
RESEARCH ARTICLE

Uncoupling the roles of firing rates and spike

bursts in shaping the STN-GPe beta band

oscillations

Jyotika BahugunaID
1☯*, Ajith Sahasranamam2☯, Arvind KumarID

3*

1 Aix Marseille University, Institute for Systems Neuroscience, Marseille, France, 2 Ongil Pvt Ltd, Singapore,

3 Department of Computational Science and Technology, School of Electrical Engineering and Computer

Science, KTH Royal Institute of Technology, Stockholm, Sweden

☯ These authors contributed equally to this work.

* jyotika.bahuguna@gmail.com (JB); arvkumar@kth.se (AK)

Abstract

The excess of 15-30 Hz (β-band) oscillations in the basal ganglia is one of the key signa-

tures of Parkinson’s disease (PD). The STN-GPe network is integral to generation and mod-

ulation of β band oscillations in basal ganglia. However, the role of changes in the firing

rates and spike bursting of STN and GPe neurons in shaping these oscillations has

remained unclear. In order to uncouple their effects, we studied the dynamics of STN-GPe

network using numerical simulations. In particular, we used a neuron model, in which firing

rates and spike bursting can be independently controlled. Using this model, we found that

while STN firing rate is predictive of oscillations, GPe firing rate is not. The effect of spike

bursting in STN and GPe neurons was state-dependent. That is, only when the network was

operating in a state close to the border of oscillatory and non-oscillatory regimes, spike

bursting had a qualitative effect on the β band oscillations. In these network states, an

increase in GPe bursting enhanced the oscillations whereas an equivalent proportion of

spike bursting in STN suppressed the oscillations. These results provide new insights into

the mechanisms underlying the transient β bursts and how duration and power of β band

oscillations may be controlled by an interplay of GPe and STN firing rates and spike bursts.

Author summary

The STN-GPe network undergoes a change in firing rates as well as increased bursting dur-

ing excessive β band oscillations during Parkinson’s disease. In this work we uncouple their

effects by using a novel neuron model and show that presence of oscillations is contingent

on the increase in STN firing rates, however the effect of spike bursting on oscillations

depends on the network state. In a network state on the border of oscillatory and non-oscil-

latory regime, GPe spike bursting strengthens oscillations. The effect of spike bursting in

the STN depends on the proportion of GPe neurons bursting. These results suggest a mech-

anism underlying a transient β band oscillation bursts often seen in experimental data.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative brain disease caused by the deple-

tion of dopamine neurons in the substantia nigra pars compacta (SNc) [1]. Loss of dopamine

causes a host of cognitive and motor impairments. Dopaminergic cell death can be attributed

to many causes e.g. genetic mutations [1], pathogen that affects the gut microbome and travels

to the central nervous systems [2, 3], excitotoxicity [4], and mitochondrial dysfunction [5] etc.

[6]. While the etiology of PD is still debated, the behavioral symptoms of PD are accompanied

by various changes in the neuronal activity in Basal Ganglia (BG): e.g, increased firing rate of

D2 type dopamine receptors expressing striatal neurons [7–9]; increase in spike bursts in stria-

tum, globus pallidus externa (GPe), globus pallidus interna (GPi) and subthalamic nuclei

(STN) [8] and increased synchrony in all BG nuclei [10] including striatum [11], GPe [12, 13],

STN [14–16] and GPi/SNr [12, 17, 18]. Besides these changes in neuronal activity, at the popu-

lation level, there is an increase in the power and duration of β band oscillations (15-30 Hz) in

local field potential (LFP) recorded from the basal ganglia of PD patients [14, 18–20]. The β
band oscillations are mainly correlated with motor deficits such as rigidity, bradykinesia and

akinesia [14, 16, 21] and, suppression of these oscillations, for example, by deep brain stimula-

tion (DBS) ameliorates motor symptoms of PD. Therefore, there is a great interest in under-

standing the mechanisms underlying the origin of β band oscillations which are not well

understood. For instance, it is unclear whether the oscillations are imposed by cortical inputs

[22–24] or they are generated within the BG, either in striatum [25], in pallidostriatal circuit

[26] or the STN-GPe network [8, 27–35]. Several experimental results indicate that GPe-STN

network plays an integral role in generating and modulating these oscillations [14, 18, 19, 36]

and their stimulation have been shown to affect (disrupt/modulate) oscillations [8, 37, 38].

From a dynamical systems perspective, interaction between excitatory and inhibitory neu-

ronal population form the necessary substrate for oscillations where an imbalance of timing

and/or strength of effective excitation and inhibition leads to population oscillations [39, 40].

Several excitatory and inhibitory loops can be identified in the BG which may underlie the

emergence of β band oscillations among which STN-GPe circuit has emerged as a primary

candidate. In both firing rate-based and spiking neuronal network models, an increase in the

coupling between STN and GPe is sufficient to induce strong oscillations [28, 31, 33]. How-

ever, the oscillations may also be created if effective excitatory input to STN neurons (from the

cortex) or effective inhibitory input to GPe neurons (from the striatum) is increased [29, 35].

Besides, the GPe-STN network, the imbalance of the direct (effectively excitatory) and hyper-

direct (effectively inhibitory) pathways of the BG can also cause oscillations [41]. These

computational models not only suggest possible mechanisms underlying the β oscillations but

also provide explanations for the altered synaptic connectivity within the BG and how

increased firing rates in the striatal neuron projecting to the GPe [7] can lead to pathological

oscillations.

Recent data from human patients suggest that β band oscillations are not persistent and

occur in short epochs which are called β oscillation bursts [20]. The β oscillation bursts in fact,

might appear as persistent oscillations as a result of averaging over multiple trials [42–44] in

order to account for the inter-trial variability. Such β oscillation bursts have also been observed

in healthy animals in certain task conditions [45]. In human patients, characteristics of β-oscil-

lation bursts are associated with motor performance [20, 46, 47]. The presence of oscillatory

bursts might be a result of transient change in external input [35] or phase slips between the

population activity of STN and GPe [48]. In general, however, the mechanisms due to which

these oscillatory bursts arise are unclear.
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The β band oscillations are also accompanied by an increase in spike bursting along with

the firing rate changes. In MPTP models of non-human primates, the proportion of bursty

spikes in STN and GPe is significantly higher in animals with PD than the healthy animals [8,

49]. Increased spike bursting in GPe and STN is also observed in 6-OHDA treated rodents [50,

51]. But it remains unclear how increased spike bursting affects the duration and power of β
band oscillations.

However, it should be noted neurons in the STN-GPe network show spike bursting even in

healthy conditions [8, 49]. Therefore, it is important to understand whether the spike bursting

and the pathological oscillations share a causal relationship and if this is the case, then why

spike bursts are also observed in healthy states [8, 49]. In addition, it is also crucial to tease

apart the contribution of altered firing rates and spike bursting to the β-band oscillations to

better understand the pathophysiology of PD and find better way to quench the pathological

oscillations.

To understand the role of spike bursting in shaping the beta oscillations here, we investi-

gated the effect of firing rates and patterns on the presence of oscillations using a computa-

tional model of the STN-GPe network. Usually, the average firing rate of a neuron is tightly

coupled to spike bursting and it is not easy to disentangle the effect of these two variables inde-

pendently. To solve this we used the State-dependent Stochastic Bursting Neuron Model

(SSBN) model [52], which allowed us to vary firing rate and firing pattern (spike bursting) of

the neuron independently and hence uncouple the effects of firing rate and spike bursting on

the β band oscillations.

Using the model, we found that the average firing rate of STN neurons was predictive of

oscillations but surprisingly, the average firing rate of GPe neurons was not. Notably, the

changes in firing rate of STN and GPe neurons resulted in persistent oscillations in the β band.

The effect of GPe and STN spike bursting on STN-GPe oscillations was however, state depen-

dent. When the network exhibited strong oscillations or aperiodic activity, spike bursting in

STN and GPe had no effect on the global state of network activity. However, in the regime at

the border of oscillatory and non-oscillatory states (transition regime), an increase in the frac-

tion of bursting neurons in GPe, enhanced oscillations. By contrast, small to moderate fraction

of bursting neurons in STN quenched the oscillations whereas when most of the STN neurons

were bursting, network re-exhibited strong oscillations. Furthermore, in the transition regime,

when a small fraction of GPe and STN neurons were bursty, β band oscillations occurred in

short epochs that closely resembled with the population activity as observed in the experimen-

tal data. Thus, our model suggests that spike bursting may be one of the mechanisms to gener-

ate these β-oscillation bursts (β-bursts). Taken together, these results for the first time, separate

the roles of firing rates and spike bursting and shows how spike bursting in the STN and GPe

can either enhance or suppress the β band oscillations, depending on the network activity

state. That is, the nature of β band oscillations is jointly determined by a combination of the

underlying network state and proportion of neurons that are bursty. Finally, our results

revealed that STN and GPe may play a qualitatively different roles in shaping the dynamics of

beta band oscillations. These insights suggest new means to quench the pathological

oscillations.

