individual, i.e., decision
tree, and ensemble algorithm, i.e., bagging models, random forest, and AdaBoost. Figure 3
shows a detailed flowchart of the used algorithm. It may be noted that 50% of data is used
for training, and rest of the 50% is used for testing and validation. The error between the
experimental and predicted values is also reported for each algorithm, and a discussion is
made in Section 6.
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Figure 3. Algorithm flowchart.

4.1. Decision Tree Algorithm

DT is widely utilized to categorize regression problems and classify difficulties [87].
There are classes within a tree. However, the regression technique is used to predict
outcome-independent variables in case of the non-existence of any class [88]. In DT,
database attributes are represented by inner nodes. Conclusion rules are denoted by
branches, whereas the leaf nodes represent the result. Two nodes, i.e., the decision node
and leaf node, are the composition of a DT. Several branches of decision nodes can make a
decision, and leaf nodes depicts. Leaf nodes depict the decision’s output, lacking branches.
It is named a decision tree as it resembles a tree-like structure that begins with grows as per
the number of branches based on a root node [76]. Data samples are bifurcated in multiple
segments by DT. An executed algorithm determines the difference between forecasted
values and goal at each division point. Errors are also calculated at each division point, and
the lowest value variable is selected as a split point for the fitness function, and the same
procedure/method is repeated. Figure 4 depicts the decision tree schematic diagram.
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4.2. Random Forest Algorithm

The random forest model is a regression and classification-based approach that has
been studied by various researchers till now [86,89]. The compressive strength of concrete is
predicted by using the RF model, as done by Shaqadan [90]. The prime difference between
RF and DT is the number of trees as shown in Figure 5. A single tree is developed in
DT; however, in RF, multiple trees are built that are known as forest. Dissimilar data are
selected arbitrarily and accordingly, allocated to respective trees. Each tree has data in rows
and columns, and different dimensions of rows and columns are selected. Following steps
are carried out for the growth of each tree; the data frame comprises 2/3rd of the whole
data that is randomly selected for each tree. This method is known as bagging. Random
selection is made for prediction variables, and the node splitting is done by finely splitting
these variables. For all trees, the remaining data are utilized to estimate out-of-bag error.
Accordingly, the final out-of-bag error rate is assessed by combining errors from each tree.
Each tree provides regression, and among all forest trees, the forest with greater votes is
selected for the model. The value of votes can either be 1′s or 0′s. Prediction probability is
specified by the obtained proportion of 1′s. Among all ensemble algorithms, random forest
(RF) is the most sophisticated one. It includes desirable features for variable importance
measures (VIMs) with robust overfitting resistance and fewer model parameters. DT is
used as a base predictor for RF. Acceptable results can be produced by RF models with
default parameter settings [91]. As allowed by RF combinations of parameter settings, and
base predictors can be reduced to one.
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4.3. AdaBoost Algorithm

Figure 6 shows the entire process of forecasting the AR algorithm outcome. The
Ensemble technique is a concept of ML that is utilized for training various models by using
a learning algorithm of the same kind [92]. Multiple algorithms are collected, as multi-
classifiers, for making an ensemble. A group comprises almost a thousand learners working
with the same objective of resolving the issue. Ensemble learning is employed by an
AdaBoost algorithm, which is a supervised ML technique. It can also be referred to as
adaptive boosting, as weights are re-linked to every instance, with higher weights linked
to wrongly classified instances. Boosting techniques are widely utilized to minimize
variance and bias in supervised ML. Weak learners can be strengthened by using the said
ensemble techniques. Infinite no. of DTs are employed by it for the input data during a
training phase. During constructing the initial DT, the erroneously categorized recorded
data are prioritized throughout the initial model. Same data records are used only as
an input for different other models. The technique mentioned above is repeated till the
creation of specified base learners. AdaBoost optimizes enhancement of DTs performance
on binary classification issues. In addition, it is also used for enhancing ML algorithms
performance. It is specifically effective when it is used with slow learners. These ensemble
algorithms are very prevalent in the civil engineering field, especially for predicting concrete
mechanical properties.
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4.4. Bagging Algorithm

The detailed procedural flow chart of the bagging algorithm is shown in Figure 7. It is
basically an equivalent ensemble method that describes the prediction model variance by
supplementation with additional data throughout the training stage. The technique of
irregular sampling includes the data replacement from a primary set. Employing replaced
sampling, every new training dataset can duplicate specific observations. In the procedure
of bagging, for every component, there is an equal possibility of appearing in a new dataset.
The training set size is not dependent on predictive force. Furthermore, variance may be
remarkably declined by precisely tuning the prediction of the desired outcome. Additional
models are trained by using these data sets. The mean of predictions by all models is
used for this ensemble. In regression, the average of various models’ predictions can be
a forecast [94]. A total of twenty sub-models are being utilized for tweaking the bagging
algorithm with DT to find the optimized value which produces firm output.
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The flowchart depicting the research approach is shown in Figure 8. Given the three
algorithms mentioned above anomaly, further to DT, a combination of ensembles (i.e.,
AdaBoost, bagging models, and random forest) algorithms is employed in this study
for maximizing the respective benefits. Twenty sub-models are employed by ensembled
strategies for the determination of ideal value, which develops a firm output. In addition,
error evaluations such as mean square error (MSE), mean absolute error (MAE), k-fold
cross-validation and root mean square error (RMSE), and statistical checks are made
for evaluating the model’s performance. Finally, the comparison of different machine
learning models is made, as well as the suitability of waste marble powder in concrete for
sustainable construction.
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5. Experimental Compressive Strength Test Results

From the compressive strength test results, it is identified that a decrement in com-
pressive strength is observed with an increase in the content of marble powder in bricks
(Figure 9). The highest C.S at 7-days and 28-days of 34.13 MPa and 41.03 MPa is obtained
by M18, which contained 0% marble powder content. Specimens of waste marble powder
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group achieved a maximum compressive strength of 31.06 and 37.83 MPa at 7 and 28-days,
respectively. The maximum decrease in waste marble concrete range is 9.97–48.14%, as
compared to 7 days of plain mix. The maximum decrease in waste marble concrete range
is 2.9–46.9%, compared to 28 days of plain mix. The increased porosity level with the
increase in marble powder content in concrete, and hence the compressive strength is
decreased. Şanal [57] reported enhancement of pore structure due to an increase in the cap-
illary structure of concrete by adding 10% marble dust as cement replacement, ultimately
resulting in reduced mechanical properties of concrete. This can be caused by the dissimilar
C3A—tricalcium aluminate content in cement due to its replacement by marble dust [50].
However, in the current study, the worst mechanical property was observed that might
result from the increase in the capillary structure of the pores with the addition of marble
dust, as reported in the previous study [57].
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Figure 9. Experimental compressive strength; (a) plain concrete; (b) marble powder concrete.

6. Analysis and Modelling Results
6.1. Prediction of Compressive Strength by Different Models

i. Decision tree modelling

Figure 10 depicts a statistical analysis of projected and actual results regarding C.S of
WMC for DT modelling. A reasonably précised output and a very low variation between
anticipated and actual values can be obtained by DT technique. The accuracy of predicting
results can be assessed by having a 0.86 R2 value. The blue line represents the correlation
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between the experimental and predicted values, as evident by the R2 value. The higher R2

denotes the higher accuracy of the model. The dispersion for predicted and experimental
values (targets) and DT model errors is shown in Figure 11. The average, highest, and
lowest values of the training set are 6.20, 20.7, and 0.07 MPa, respectively. Whereas 12.5%
error values are less than 1 MPa, 37.5% are from 2 to 5 MPa, 32.5% are from 6 to 10 MPa,
and 17.5% are higher than 5 MPa.
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ii. Random forest modelling

The correlation between projected and actual results of RF model is shown in Figure 12.
The R2 value for the RF model comes out to be 0.97, which represents the highly precise
and more accurate of RF w.r.t Bg, DT, and AdB models. Furthermore, the dispersion of
projected values, actual targeted values and errors for RF model is shown in Figure 13. The
minimum, maximum, and average error values are 0.07, 10.9 and 3.93 MPa. It is noted that
15% of error data are below 1 MPa, 57.5% from 2 to 5 MPa, 22.5% from 6 to10 MPa, and
only 5% higher than 10 MPa. This analysis reveals the higher accuracy of RF model w.r.t
AdB, DT, and Bg models. It can also be depicted from lower error and greater R2 values. In
addition, twenty sub-models are employed by EML (Bg, DT, and AdB) to get the optimized
value that produces a firm output.
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Figure 12. Predicted and actual results for RF model.
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iii. AdaBoost modelling