Materials and methods

Neuron model

In the existing reduced neuron models (e.g. leaky-integrate-fire neuron), to achieve changes in

the firing patterns, the sub-threshold dynamics of the neuron model needs to be altered. How-

ever, when a neuron model is modified to exhibit spike bursting, its input-output firing rate
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relationship (f − I curve) is also altered. That is, spike bursting and neuron firing rate are cou-

pled and prevent the comparison with non-bursting neuron with the same firing rate. How-

ever, to isolate the effect of changes in the firing patterns on the network dynamics, the f − I
curve of the neuron and its firing pattern need to be independently controlled. To achieve this,

we use the State-dependent Stochastic Bursting Neuron (SSBN) [52]. The subthreshold mem-

brane potential dynamics of the SSBN model is same as that of the Leaky Integrate and Fire

(LIF) neuron:

tm
_Vm ¼ � Vm þ Isyn

where, τm is the membrane time constant, Vm is the membrane potential and Isyn is the total

synaptic current to the neuron. The spike generation mechanism of SSBN is stochastic. On

reaching the spiking threshold Vth, the SSBN generates a burst of b spikes with a probability of

1/b every time Vm� Vth. This allows us to vary the size of spike burst without affecting the

spike rate and the input output neuron transfer function of the neuron (in S1 Fig). The inter-

spike-interval within the burst is constant and is same as the refractory period of the neuron

(5ms). In order to ensure that the qualitative results are independent of the choice of the refrac-

tory period, we reproduced one of the figures for two additional values of refractory periods,

3ms and 7ms. The details are discussed in the section State dependent effect of spike bursting
neurons on β band oscillations.

More details about this neuron model can be found in [52]. All the neurons in the STN and

GPe were modelled as SSBNs. The neuron parameters used are consistent with the STN-GPe

network used in a recent work by [35] and are listed in Table 1. We used the same neuron

parameters for STN and GPe neurons, however the two neuron types received different

amount of external inputs as we explored network state space for different external inputs to

the GPe and STN.

Synapse model

Synapses were modelled as a transient change in conductance. Each spike elicited an alpha-

function shaped change in the post-synaptic conductance. The reversal potential determined

whether the synapse was excitatory or inhibitory. The peak conductance of each type of syn-

apse is provided in the Fig 1 and Table 2 and the excitatory and inhibitory time constants are

Table 1. Neuron parameters as used in [35].

Parameter Value Description

Cm 200pF Membrane capacitance

τm 20ms Membrane Time Constant

Vth −54mV Firing threshold

Vreset −70mV Reset potential

τref 5ms Refractory period

Bisi 5ms Inter-spike interval within a spike burst

B 1 or 4 Number of spikes in a burst

τexc 5ms Excitatory synaptic time constant

τinh 10ms Inhibitory synaptic time constant

gL 10nS Leak conductance

Eex 0mV Reversal potential (excitatory)

Ein −80.0mV Reversal potential (inhibitory)

https://doi.org/10.1371/journal.pcbi.1007748.t001
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shown in Table 1. For further details on dynamics, refer to “iaf_cond_alpha” neuron model in

NEST [53].

STN-GPe network model

The network model consisted of 2000 inhibitory (corresponding to the GPe population) and

1000 excitatory (corresponding to the STN population) neurons. The neurons were connected

in a random manner with fixed connection probabilities. The connection strength, connection

Fig 1. Schematic of the STN-GPe network. The connection probability, synaptic strength and delay for each connection is shown in red, blue

and green, respectively. The number in parentheses (1000, 2000) represent the number of neurons in STN and GPe, respectively. The

connection with arrowhead are excitatory and those with filled circle are inhibitory. The F-I curves for the neuron model with different spike

burst lengths is plotted in S1 Fig. The inter spike interval within the burst is kept constant.

https://doi.org/10.1371/journal.pcbi.1007748.g001

Table 2. Network parameters as used in [35] The median, 25% and 75% quartiles of the distributions are reported

in brackets.

Parameter Value Description

�gpe−gpe 0.02 (0.018,0.015, 0.021) GPe to GPe connectivity

�gpe−stn 0.035 (0.036,0.032, 0.04) GPe to STN connectivity

�stn−gpe 0.02 (0.02,0.017, 0.023) STN to GPe connectivity

Jgpe−gpe −0.7nS (−0.68,−0.81, −0.57) GPe to GPe synaptic strength

Jgpe−stn −0.8nS (−0.83,−0.93, −0.72) GPe to STN synaptic strength

Jstn−gpe 1.2nS (1.0,0.85, 1.2) STN to GPe synaptic strength

τgpe−gpe 3.0ms (2.8 2.5, 3.2) GPe to GPe synaptic delay

τgpe−stn 6.0ms (5.7, 4.7, 6.4) GPe to STN synaptic delay

τstn−gpe 6.0ms (5.7, 4.9, 6.4) STN to GPe synaptic delay

https://doi.org/10.1371/journal.pcbi.1007748.t002
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probability and synaptic delays were identical to the one used in the model by Mirzaei et al.

[35] and are shown in Fig 1.

We investigated the oscillation dynamics of the STN-GPe network in two conditions:

Condition A: To characterize the effect of firing rates on β band oscillations we studied the

network when all the neurons were non-bursting type. For these simulations we set B = 1

for all the neurons.

Condition B: To characterize the effect of spike bursting on β band oscillations we used net-

works in which a fraction of STN and/or GPe neurons were bursting type. The fraction of

bursting neurons in the two populations was varied systematically from 0 to 1. For these

simulation we set the spike burst length B = 4 for the bursting neurons and B = 1 for the

non-bursting (or regular spiking neurons).

Robustness analysis of network parameters. In order to ensure that our results are not

dependent on a specific choice of network parameters used in [35], we also performed a

robustness analysis. To this end we simulated 10000 different models. For each model the

value of each of the model parameters (i.e. network connection probability, synaptic strength

and delays) were drawn from a Gaussian distribution, whose mean was set to the value used in

the model by Mirzaei et al. [35] and the standard deviation was taken as 20% of the mean

value. For each parameter set (comprising of nine model parameters -see Table 2), the model

was simulated for different values of external input to STN and GPe neurons to generate differ-

ent network activity states, characterized by their value of spectral entropy. The range of STN

and GPe inputs was same as used to generate the results shown in Fig 2. Each model was simu-

lated five times with different random number seeds. The spectral entropy for the five trials

was averaged to obtain the state space (e.g. Fig 2C) for each parameter set. Next, we identified

the parameter set that results in a state space which had linearly separable oscillatory (spectral

entropy� 0.45) and non-oscillatory (spectral entropy� 0.55) regions. This was done using a

Support Vector Classifier (SVC) from python library sklearn to classify our networks into

two classes (class label 0: non-oscillatory, spectral entropy� 0.55 and class label 1: oscillatory,

spectral entropy� 0.45). Using this analysis we retained the models that resulted in a classifi-

cation score of 1. From the retained models, we estimated the distribution of each network

parameter.

We would however like to point out, that this is a preliminary robustness analysis and is no

way a comprehensive sensitivity analysis which may include calculation of sensitivity of differ-

ent features (e.g. spectral entropy) with respect to perturbations in network parameters, analy-

sis of the “sloppy”/sensitive parameters and/or covariance between the parameter values [54,

55], which is beyond the scope of the this work.

Input

All neurons in the STN and GPe received external excitatory input which was modelled as

uncorrelated Poisson spike trains. This input was tuned to match the range of firing rates of

the STN and GPe observed in in vivo data during healthy and Parkinsonian conditions [19, 35,

51].

To characterize the role of firing rates simulations (condition A) we systematically varied

the rate of Poisson spike trains independently for the STN and GPe neurons. For each parame-

ter set we performed at least 5 trials with different random seeds.
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Fig 2. Effect of STN and GPe firing rates on β band oscillations. (A) Average firing rate of GPe neurons as a

function of different input rates to the STN and GPe. (B) Same as in A but for STN neurons. (C) Strength of

oscillations in the GPe population (quantified using spectral entropy, see Methods). (B) Same as in C but for STN

neurons. (E) The effect of the STN and GPe firing rates (as in A and B) on spectral entropy (as in C and D). These

results show that β band oscillations in the STN-GPe network depend on the STN firing rate but not on the GPe firing

rates. All the values (firing rate and spectral entropy) were averaged over 5 trials. A scatter plot for spectral entropy

against the STN and GPe firing rates for all the 5 trials is shown in S4 Fig.

https://doi.org/10.1371/journal.pcbi.1007748.g002
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Data analysis

Spectrum of the population activity. To estimate the spectrum of the network activity we

binned (bin width = 5 ms) the spiking activity of all the STN or GPe neurons to obtain the pop-

ulation activity (S). We subtracted the mean and estimated the spectrum (P) using the fast Fou-

rier transform (frequency resolution = 5 Hz). To estimate spectral entropy (see below) we

measured the P for the whole duration of simulations (7500 ms). To estimate the time-resolved

spectrum we measured P for sliding windows (window size = 200ms; overlap = 50ms).

Spectral entropy. To quantify how oscillatory the network activity was, we computed the

spectral entropy HS, which is a measure of dispersion of spectral energy of a signal [52, 56].

HS ¼
�
P

kPklogPk
logN

where Pk is the spectral power at frequency k and N is the total number of frequency bins con-

sidered. To estimate spectral entropy we normalized Pk such that ∑k Pk = 1. The spectral power

was calculated in the β frequency range, i.e., 10-35 Hz [57]. Note that we consider the fre-

quency range wide enough to cover both low (10 − 20Hz) and high beta (20 − 35Hz) as we

span across a wide range of input firing rates. There is a large variability in the peak frequency

and range of the β-band oscillations even among rodents. It may depend on the pathological

state of the animal (healthy or 6-OHDA lesioned) and/or the recording conditions (anaesthe-

tized or awake). In healthy rats, the GPe-LFPs recorded in rats during quiet rest peaked around

13 − 17Hz across animals [58]. In 6-OHDA lesioned anaesthetized rats, mean peak frequency

for GPe-LFPs is reported to be� 17 − 22Hz [13, 59] and 16 − 21Hz for STN-LFPs [59]. In

awake behaving rats beta band oscillations are faster e.g. STN-LFPs mean beta band peak fre-

quency lies between 22 − 36Hz [15, 60]. To cover all these cases, we set a broad range (10

− 35Hz) to calculate the spectral power [57].

An aperiodic signal (e.g. white noise) for which the spectral power is uniformly distributed

over the whole frequency range, has HS = 1. By contrast, periodic signals that exhibit a peak in

their spectrum (e.g. in the β band) have lower values of HS. In an extreme case, for a single fre-

quency sinusoidal signal HS = 0. Thus, HS varies between 0 and 1. A simple demonstration of

the measure of spectral entropy for the effect of noise and multiple peaks is available at the fol-

lowing weblink (https://osf.io/quycb/—Figures/Spectral_entropy_example). This includes the

figure and the corresponding script required to reproduce the figure.

Duration and amplitude of beta oscillations bursts (beta bursts). We defined the length

of a burst of β band oscillations (β-burst) as the duration for which instantaneous power in the

β band remained above a threshold (βth). βth was the average power in the β band for an uncor-

related ensemble of Poisson type spikes trains with same average firing rate as the neurons in

the network. Because neurons in our model had different average firing rate (averaged over 5

trials) depending on the external input and network activity states, βth for each network activ-

ity state was different. The β oscillation burst amplitude was estimated as the peak power in

the β band. To estimate the β oscillation burst amplitude we smoothened the power spectrum

using a cubic kernel. We also estimated the maximum frequency during the β-bursts. Because

the peak frequency of beta oscillation bursts was found to be between 15-20Hz, a narrower

band (15 − 20Hz) was used to define a β oscillation burst for an accurate description of the

threshold.

Estimation of excitation-inhibition balance

The E-I balance a GPe neuron was calculated as the ratio of effective excitatory input it

received from the STN neurons (JEI-eff) and effective inhibitory input it received from other

PLOS COMPUTATIONAL BIOLOGY STN-GPe firing rates, bursting and oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007748 March 30, 2020 8 / 31

https://osf.io/quycb/
https://doi.org/10.1371/journal.pcbi.1007748


GPe neurons (JII-eff). The effective synaptic weights JEI-eff, JII-eff were estimated as:

JEI� eff ¼ Rstn � Jstn� gpe � �stn� gpe � Nstn � texc

where Rstn is the average firing rate of the STN neurons, Jstn−gpe is the synaptic strength of

STN!GPe connection, �stn−gpe is the probability connection from STN to GPe, Nstn is the

number of STN neurons and τexc is the time constant of the excitatory synapses (Table 1). Sim-

ilarly, the JII-eff was estimated as:

JII� eff ¼ Rgpe � Jgpe� gpe � �gpe� gpe � Ngpe � tinh

where Rgpe is the average firing rate of the GPe neurons, Jgpe−gpe is the synaptic strength of

GPE!GPe connection, �gpe−gpe is the probability connection from GPe to GPe, Ngpe is the

number of GPe neurons and τinh is the time constant of the inhibitory synapse (Table 1).

Simulation and data analysis tools

The dynamics of STN-GPe network was simulated using NEST (version 2.12.0) [53] with a

simulation resolution of 0.1ms. The SSB neuron model was added to NEST and the code as

well as instructions on recompilation are described in https://github.com/jyotikab/stn_gpe_

ssbn. Spiking activity of the network was analyzed using custom code written using SciPy and

NumPy libraries. Visualizations were done using Matplotlib [61].

Results

Beta band (15-30 Hz) oscillations are a characteristic feature of the neuronal activity in PD

patients. Animal models have shown that the emergence of β band oscillations is also accom-

panied by a change in the firing rate and spike bursting in both STN and GPe neurons. Here

we investigate the effect of firing rate changes and spike bursting in STN and GPe neurons on

the power and duration of β band oscillations. To this end, we have studied the dynamics of

the STN-GPe networks by systematically and independently varying the input firing rate and

spike bursting of STN and GPe neurons.

STN firing rate determines the strength of β band oscillations

First, we studied the effect of STN and GPe firing rates on the emergence of oscillations. To

this end, we systematically varied the rate of external input to STN and GPe neurons to obtain

different firing rates in these neurons and measured the spectral entropy of the population

activity to characterize the oscillations (Fig 2). As expected the GPe firing rates monotonically

increased as we increased excitatory input to the STN (Fig 2A). However, GPe firing rate var-

ied in a non-monotonic fashion as we increased excitatory input to the GPe neurons (Fig 2A),

because of the recurrent inhibition within the GPe. By contrast, STN firing rates monotoni-

cally increased as we increased the excitatory input to STN and monotonically decreased as we

increased excitatory input to GPe (Fig 2B).

Irrespective of the differences in their mean firing rate, both STN and GPe showed the

same oscillation dynamics. More specifically, an increase in the excitatory input to STN or

decrease in the excitation to GPe led to the emergence of β band oscillations in the STN-GPe

network (Fig 2C and 2D—lighter color represents an oscillatory regime). This is consistent

with previous studies which showed that increase in excitatory inputs to STN and inhibition to

GPe from upstream brain areas (e.g striatum) are sufficient to trigger oscillations in the sub-

thalamo-pallidal circuitry [29, 35].
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To characterize the robustness of these results we simulated 10000 networks for which each

parameter (connection probability, synaptic strength and delays) were drawn from a Gaussian

distribution (see Methods). We estimated the state space of the network activity (characterized

by spectral entropy) as a function of external input to STN and GPe. Only the networks which

had linearly separable oscillatory and non-oscillatory regions (akin to the Fig 2C and 2D) were

selected. The distribution of these selected model parameters closely matched with the param-

eter sampling distribution (see S2 Fig) however, there were some notable exceptions. For

instance, the distributions of the �stn! gpe and Jstn! gpe were skewed towards lower values for

the selected models than the sampled distributions (see S2 Fig). The median, 25% and 75%

quartiles of the distribution are displayed in parenthesis (Table 2) beside the original values

used in [35]. Overall this robustness analysis suggests that our results are robust for the param-

eters distributions as shown in the S2 Fig. Fig 3 is reproduced for an exemplary parameter

combination (S3 Fig).

These results (Fig 2A–2D) also revealed how the β band oscillations depend on the firing

rate of the STN and GPe neurons as opposed to change in monotonically increasing input

drives. To better visualize this relationship we rendered spectral entropy of the network activ-

ity as a function of STN and GPe firing rates (Fig 2E). We found that GPe firing rates are not

predictive of the oscillations in the network. For instance, even if GPe firing rate is kept con-

stant, an increase in firing rate of STN neurons was sufficient to induce oscillations. Similarly,

a decrease in STN activity reduced oscillations provided GPe firing rates did not vary. On the

other hand, when STN firing rate was low (below 5 Hz), any change in the GPe firing rate was

not able to induce oscillations. This can also be observed in a scatter plot of spectral entropy

against the STN and GPe firing rates (S4 Fig).

We also analyzed the spectrograms of the network activity in three exemplary activity

regimes: oscillatory, non-oscillatory and transition regimes (marked as 1, 3 and 2 respectively

in Fig 3A). These spectrograms are shown in S5 Fig. The non-oscillatory network (3) showed

no oscillations (S5 Fig -top) whereas the oscillatory network (1) showed persistent oscillations

(S5 Fig -bottom). The network operating in the transition regime (2) however, showed a pro-

pensity towards β-oscillation bursts even though the oscillations were weak (S5 Fig-middle).