A comparison of projected and actual outputs of AdB model is shown in
Figures 14 and 15. The correlation between them is illustrated in Figure 14. The R2 value
is 0.91, which shows better outcomes when compared to the DT model. The dispersion
of actual and predicted values along with errors for AdB model is illustrated in Figure 15.
19.7, 0.15, and 6.34 MPa are the maximum, minimum, and average values for the training
set. Whereas 27.5% of error values are below 1 MPa, 20% range from 2 to 5 MPa, 30% range
from 6 to 10 MPa, and only 22.5% are higher than 10 MPa. The higher accuracy of AdB
model in comparison with the DT model is also depicted by lower error values.
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Figure 14. Predicted and actual results for AdaBoost model.
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iv. Bagging modelling

The correlation between predicted and actual output values for Bg model is provided
in Figure 16. The R2 value for this model comes out to be 0.95, showing considerable
accuracy as compared to that of DT and AdB models. The dispersion of actual and
predicted values and errors for the Bg model is shown in Figure 17. The maximum, average,
and minimum in the training set are 11.07, 3.96, and 0.01 MPa, respectively. Whereas only
25% of error values are below 1 MPa, 45% of values range from 2 to 5 MPa, and 27.5% values
range from 6 to 10 MPa. The error distribution and R2 are more accurate than that of DT
and AdB models for the C.S prediction of WMC. Whereas the R2 and error values obtained
from all considered ensembled ML models are in an acceptable range, thus depicting better
prediction outcomes. Hence, it is observed in this study that EML techniques (RF, AdB and
Bg) can predict high accuracy outcomes when compared to standalone DT techniques.
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6.2. K-Fold Cross Validation Checks

Statistical analysis with Equations (1)–(3) is utilized to predict the model’s response.
The model’s legitimacy is evaluated by utilizing the k-fold cross-validation approach
during execution [95–97]. Usually, the validity of the model is done with a k-fold cross
validation process [92], in which random dispersion is done by splitting it into ten groups.
The greater the R2 value and less the errors (RMSE and MAE), the more a model’s accuracy
is. Furthermore, this process should be repeated multiple (i.e., 10) times for a satisfactory
result. The exceptional precision of the model can be achieved by using this comprehensive
approach. In addition, statistical analysis (i.e., RMSE and MSE) is also performed for all the
models (Table 6). The RF model accuracy (inversely related to error values) compared to
AdB, Bg, and DT models is also supported by these checks. Statistical analysis, as reported
in the literature [98–100], is used to assess the model’s response to the prediction. The k fold
cross validation is assessed by utilizing R2, MSE, and MAE. Respective dispersions for the
decision tree, random forest, AdaBoost, and bagging models are presented in Figures 18–21.
Minimum, average, and maximum values of R2 for the decision tree are 0.52, 0.68, and 0.86,
respectively (refer to Figure 18). Whereas the maximum, average and minimum values of
R2 for random forest are 0.97, 0.78, and 0.66, respectively (see Figure 19). Contrary to it, the
maximum, minimum, and average R2 values of the AdaBoost model are 0.91, 0.53, and 0.71,
respectively, as portrayed in Figure 20. The maximum, average, and minimum values of R2

for Bg model are 0.95, 0.78, and 0.64, respectively are shown in Figure 21. Upon comparing
error values (MSE and MAE), the average MSE and MAE values for DT model are 11.58
and 9.45, respectively. Whereas, average MSE and MAE values for AdaBoost model are
10.08 and 8.45, respectively, and average MSE and MAE values for the Bg model are 7.65
and 7.03, respectively. The RF model with the lowest error and higher R2 value performs
better for results prediction.

MAE =
1
n

n

∑
i=1
|xi − x| (1)

MSE =
1
n

n

∑
i=1

(
ypred − yre f

)2
(2)

RMSE =

√√√√
∑

(
ypred − yre f

)2

N
(3)

where:
n = Total data samples,
x, yre f = data sample reference values,
xi, ypred = model prediction values.

Table 6. Statistical checks of decision tree, random forest, AdaBoost, and bagging models.