Experimental data [12, 19] as well as previous computational models [29, 31] have sug-

gested that emergence of β band oscillations is accompanied by a decrease in the firing rate of

GPe neurons and an increase in the firing rate of STN neurons. Our results suggest that only

the STN firing rates are positively correlated with the power of β band oscillations. Based on

these observations we argue that a decrease in GPe activity as observed experimentally may be

necessary but not sufficient condition to induce Parkinsonism. That is, reduction in the firing

rate of GPe neurons or lesions of GPe are not sufficient to induce beta band oscillations. This

suggestion is consistent with the experimental findings that GPe lesions in non-MPTP mon-

keys do not induce any discernible motor signs of PD [17]. The STN firing rates being predic-

tive of oscillations is also suggested by observations in MPTP treated monkeys [8], where they

show that treating STN with muscimol (blocking STN shows decrease in STN firing rates) and

intrapallidal blocking of glutamergic receptors (decreased GPe firing rates) suppressed oscilla-

tions whereas intrapallidal blocking of GABAergic receptors (increased GPe firing rates) had

no effect on the oscillations (measured as power in the beta band).

State dependent effect of spike bursting neurons on β band oscillations

Effect of spike bursting in GPe neurons on β band oscillations. Besides changes in aver-

age firing rate, dopamine depleted animals also show an increase in spike bursting, in both

STN and GPe [8, 49]. Thus far it is not clear whether and how spike bursts affect the β band
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oscillations. In both reduced or biophysical neuron models introduction of spike bursting nec-

essarily affects the total spike rate of the neuron. As we have shown in the previous section fir-

ing rate itself has an effect on the oscillations. That is, such neuron models cannot be used to

isolate the contribution of spike bursting on oscillations. Therefore, we used the SSBN model

Fig 3. State dependent effect of spike bursting on the strength of β band oscillations. (A) Spectral entropy as a function of input to the STN and GPe

neurons. This panel is same as the Fig 2C with three regimes of network activity marked as, 1: oscillatory, 2: transition regime, 3: non-oscillatory

regime. (B): Top GPe (left) and STN (right) firing rates as a function of the fraction of bursting neurons in the STN (x-axis) and GPe (y-axis), in the

oscillatory regime 1. (B): Bottom GPe (left) and STN (right) spectral entropy as a function of the fraction of bursting neurons in the STN (x-axis) and

GPe (y-axis), in the oscillatory regime (i.e. state 1 in the panel A). Spike bursting has no effect on the network activity dynamics in this regime. (C)

Same as in the panel (B) but when the network was operating in the transition regime (marked as state 2 in the panel A). In this regime, spike bursting

affects the network activity state: increase in the fraction of bursting neurons in GPe induces oscillations whereas an optimal fraction of bursting

neurons in STN can quench oscillations. (D) Same as in the panel (B) but when the network was operating in a non-oscillatory regime (marked as 3 in

panel A). Addition of BS neurons did not affect a strong non-oscillatory regime.

https://doi.org/10.1371/journal.pcbi.1007748.g003
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which allows us to introduce spike bursting in a neuron without affecting its average firing

rate [52]. Using this model we systematically altered the fraction of bursting neurons in the

STN (FBSTN) and GPe (FBGPe). Previously, in a model of neocortical networks we showed that

the effect of spike bursting depends on the network activity states [52]. Therefore, we studied

the effect of spike bursting on three exemplary network regimes (1) a strong oscillatory regime,

(2) at the border between oscillatory and non-oscillatory regimes (transition regime) and (3) a

non-oscillatory regime (marked as 1, 2 and 3 in Fig 3A).

We found that when network was in a strong oscillatory regime (1), an increase in the frac-

tion of bursting neurons in GPe (FBGPe) while altered the average firing rates (Fig 3B—upper

panel), it had no qualitative effect on the population oscillations (Fig 3B—lower panel). Simi-

larly, when the network was in a non-oscillatory regime (network activity regime 3), FBGPe

had no effect on the spike rates and spectrum of the population activity (Fig 3D). That is, in

strong oscillatory and completely non-oscillatory states, spike bursting has no consequence for

the population activity dynamics.

However, when the network was in the transition regime (network activity regime 2),

increase in FBGPe increased oscillations (Fig 3C—lower panel). This activity regime was char-

acterized by weak oscillations when all neurons were non-bursty (S5 Fig-middle panel), but an

introduction of spike bursting in� 20% GPe neurons was sufficient to induce oscillations in

the STN-GPe network (Fig 3C—lower panel). In this network state, an increase in the number

of bursting neurons also increased the average population firing rate (Fig 3C—upper panel) in

both STN and GPe. Clearly, this increase in firing rates is a network phenomenon induced by

spike bursting and not because of a change in the input excitation (as was shown in Fig 2) or

change in the excitability of individual neurons. Finally, an increase in FBGPe increased the net-

work oscillations irrespective of the fraction of bursting neurons in the STN (Fig 3C—lower

panel).

In order to ensure that this effect was not dependent on the choice of within burst inter-

spike-interval (Bisi = 5ms), we also measured the effect of spike bursts by changing Bisi to 3 ms

or 7 ms (S6 and S7 Figs). Qualitatively the effect of spike bursts was not dependent on the Bisi
however, for smaller values of Bisi (3 ms), the region of non-oscillatory regime was reduced.

This can also be seen in the corresponding figure showing spectral entropy (S6C Fig—lower

panel). By contrast, for higher value of Bisi (7 ms), the region of oscillatory regime was reduced

(S7B Fig—lower panel).

Effect of spike bursting in STN neurons on β band oscillations. In contrast to the burst-

ing in GPe neurons, the effect of spike bursting in STN neurons was not only dependent on

the network state but also on the fraction of spike bursting neurons in the GPe. Similar to the

effect of spike bursting in GPe neurons, in strong oscillatory and non-oscillatory states a

change in the fraction of bursting neurons in the STN population had no effect on the network

activity state (Fig 3B and 3D, S8 and S10 Figs).

However, in the transition regime (network activity regime 2) spike bursts in the STN affect

the oscillations in a non-monotonic fashion. As shown above in this regime an increase in

fraction of bursty neurons in GPe pushes the network state towards oscillations. We found

that in this regime, the impact of STN spike bursting on oscillations depended on FBGPe. For

small FBGPe, the network remained in a non-oscillatory state and a change in FBSTN had no

effect on the spectrum of network activity. Similarly, for high FBGPe, the network remained in

an oscillatory state and a change in FBSTN had no effect on the spectrum population activity.

At a moderate fraction of spike bursting neurons in GPe (0.2< FBGPe < 0.6), when the net-

work showed weak oscillations, a small increase in the FBSTN reduced oscillations (FBSTN <

0.6—Fig 3C; S9 Fig) but large values of FBSTN(� 0.6) enhanced oscillations (Fig 3C). That is,

there is a range of parameters for which oscillations enhanced by FBGPe can be quenched by
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increasing FBSTN. As FBGPe increased, more FBSTN was required to quench the oscillations and

as our results show, beyond a certain point increasing FBSTN also leads to persistent oscilla-

tions. That is, spike bursting in the STN can suppress or enhance oscillations depending on

the fraction of bursting neurons in the GPe.

The non-monotonic effect of STN spike bursting on STN-GPe network oscillation can be

better observed in the spectrogram of the population activity of the network (Fig 4). As a frac-

tion of GPe neurons (FBGPe = 40% in this case) were changed to elicit spike bursts (at 1500 ms)

β band oscillations emerged (Fig 4). These oscillations were quenched when STN neurons also

started to spike in bursts from time 3500 ms. When� 50% of STN neurons were bursty, the

oscillations were almost completely quenched. Any further increase in FBSTN, however, led to

re-emergence of oscillations, albeit at lower frequencies (� 15Hz).

Why does FBSTN has a non-monotonic effect on the STN-GPe oscillations? The spectro-

grams of the network activity (Fig 4) revealed that spike bursting in GPe and STN induces

oscillations at slightly different frequencies. When FBGPe = 40% and FBSTN = 0, the network

oscillates at�20 Hz (1st panel of Fig 4). By contrast, when FBGPe = 40% and FBSTN = 100%,

the network oscillates� 15 Hz (last panel of Fig 4). We hypothesized that the interference of

these two oscillations may underlie the non-monotonic effect of spike bursting in STN on β
band oscillations. For small values of FBSTN, the two oscillations interfere and generate net-

work activity resembling ‘beats’, which are reflected as short bursts of β band oscillations.

These β bursts can be observed in the single trial spectrograms—https://osf.io/quycb/—Fig-

ures/Spectrograms_single_trials_for_Fig4. It was these short β oscillations bursts that resulted

in a decrease in overall power in the beta-band (and higher spectral entropy). However, for

higher FBSTN, slower frequency oscillations (generated by STN spike bursting) become strong

enough to overcome the GPe spike bursting induced oscillations. To verify our hypothesis we

imposed a lower frequency (15 Hz) oscillation on a fraction of STN neurons instead of making

them bursty. As we increased the fraction of neurons that oscillated at 15 Hz we observed non-

monotonic change in the network oscillation power (S11 Fig). These results are qualitatively

similar to those observed when we varied the fraction of bursting neurons in the STN (Fig 4),

and provide support to our hypothesis.

Our results show that when the network is operating in the transition regime (network

activity regime 2), change in the fraction of spike bursting neurons can control the emergence

of β oscillations. It is interesting to note that in this regime, the firing rate of STN and GPe neu-

rons falls within the range recorded experimentally (that is, 37–48 spks/s for GPe, 9–16 spks/s

for STN) for healthy conditions. This also suggests that in healthy states, GPe-STN network

may be operating in the regime at the border of oscillatory and non-oscillatory state. In this

regime, spike bursting may provide an additional mechanism to generate short lived β band

oscillations (β-oscillation bursts) as has been observed in healthy rats [45], that is, an increase

in spike bursting in the GPe can induce oscillations, which can be quenched provided STN

neurons also elicit spikes in bursts.

Comparison of firing rate changes due to spike bursting and input drive

When neurons do not spike in bursts, only STN firing rate is predictive of β band oscillations

(see Fig 2E). While in our neuron model (SSBN) spike burst and neuron average firing rates

can be independently varied, spike bursts may change the network activity state and thereby

affect the firing rates of STN and GPe neurons. However, with this neuron model, we can iso-

late the changes in STN and GPe firing rates purely due to the effect of spike bursting on the

network activity (once the input drives are fixed). Therefore, we estimated how the firing rates

of STN and GPe neurons affect the β band oscillations when neurons are allowed to spike in
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bursts.To this end, we fixed the input rates such that the network operated in one of the six

representative activity states (marked as 1, 10, 2, 20, 3, 30 in Fig 5) and systematically varied the

fraction of bursting neurons in the STN and GPe. At each operating point, spike bursting

resulted in a change in the average firing rate of the neurons because spike bursting perturbed

Fig 4. Non-monotonic effect of STN spike bursting on network oscillations when the network operates in the transition regime. Here the fraction

of bursting neurons in the GPe was fixed to 40% of GPe neurons and the fraction of bursting neurons in the STN (FBSTN) was increased systematically

(as marked on different subplots). 40% of GPe neurons were made to elicit spike bursts from time point 1500 ms. This resulted in emergence of

oscillations. A fraction of STN neurons (FBSTN marked on each subplot) were made to burst, starting at time 3500ms. For small to moderate FBSTN,

oscillations disappeared. But when FBSTN was larger oscillations reappeared albeit at a lower frequency. The spectrograms shown here were averaged

over 5 trials of the network with different random seeds.

https://doi.org/10.1371/journal.pcbi.1007748.g004
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Fig 5. Comparison of firing rate changes induced by the input drive and spike bursting. The pale background (same as in Fig 2E) illustrates the

effect of GPe and STN firing rates on oscillations. This is used to compare the effects of firing rates and spike bursting. The inset shows the 6 network

states chosen for the comparison: two oscillatory (1 and 10), two border (2 and 20) and two non-oscillatory (3 and 30). In each of the chosen states, we

varied the fraction of bursting neurons in both STN and GPe populations from 0 to 100%. For each combination of the fraction of spike bursting

neurons we estimated the firing rate of STN and GPe neurons and their corresponding spectral entropy. Then firing rates and spectral entropy are

plotted to create the six manifolds. The size of manifolds is much smaller than the background indicating that the changes in firing rates induced solely

by spike bursting is rather small.

https://doi.org/10.1371/journal.pcbi.1007748.g005
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the network operating point (Fig 5). We found that in non-oscillatory states (3, 30) spike burst-

ing had a very little effect on the average firing rate of the neurons and on the network activity

state (Fig 5 green region). By contrast, in oscillatory states (1, 10) spike bursting resulted in rela-

tively large change in the firing rates (Fig 5 white region). In both regimes, the change in firing

rates due to spike bursting were not sufficient to change the network state qualitatively. In the

transition regime (e.g. network states 2, 20) spike bursts led to higher firing rate in STN and

GPe neurons. Interestingly, in the transition regime, with spike bursting, an increase in the fir-

ing rate of both GPe and STN neurons lead to increase in oscillations. (Fig 5 border between

white and green regions).

Lastly, this analysis is consistent with the previous observation that only in the transition

regime, does spike bursting qualitatively change the network state. The location of the network

in the STN-GPe rate state space is determined by the external input drives and only in the tran-

sition regime (2, 20), spike bursting changes the network state from non-oscillatory to oscil-

latory with an increase in STN and GPe firing rates.

Control of the amplitude and duration of β band oscillation bursts by spike

bursting

Next, we explored how the proportion of GPe and STN spike bursting neurons affects the

amplitude and duration of β oscillation bursts. In particular we were interested in identifying

the fraction of spike bursting neurons needed to obtain β oscillation bursts similar to those

recorded in the BG during healthy conditions. The length of a β oscillation burst was defined as

the duration that the beta band amplitude envelope remained above the threshold (Fig 6A).

The threshold (Fig 6A and 6B) was defined as the averaged maximum (over 5 trials) of the β
band amplitude estimated for an ensemble of Poisson type spike trains with the same firing rate

as that of our network activity. Note that these β oscillation bursts were calculated on the ampli-

tude envelopes of the individual trials and not on the average amplitude envelope correspond-

ing to the spectrogram shown in Fig 4. The spectrograms of the individual trials can be found

on the OSF project—https://osf.io/quycb/—Figures/Spectrograms_single_trials_for_Fig4.

An increase in the fraction of spike bursting neuron in the GPe increased the average β
oscillation burst length. However, an increase in the STN spike bursting ratio had a non-

monotonic effect on the beta oscillation burst length as we expected given the effect of FBSTN

on spectral entropy (Fig 3C). This also suggests a positive correlation between the β oscilla-

tion burst length/duration and measured power in the β band in monkeys [42] and PD

patients [46]. However note that in [46], the β oscillation burst rate and amplitude are better

correlated with β band power than the β oscillation burst length. The β oscillation burst

amplitude, however, increased with an increase in fraction of bursting neuron in both GPe

and STN (Fig 6D).

To compare the model output with the experimental data for rodents we measured three

features of the network activity for all combinations of FBSTN and FBGPe: average β-oscillation

burst length, average β-oscillation burst peak frequency, and correlation between β-oscillation

burst length and amplitude. The average β-oscillation burst length measured in healthy mice is

� 0.2 s [62]. The β-oscillation burst duration and β-oscillation burst amplitude in humans [20]

as well as non-human primates [63] is positively correlated that is, stronger oscillatory bursts

also last longer. Recent data also suggests a positive correlation between beta amplitude and

duration in 6-OHDA lesioned rats, however it is stronger in GPe as compared to STN [64].

The presence of such a relationship in healthy rats is not explored and therefore remains an

assumption of our model.
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According to these measures, the regime with a small fraction of bursty neurons in GPe

(e.g. 10%) and STN (e.g. 20%) (Fig 6C and 6D—cyan marker) resembled most closely with the

experimentally measured values of all the aforementioned features. In this regime, the oscilla-

tion burst peak frequency was� 20Hz. Moreover, oscillation burst amplitude and oscillation

burst length (mean value:� 0.24 s) were positively correlated (rbl,ba = 0.46, p� 0.0002)

(Fig 6E).

For a higher fraction of spike bursting neurons in GPe (40%) and STN (40%—Fig 6F), the

average β-oscillation burst lengths increases to� 0.8s, the intraburst frequency decreases to�

16Hz and the positive correlation between β-oscillation burst amplitude and β-oscillation

burst length is high and significant (rbl,ba = 0.92, p< 0.0001). In a regime with a lower fraction

Fig 6. Effect of spike bursting on beta-band oscillation bursts. (A) An example of the amplitude envelope of the beta band (15-20 Hz) oscillations (blue trace).