Models Mean Absolute Error
(MPa)

Mean Square Error
(MPa)

Root Mean Square
Error (MPa)

Decision tree 6.204 26.173 5.116

Random forest 3.937 24.197 4.919

AdaBoost 4.665 30.947 5.563

Bagging 3.969 62.679 7.917
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Figure 18. Statistical analysis of DT model for K-fold cross-validation.
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Figure 19. Statistical analysis of RF model for K-fold cross-validation.
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Figure 20. Statistical analysis of AdaBoost model for K-fold cross-validation.
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Figure 21. Statistical analysis of bagging model for K-fold cross-validation.

7. Discussion
7.1. Comparison of Machine Learning Models

Ensembled ML and individual approaches are explored in this study to estimate WMC
with the aim of sustainable development in environment-friendly construction materials.
RF, Bg, AdB, and DT machine learning techniques are used in this study to predict the
compressive strength of WMC. The DT algorithm’s goal is to develop a model that can
predict the target variable accurately, for which a tree like structure, i.e., a decision tree, is
developed for problem-solving. In DT, the class label is represented by a leaf node and
attributes are represented by interior node. Both variance and bias are reduced by boosting
supervised learning. Learners develop this idea sequentially on which it is based. The
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growth of all subsequent learners is based on prior learners, except for the initial one. In
this way, strong learners are formed from weak ones. Whereas, in bagging technique,
a random sample is selected for data from the training set; i.e., the selection of individual
data points can be made multiple times. Individual training of said weak models is done in
pursuance of numerous data samples generation and based on task type like; classification
or regression, the average and/or majority of these predictions give an estimate with high
accuracy. To establish the algorithm’s prediction superiority, employed algorithms are
compared for targeted performance. The output of the random forest model comes out to
be more accurate, having a 0.97 R2 value, compared to bagging with 0.95 R2, AdB with
0.91 R2, and DT with 0.86 R2. Furthermore, the performance of AdB, RF, DT, and Bg
models is also evaluated by utilizing the k-fold cross-validation technique and statistical
analysis. The performance of the model is higher with low error levels. But it is tough
to assess optimized machine learning regressors to forecast results from a wide range of
topics because the model’s performance is very much dependable on data points and the
model’s input parameters. On the other hand, in ensemble ML techniques, sub-models
are generated to leverage the weak learner that can be optimized and trained on data for
achieving the higher value of R2. Dispersion of values for the determinant coefficient of
AdB, bg, and RF sub-models is shown in Figure 22. The values of R2 for all sub-models
of RF are greater than 0.76, as shown in Figure 22a, while most values of R2 in the case of
sub-models for AdB and Bg are less than 0.51 (Figure 22b) and 0.66 (Figure 22c), respectively.
It depicts higher accuracy of RF technique for results prediction having a maximum value
of R2, i.e., 0.97. Therefore, the RF model is suggested to predict the compressive strength of
waste materials such as marble powder.
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(c) Bagging.