Beta oscillation burst threshold (red dashed line) was determined by averaging the maximum of beta band amplitude envelop for a Poisson process (orange trace)

with the same firing rate as the neuron in the STN-GPe network. The averaging was done over Poissonian firing rates corresponding to all GPe and STN spike

bursting ratios and 5 trials per STN-GPe bursty ratio combination. (B) Low pass filtered (15-20 Hz band) trace of population firing rate in the STN population in

the beta band (15-20Hz). The orange trace shows the population firing rate of the Poisson process with same average firing rate as the STN activity. (C) Beta

oscillation burst length as a function of the fraction of spike bursting neurons in the GPe and the STN. (D) Beta oscillation burst amplitude as a function of the

fraction of spike bursting neurons in the GPe and the STN. (E,F,G) Correlation between β oscillation burst length and amplitude for three different combinations

of FBSTN and FBGPe(marked with cyan, orange and green colors in the pane C. Cyan marker shows beta oscillation burst length and amplitude for 10% of spike

bursting neurons in GPe and 20% in STN—this combination of spike bursting neurons gives an average oscillation burst length of 0.24 s which is comparable to

experimentally measured values. In panels E-F the p-values are listed to 4 places after decimal point.

https://doi.org/10.1371/journal.pcbi.1007748.g006
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of spike bursty neurons for GPe (10%) and a higher fraction of spike bursting neurons in STN

(80%), the positive correlation between β-oscillation burst length and β-oscillation burst

amplitude was not significant, however the β-oscillation burst length is slightly higher (� 0.4

s) and β-oscillation burst peak frequency is slower (� 15Hz).

The β-bursts are a population phenomenon in our model. To test whether β-bursts are also

observed in individual neurons we estimated the spectra of individual neuron firing rates (S12

Fig). As expected, the β oscillation bursts were more prevalent in neurons with higher firing

rates. Moreover, it was not necessary for a neuron to spike in all β-oscillation bursts, which

indicates that the these oscillatory bursts are a network effect. Furthermore, the oscillation fre-

quency for the single neuron was more variable than the population frequency at β (S12 Fig

-GPe bursty #3, STN bursty #3).

Based on these results, we predict that short lived β-burst in healthy mice are generated

when� 10% of GPe neurons and� 20% of STN neurons elicit spike bursts.

It is unclear how these neurons are entrained to produce spike bursts. The spike bursts in

the GPe neurons could be caused by spike bursts in striatal neurons [64, 65] in rats. In

6-OHDA lesioned rats, with an increase in number of spikes/burst in striatal neurons, GPe

neurons show an increased burst index [65]. Striatal inactivation (by muscimol) significantly

decreased such spike bursts in the GPe [65]. This could be a result of both alleviating changes

in the operating point of STN-GPe network as result of striatal inactivation (increased GPe fir-

ing rates [65]) or/and the lack of entrainment of GPe neurons into bursts. The GPe bursting

could in turn entrain STN neurons to burst with large bouts of synchronized inhibition, which

has been also suggested by [64] because the phase of prototypical GPe neurons leads that of

STN neurons by a cycle. On the other hand, STN and GPe could also be entrained simulta-

neously by cortical β-bursts directly or via striatum respectively [64]. Besides, these network

interactions, spike bursts could be caused by changes in the neuron properties due to lack of

dopamine or appropriate inputs. This is consistent with increased spike bursting in rat STN

slices with an increase in hyperpolarization of the neuron’s membrane potential [66].

Dependence of the network states on the excitation and inhibition balance

Finally, to better understand the impact of firing rate changes and spike bursting neurons on

the β band oscillations we analyzed the balance of effective excitation and inhibition (E-I bal-

ance) in the network for different input firing rates and fractions of spike bursting neurons.

E-I balance is the primary determinant of oscillations in spiking neuronal networks [40]. To

get an estimate of the E-I balance for a GPe neuron we measured effective excitation it received

from a STN neuron (JEI-eff) and effective inhibition it received from other GPe neurons (JII-eff).

We estimated the effective excitation and inhibition for all combinations of external input as

shown in Fig 2 (See Methods).

Consistent with the previous theoretical work on neuronal network dynamics we found

that the non-oscillatory states emerged when effective inhibition received by a GPe neuron

was much higher than the effective excitatory inputs, whereas oscillatory states appeared when

the effective excitation from STN to a GPe neuron increased (Fig 7).

Next we mapped the effect of GPe and STN spike bursting on the E-I balance in the three

exemplary network states (1: oscillatory, 2: border of oscillatory and non-oscillatory, 3: non-

oscillatory). As expected we found that in the oscillatory state 1, increase in GPe spike burst-

ing increased the effective inhibition and excitation whereas STN spike bursting has a non-

monotonic effect (Fig 7—state marked as 1). However, in this state bursting in either popula-

tion was not strong enough to change the E-I balance in order to introduce a qualitative

change in the network state. Similarly for the non-oscillatory state 3, a change in the fraction
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of spike bursting neuron in the GPe and STN spike bursting was not sufficient to introduce

any qualitative change in the state of the network (Fig 7). When the network was in the

regime 2, even though increase in fraction of bursting neuron in the GPe introduced a small

change in the effective E-I balance, it was sufficient to move the network activity into the

oscillatory regime from non-oscillatory regime. Increased in the fraction of bursting neuron

in the STN showed a non-monotonic effect on the E-I balance and while a moderate amount

of FBSTN pushed the network towards the non-oscillatory regime, which was not the case for

a higher FBSTN(Fig 7).

Fig 7. Effect of spike bursting on the excitation-inhibition balance in different network activity regimes. E-I balance was characterized by

estimating the total effective excitation and inhibition received by a GPe neuron (see Methods). E-I balance for oscillatory and non-oscillatory network

states for 100% non-bursting neurons. Each filled circle shows E-I balance for different external inputs to STN and GPe neurons shown in Figs 2 and 3.

The effect of spike bursting on E-I balance is shown for the three exemplary network activity regimes: 1-Oscillatory regime, 2-Transition regime,

3-Non-oscillatory regime (see Fig 3 for details). Different colored stars and filled circles show how the E-I balance varied as function of change in the

fraction of spike bursting neurons in the GPe (warmer colors indicate higher % of spike bursting neurons). The trajectory from the star (STN spike

bursting ratio = 0%) to the filled circle shows change in the E-I balance as the fraction of spike bursting in STN is varied from 0% to 100%. In all the

states spike bursting tends to make the network activity more oscillatory, however, the amount by which spike bursting is able to push the network

towards oscillatory regime depends on the network activity regime itself.

https://doi.org/10.1371/journal.pcbi.1007748.g007
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Discussion

PD is characterized by change in both firing rate and firing patterns of GPe and STN as shown

in animals models [8, 49–51]. In this study, we focused on uncoupling the roles of STN and

GPe population firing rate and firing patterns (spike bursting) in determining the presence of

oscillations. Our results show that an increase in the firing rate of STN neurons is the primary

determinant of oscillations in the STN-GPe network, however the effect of changes in GPe fir-

ing rates is contingent on the firing rate of STN neurons. Similarly, the effect of increase in

spike bursting in STN and GPe neurons is contingent on the dynamical state of the network.

Effect of firing rate changes on β band oscillations

In our model network, an increase in the firing rate of STN neurons was sufficient to drive the

network into an oscillatory state, irrespective of the firing rate of the GPe neurons. By contrast,

a decrease in the firing rate of GPe neurons was able to generate β band oscillations only when

STN neuron firing rate also increased (Fig 2E, S4 Fig).

A change in GPe and STN firing rates also alter the effective excitation-inhibition of the

network (Figs 7 and 8). The non-oscillatory network states were observed in the inhibition

dominant regime (when effective inhibition to a GPe neuron was higher than effective excita-

tion). An increase in effective excitation altered the regime to oscillatory. This result may

explain the experimental observation that the therapeutic effect of DBS in human and non-

human primates is accompanied by a corresponding decrease in STN firing rates [67, 68] and

an associated corresponding increase in GPe/GPi firing rates [67–69] and thereby tipping the

network balance towards the inhibition dominant.

Our results also show that if the firing rate of STN neurons remains fixed, changes in the fir-

ing rate of GPe neurons are not sufficient to influence the oscillations. Indeed, it can be argued

that because STN and GPe are recurrently connected, their firing rates cannot independently

change. However, these results imply that the β band oscillations are more sensitive to changes

in STN firing rates than to GPe firing rates. This is consistent with the observations that STN

inactivation with muscimol (decreased STN firing rates) suppressed oscillations [8] in mon-

keys. By contrast, intrapallidal blocking of GABAergic receptors (increased GPe firing rates)

either had no effect or increased the oscillations [8]. In our model there are two possible mech-

anisms to induce beta-band oscillations: (a) The indirect pathway induced oscillations can be

initiated by reducing the firing rate of GPe neurons via transient increase in firing rate of D2-

spiny projection neurons. (b) The hyper-direct pathway induced oscillations can be initiated by

a transient increase in the firing rate of cortical neurons projecting onto the STN neurons. Our

results suggest that the indirect pathway induced oscillations can be quenched by transiently

decreasing the activity of STN neurons but the hyper-direct pathway induced oscillations can-

not be countered by transiently increase the activity of GPe neurons.

At the behavioral level, the sensitivity of β band oscillations to STN firing rates could pro-

vide an explanation for the importance of STN in response inhibition in general and, especially

when there is an increase in potential responses (high conflict task). Experimental data in

humans have shown that the STN firing rates increase in proportion to the degree of conflict

in an action-selection task [70]. Interestingly, the increase in STN firing rates during a high

conflict task is also accompanied by an increase in β band activity [71] and is reminiscent of

increase in rat STN activity [72] as well as power of the β band oscillations observed in success-

ful STOP trials [73]. Furthermore, the latency [73] as well as amount of modulation [74] in

STN β band oscillations are correlated with the speed of an action. All these observations sug-

gest there may be a functional rationale to the sensitivity of oscillations to STN firing rates as

shown by our results. That is, an increase in STN firing rates could be a mechanism to delay
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the decision making (“hold the horses” [75]) by increasing the β band activity, which cannot

be vetoed by the GPe and thereby plays a vital role at response inhibition [76].

Effect of changes in spike bursting on beta band oscillations

Our results show that the effect of GPe or STN spike bursting is dependent on the state of the

network as defined by the firing rates of the STN and GPe neurons. In a regime with strong

oscillations, GPe and STN spike bursting does not qualitatively change the network state and

the network remains oscillatory. Similarly, in a non-oscillatory regime, GPe and STN spike

bursting has no qualitative effect on the network state. However, in a regime at the border of

oscillatory and non-oscillatory, an increase in bursting neurons in the GPe induces oscillations

but the effect of increasing STN spike bursting neurons depends on the fraction of GPe spike

bursting neurons. In this regime, when spike bursting neurons in the GPe induce oscillations

(0.1�FBGPe�0.4), a small increase in the fraction of bursting neurons in the STN disrupts the

Fig 8. Summary of the effect of firing rate and spike bursting on network state. The background image (same as Fig 7) show the oscillatory and

non-oscillatory regimes of STN-GPe network as a function of effective excitation and inhibition. The arrows schematically show the change in EI-

balances as we increase spike bursting in the STN or GPe. The STN-GPe network oscillations are more sensitive to the STN firing rate. The balance of

STN and GPe firing rates determines the global state of network activity. Spike bursting in GPe always increases both effective inhibition and effective

excitation. Small increases in spike bursting in STN results in a decrease in both effective excitation and effective inhibition and thereby, reduces

oscillations. By contrast, a large increase in the fraction of spike bursting neurons in the STN increases both effective inhibition and effective

excitation and thereby, enhances oscillations. However, this effect is smaller and therefore, spike bursting is effective in altering the network

oscillations only when the network is operating close to the border of oscillatory and non-oscillatory states.

https://doi.org/10.1371/journal.pcbi.1007748.g008
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oscillations. However, a large fraction of spike bursting neurons in the STN re-instate the β
band oscillation (Fig 4). This non-monotonic effect of spike bursting neurons in the STN is

because when neurons spike in bursts both STN and GPe tend to induce oscillations at slightly

different frequencies (Fig 4, S11 Fig). The relative power of these oscillations depends on the

fraction of spike bursting neurons in the two populations. When FBGPe = FBSTN� 0.5 the mag-

nitude of the two oscillations is comparable and they produce ‘beats’ resulting in a reduction

in the power of β band oscillations. However, if FBGPe� 0.5 or FBSTN� 0.5, the stronger of the

two oscillations overcomes the other, resulting in the higher power in the β band.

Similar to the rate effect, the effect of spike bursting can also be captured by calculating the

balance of effective excitation and inhibition in the network (Figs 7 and 8). GPe bursting

increases both the effective excitation and inhibition to a GPe neuron. Therefore, when a net-

work is operating close to the border of oscillatory and non-oscillatory regime, increase in

bursting in GPe neurons pushes the network to an oscillatory regime (Fig 8). An increase in

spike bursting neurons in the STN, however, has a non-monotonic effect—a small number of

bursting neurons counter the effect of GPe bursting by decreasing both effective excitation

and inhibition. However the effect of larger number of STN neurons bursting collude with the

effect of GPe spike bursting by increasing both effective excitation and inhibition (Fig 8).

During PD, both STN and GPe neuron show an increase in spike bursting activity in mon-

keys [8, 49] and rats [50, 51]. Based on our results, we propose that increase in STN bursting

might play a compensatory role in an attempt to quench the burst induced oscillations as a

self-regulating mechanism. However, it has been shown that dopamine depletion itself leads to

increased spike bursting in STN slices [77–79].

The effective excitation-inhibition change induced by the striatal/cortical inputs to STN/

GPe neurons is much bigger than the change induced by spike bursts. We corroborated this by

the observation that the firing rate changes solely due to spike bursting are much smaller than

the firing rate changes due to input drives (Fig 5). This is the reason why spike bursts failed to

change the network states when it was operating in strongly asynchronous or oscillatory states

(Fig 3B and 3D). These modest firing rate changes due to spike bursting, however can change

the state of a network operating at the border of the oscillatory and non-oscillatory regime.

Thus, based on these results we propose that the change in GPe and STN firing rates deter-

mines the underlying network state whereas neuronal spike bursting fine tunes it.

Tandem of GPe-STN spike bursting generates beta oscillations bursts

In healthy conditions, short epochs of oscillations (β bursts) have been observed in rodents

[45, 62] and non-human primates [63]. They are also observed in Parkinsonian patients during

dopamine ON state [20]. The precise function of β bursts in healthy conditions is currently

unknown but they tend to occur before movement (e.g after the cue [45]) and disappear when

the movement is initiated [80–83]. Beta bursts become longer and stronger during Parkinso-

nian conditions [20], therefore, they are thought to be correlated with impairment of voluntary

movement in PD patients [20, 46, 47]. The average length of the β bursts in healthy rodents

last for an average of 0.2 sec [62]. In our model, we can generate the oscillatory β bursts of aver-

age burst length 0.24 s by making 10% of GPe and 20% of STN neurons are of spike bursting

type (Fig 6). We propose that an interplay of spike bursts in a STN-GPe network lying on the

border of oscillatory and non-oscillatory regime may be the underlying mechanism to generate

short bursts of β oscillations.

Experimental results in rat brain slices have shown that an increased spike bursting in STN

is associated with an increase in hyperpolarization of the neuron‘s membrane potential [66].

That is, spike bursts in the GPe network (e.g. because of striatal bursts [64]) can induce spike
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bursting in the STN neuron by inducing large synchronized inhibition. However, if only less

than 50% of the GPe neurons generate spike bursts, an equivalent proportion of neurons

bursting in STN will quench the oscillations resulting in a short-lived “β burst”.

However, in pathological conditions, the network state could be pushed into the oscillatory

regime (either due to a change in firing rates or excessive spike bursting) where these oscilla-

tions can no longer be quenched. This has been explained in the summary figure (Fig 8).

Our results also suggest that in healthy conditions the network might operate on the bound-

ary of synchronization and asynchronization regime. Operating at the boundary enables the

network to make incursions into the oscillatory regime (when GPe neurons elicit spike bursts)

and retreat to the asynchronization regime (when STN neurons elicit spike bursts) with a pro-

portion of spike bursting neurons where such self-regulated transitions are possible. However,

in pathological conditions, the network very likely shifts deeper into the oscillation regime

(due to the change in firing rates or excessive spike bursting), where no amount of STN burst-

ing can push the network back to asynchronized regime. A similar idea was suggested by [84,

85] where they explored the effect of excitatory input drive to GPe (Iapp) and STN-GPe synap-

tic strength (gsyn) on β band oscillations. They found that a higher drive to GPe (Iapp) and

lower STN-GPe synaptic strength (gsyn) leads to asynchronous activity whereas low input drive

to GPe and high STN-GPe synaptic strength leads to a strong oscillatory state. These results

are consistent with our observations, that an increased excitatory drive to GPe leads to asyn-

chronous activity and vice versa (Fig 2C and 2D). The regime on the border yields intermittent

synchronous states that resembles the experimental data measured from PD patients.

Rubchinsky and colleagues argued that healthy states should also operate on the boundary,

as it offers many advantages such as easy creation and dissolution of transient neuronal assem-

blies [84, 85] as required by functioning of network shown in other parts of basal ganglia (espe-

cially striatum, [86–90]). We also propose that the STN-GPe network should operate close to

the border between oscillatory and non-oscillatory states because it makes it easy to generate

short epochs of β band oscillations which are often observed in behaving animals.

Model limitations

Here we aimed to use a minimal model sufficient to dissociate the effect of firing rates and

spike bursts on the dynamics of STN-GPe network. The model was constrained by experimen-

tal data on synaptic connectivity and neuronal firing rates in healthy states. However, the

model has a number of limitations. For instance, the neuron model that is effective in isolating

the effects of firing rates and spike bursts, assumed that in every spike bursts, a fixed number

of spikes are elicited. Therefore, our model cannot account for phenomena such as firing rate

adaptation within bursts. Furthermore, we have focused on spike burst changes in the

STN-GPe network alone. Inputs from other sources such as pallidostriatal [26], thalamocorti-

cal or thalamostriatal projections may also influence the β oscillation bursts but were not con-

sidered in our model.