7.2. Waste Marble Concrete for Sustainable Construction

Planet earth is facing destruction of the ecosystem in terms of ground contamination,
water pollution, and air quality. These are the leading causes of severe diseases leading to
mortality. In addition to health issues, pollution is also the main hindrance to achieving
sustainability. A substantial expense for society and the economy is imposed by high
levels of environmental pollution, i.e., air, water, and land treatment. Construction wastes
are a major contributor to environmental pollution. Singh, et al. [101] reported that 30%
of marble is wasted during processing because of its uneven shape or smaller size. In
the case of semi-processed slabs, the quantity of waste is 2–5%. In a vertical/horizontal
cutter, one ton of processed marble stone produces nearly one ton of slurry with 35–45%
water content. Construction industries are expanding too quickly, resulting in a massive
amount of waste, wreaking havoc on the environment in terms of air pollution, water
pollution, and soil deterioration, such as waste generated by marble industries. To address
this major challenge, strong strategy action is required. Researchers/engineers are more
focused on the effective usage of waste materials in the construction industry to minimize
the challenge mentioned above. The incorporation of waste materials, such as marble
powder, is among the effective steps toward sustainability as it would not only reduce the
impact on the environment, but would also save natural resources and lower the project’s
overall cost, ultimately bringing economic value for waste materials. According to this
viewpoint, the building sector is the primary focus for the reuse of waste products such as
waste marble and granite, natural waste fibers, aggregate, and mortar wastes, etc. These
wastes may be used in large-scale concrete production, whereas renewable resources such
as natural sand may last longer and minimize cement usage, resulting in more productive
fields, lower project costs, and reduced environmental contamination risk. In the current
research, waste marble powder usage is pointed out for concrete manufacturing to reduce
waste disposal problems as shown in Figure 23. The concrete blocks are mostly used in
the interior and the exterior of buildings. Blocks are used for partition as non-load bearing
walls when used in frame structures that are constructed with reinforced cement concrete
(RCC). The waste marble powder concrete blocks can deliver several flexible choices that
can be used to customize one’s home aesthetics with minimum effort. Because of this
functionality, concrete blocks allow design ideas for innovation in the street and building
floors. Sustainable concrete blocks are readily recyclable, thus reducing the overall cost
of building construction, ultimately eliminating potential pollution. Marble powder is
added to concrete to make these blocks which can be used in the construction of roadside
walkways. C.S of concrete is reduced by adding waste marble powder to it, as reported
in the current study, allowing its application in emergency light-weight structures such
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as shelter homes, hospitals after earthquakes and flooding, and restrooms for passengers
on highways and in railway/bus stations. In this scenario, waste marble powder concrete
blocks are proposed to be used as sustainable construction material.
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8. Conclusions

Marble stone waste materials are a major concern for the construction industry. Ac-
cordingly, the incorporation of marble waste powder in concrete composite during its
manufacturing could be an effective addition to the category of sustainable construction
materials and an effective effort to improve the surrounding environment. For this purpose,
an approach has been made to use marble powder with different proportions in concrete.
Additionally, this study aims to explore the usage of ensembles machine learning (ML) and
individual approaches for the prediction of compressive strength (C.S) of waste marble
concrete (WMC). Forecasting the compressive strength of waste marble concrete is achieved
by utilizing random forest (RF), AdaBoost (AdB), bagging (Bg), and decision tree (DT)
techniques. The conclusions are as follows:

• Bricks manufactured of 10% marble powder as a substitute had the highest compres-
sive strengths of 37.8 MPa at 28 days. Such type of waste marble concrete may be used
in the form of blocks for emergency light-weight structures such as hospitals and refuge
homes during earthquakes and flooding. In this scenario, WMC having a 10% marble
powder content (as a substitute) is proposed to be used as construction material.

• The random forest model has come out to be most effective in terms of prediction
with respect to AdaBoost, bagging, and decision tree approaches due to higher values
of R2 with lower error values. Decision tree, random forest, AdaBoost, and bagging
models have R2 values of 0.86, 0.97, 0.91, and 0.95, respectively. However, the findings
of ensembled models (RF, AdaBoost, and bagging) are within an acceptable range.

• Satisfactory outputs of random forest, AdaBoost, and bagging are also demonstrated
by the k-fold cross-validation approach and statistical analysis. In addition, the higher
performance of the random forest model with respect to the decision tree, AdaBoost,
and bagging models is also established through these checks.

• ML can achieve more accurate prediction of material strength properties approaches
without putting additional effort and time for sampling, casting, curing, and testing.
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This study evaluated the compressive strength of waste marble concrete considering
limited mix proportions with limited input parameters. However, in the future, increasing
the number of datasheets and importing a substantially higher number of mixtures and
considering higher input parameters could result in a better applicable model. As a
result, experimental work, field tests, and numerical analysis employing a variety of
methodologies should be used to increase the quantity of data points and outcomes in
future investigations (e.g., the Monte Carlo simulation).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15124108/s1, Table S1: Data used for modeling.
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45. Keleştemur, O.; Arıcı, E.; Yıldız, S.; Gökçer, B. Performance evaluation of cement mortars containing marble dust and glass fiber
exposed to high temperature by using Taguchi method. Constr. Build. Mater. 2014, 60, 17–24. [CrossRef]

46. Rodrigues, R.d.; De Brito, J.; Sardinha, M. Mechanical properties of structural concrete containing very fine aggregates from
marble cutting sludge. Constr. Build. Mater. 2015, 77, 349–356. [CrossRef]
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