With regard to the oscillations we specifically focused on the β band, however the oscilla-

tions in β-band are known to be closely related to oscillations in other frequency bands, espe-

cially γ-band [26, 59, 91–93]. The analysis should be extended to include other frequency

bands and their relation to β oscillation bursts. Moreover, we also do not distinguish between

high and low frequency β bands oscillation. We show that the frequency of oscillations could

be determined by the proportion of GPe and STN neurons that are bursty. There is evidence

for a drift in oscillation frequency from high to low β bands in striatal LFPs during episodes of

increased β band power triggered by infusion of cholinergic agonist in awake mice [25]. More-

over, it has been suggested that the low β band oscillations are anti-kinetic and gets regulated
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by dopamine whereas high βmaybe non-pathological in nature [10] in humans [94], monkeys

[95] and rats [59]. Hence the issue of different β oscillations bands needs to be investigated in

further detail.

In terms of the mechanisms underlying the emergence of β band oscillations we have

explored only two causes of these oscillations: changes in firing rates and spike bursting, how-

ever there may be various other factors that can modulate the β band oscillations. Indeed, the

BG network has multiple excitatory-inhibitory loops capable of inducing oscillations. We have

also assumed that input the STN-GPe neurons is aperiodic, uncorrelated Poisson distributed

spike trains. This choice was made to explore the response of the network to firing rate changes

in the input drive. However, inputs to STN-GPe are richer in their statistics and dynamics, e.g.

bursty, periodic, correlated [24, 30, 35, 64, 96, 97]. Such non-Poissonian inputs might underlie

resonance of STN-GPe network at certain frequencies [34]. In future models effect of non-

Poissonian inputs should explored in more detail.

As is typical for computational models, necessary parameters are rarely available from a sin-

gle animal model and single experimental conditions. To counter this limitation, we varied the

parameters by 10-20% to ensure the robustness of our results. Even though the model was con-

strained by data from rodents some of the model results are consistent with experimental

observations made in non-human primates and human patients. This similarity underscores

the generality of the model and the experimental phenomena (i.e. properties of beta band

oscillations).

Conclusions

Despite the simplicity of our model, our analysis of the STN-GPe network provides new

insights about the role of spike rates, spike bursts and varied roles of STN and GPe in shaping

of the dynamics of beta band oscillations suggest several means of quenching the pathological

oscillations for instance by (1) reducing the firing rate of the STN neurons, (2) reducing the

excitability of STN neurons, and (3) by balancing the fraction of bursting and non-bursting

neurons in the STN and GPe.

Supporting information

S1 Fig. State dependent Stochastic Bursting Neuron (SSBN) model. (A) Membrane poten-

tial and spiking pattern for different number of spikes per burst.(B) Input current and output

firing rate (f − I) curve of the SSBN for different number of spikes per burst.

(TIFF)

S2 Fig. Robustness analysis. The areas in gray color of the violin plot shows the distribution

that was sampled for robustness analysis. The areas in brown color of the violin plots show the

distribution of the parameters that qualitatively reproduce the key results shown in the Fig 3A.

See Methods for more detail.

(TIFF)

S3 Fig. Effect of spike bursting on STN-GPe network oscillations for an example network

from robustness analysis. (A) Spectral entropy as a function of input to the STN and GPe

neurons for a different set of model parameters than used in Fig 3. In this panel the location of

the red dotted line and the three exemplary activity regimes are marked in the same place as in

Fig 3A for the ease of comparison. (B): Top Same as Fig 3B-top. GPe (left) and STN (right) fir-

ing rates as a function of the fraction of spike bursting neurons in the STN (x-axis) and GPe

(y-axis), in the regime 1. (B): Bottom Same as Fig 3B-bottom in the main text. However note

that, in this network, regime 1 is on the border and hence shows the non-monotonic effect of
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STN spike bursting on oscillations as observed in Fig 3C-bottom. (C) Same as Fig 3C in the

main text. However note that in this network regime 2 is deeper into non-oscillatory regime as

compared to Same as Fig 3C. Hence, the effect of spike bursting on oscillations is close to

being ineffective. (D) Same as in the panel Fig 3D in the main text. These results are qualita-

tively similar to the ones shown in the Fig 3. Here, however we have used a different set of

parameters than the Fig 3 (Jgpe−gpe = -0.67, Jgpe−stn = -1.0, Jstn−gpe = 1.04, �gpe−gpe = 0.02, �stn−gpe =

0.02, �gpe−stn = 0.03, τstn−gpe = 5.96ms, τgpe−gpe = 3.14ms, τgpe−stn = 5.34ms.
(TIFF)

S4 Fig. Spectral entropy as function of GPe (Top) and STN (Bottom) firing rates. Different

colors indicate five different trials with same parameters. Different dots correspond to net-

work simulations with different parameters. For a wide range of GPe firing rates the network

can be in an oscillatory or non-oscillatory states, however, high firing rate in STN is necessary

to induce oscillations.

(TIFF)

S5 Fig. Spectrograms of network activity in three exemplary network activity regimes. top:

Non-oscillatory regime (marked as 3 in Fig 3A). middle: Transition regime (marked as 2 in

Fig 3A). bottom: Oscillatory regime (marked as 1 in Fig 3A in the main text).

(TIFF)

S6 Fig. Reproduction of results shown in Fig 3 for a smaller intra-burst inter-spike-interval

(Bisi = 3ms). The positions of the regimes 1, 2 and 3 as well as the dashed line dividing the oscil-

latory and non-oscillatory regime are kept same as in Fig 3A in the main text. Decreasing the

within burst inter-spike-interval resulted in reduction in the area of non-oscillatory regime.

(TIFF)

S7 Fig. Reproduction of results shown in Fig 3 for a larger intra-burst inter-spike-interval

(Bisi = 7ms). The positions of the regimes 1, 2 and 3 as well as the dashed line dividing the

oscillatory and non-oscillatory regime are kept same as in Fig 3A. Increasing the within burst

inter-spike-interval reduced the region of the oscillatory regime.

(TIFF)

S8 Fig. Effect of spike bursting when the network was operating in an oscillatory state

(regime 1). 40% of GPe neurons (golden yellow) were converted into bursting neurons at time

1500ms—this had no effect of on the network activity state. To see the effect of spike bursting

in STN neurons, in addition to the 40% GPe neurons, we also converted 30% of STN neurons

(cyan) in bursting neurons at 3500ms. Even this change failed to alter the network activity

state. The instantaneous firing rate (binsize = 10 ms) is plotted in black for bursting and non-

bursty populations for GPe and STN.

(TIFF)

S9 Fig. Effect of spike bursting when the network was operating in the transition regime

(regime 2). 40% of GPe neurons (golden yellow) were converted into spike bursting neurons

at time 1500ms. This led to the emergence of weak beta band oscillations (see the spike raster

in the right panel before 3500ms). To see the effect of bursting in STN neurons, in addition to

the 40% GPe neurons, we also converted 30% of STN neurons (cyan) in bursting neurons at

3500ms. Spike bursting in STN quenched the oscillation initiated by spike bursting in the GPe.

The instantaneous firing rate (binsize = 10 ms) is plotted in black for bursting and non-bursty

populations for GPe and STN.

(TIFF)
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S10 Fig. Effect of spike bursting when the network was operating in an non-oscillatory

state (regime 3). 40% of GPe neurons (golden yellow) were converted into bursting neurons

at time 1500ms—this had no effect on the network activity state. To see the effect of spike

bursting in STN neurons, in addition to the 40% GPe neurons, we also converted 30% of STN

neurons (cyan) in bursting neurons at 3500ms. Even this change failed to alter the network

activity state. The instantaneous firing rate (binsize = 10 ms) is plotted in black for bursting

and non-bursty populations for GPe and STN.

(TIFF)

S11 Fig. STN spike bursting quenches oscillations by imposing a lower frequency on STN

population. At 3500 ms, an oscillation of 15Hz was imposed on STN population, instead of

replacing STN neurons by bursting neurons. These change in the beta band oscillations

because of the injection of 15 Hz oscillations in a fraction of STN neurons are qualitatively

similar to the results show in Fig 4. These results explain how spike bursting in STN can

quench oscillations when a small fraction of neurons are bursting.

(TIFF)

S12 Fig. Spectrograms for single neurons with 40% of bursty neurons in GPe and 90% of

bursty neurons in STN. (A) Firing rate histograms of bursty (left) and non-bursty (right) neu-

rons in the GPe. (B) Firing rate histogram of bursty (left) and non-bursty (right) neurons in

the STN. For both GPe and STN we chose three exemplary neurons, #1—neuron with average

firing rates�mean population firing rate (37.16 spks/s), #2—neuron with average firing

rate = mean population firing rate, #3—neuron with average firing rate>mean population fir-

ing rate. C: Spectrograms of each of the six chosen neurons from the STN and GPe.

(TIFF)
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