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Endogenous neural stem cells (NSCs) exist in the central canal of mammalian spinal cords. Under normal conditions, these NSCs
remain quiescent and express FoxJ1. After spinal cord injury (SCI), the endogenous NSCs of a heterogeneous nature are activated
and proliferate and migrate towards the lesion site and mainly differentiate into astrocytes to repair the injured tissue. In vitro,
spinal cord NSCs are multipotent and can differentiate into neurons, astrocytes, and oligodendrocytes. The altered
microenvironments after SCI play key roles on the fate determination of activated NSCs, especially on the neuronal specification
potential. Studies show that the activated spinal cord NSCs can generate interneurons when transplanted into the adult
hippocampus. In addition, the spinal cord NSCs exhibit low immunogenicity in a transplantation context, thus implicating a
promising therapeutic potential on SCI recovery. Here, we summarize the characteristics of spinal cord NSCs, especially their
properties after injury. With a better understanding of endogenous NSCs under normal and SCI conditions, we may be able to
employ endogenous NSCs for SCI repair in the future.

1. Introduction

Neural stem cells (NSCs) exist mainly in two regions in the
adult central nervous system (CNS): brain and spinal cord
[1–6]. NSCs remain quiescent under normal physiological
conditions and can be activated under certain conditions
such as CNS injury [7]. The activated NSCs can self-renew
to maintain stem cell pool size and differentiate into neural
cells for tissue repair. In this review, we will focus on the
properties and behavior of endogenous spinal cord NSCs in
normal situations and SCI.

2. Endogenous Spinal Cord NSCs

The identity of endogenous spinal cord NSCs has been
debated in the past years. Astrocytes, oligodendrocyte
progenitors, and ependymal cells have all been suggested as
spinal cord stem cells previously by different groups [8–10].

Cortical astrocytes gain some NSC properties and assume a
proliferative status after brain injury, but these cells cannot
give rise to cell types other than astrocytes [11]. Some studies
have suggested that oligodendrocyte progenitors can differ-
entiate into astrocytic lineage in addition to oligodendro-
cytes, but recent studies failed to prove this and these cells
seem to have a restricted potential for oligodendrocyte line-
age only [12–14]. The only cell type that has been confirmed
to be multipotent and retains a neurosphere-forming and
passaging ability in vitro is ependymal cells [8]. What is note-
worthy is that some parenchymal progenitors in regions
other than the ependymal zone can proliferate after SCI
and give rise to neurons and glia in vitro, but these cells can
hardly be expanded in vitro (fewer than 2-3 passages) [15, 16].

2.1. Spinal Cord NSCs Lining the Central Canal. Ependymal
cells lining the central canal are referred as spinal cord NSC
niche. In the mouse spinal cord, ependymal cells originate
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at mid embryonic stages (E15.5) and completely surround
the central canal by birth (P0) [17]. Based on studies on
FoxJ1-CreER transgenic mice, the ependymal cells can be
categorized into 3 basic types according to cell morphology
rather than function: cuboidal ependymal cells, tanycytes,
and radial ependymal cells [10]. Cuboidal ependymal cells
are the most abundant multiciliated cells, and the radial
ependymal cells are the less numerous type [18]. In adult
macaque, there are 3 subtypes according to the number of
cilia: uniciliated, biciliated, and multiciliated, and the first
two subtypes give rise to new ependymal cells [19]. In addi-
tion, another cell type, cerebrospinal fluid- (CSF-) contacting
neurons (CSF-CNs), exists in lower vertebrates, such as fish
and amphibians but not in higher mammals such as dogs
and cats [20, 21]. NSCs extend an apical protrusion in the
ependymal zone to contact with CSF; the flow of CSF can
be sensed through a transmembrane sodium channel which
can regulate the proliferation of these cells by activating Erk
cascade [22].

2.2. Ependymal Cells Are Heterogeneous. Studies show that
ependymal cells are heterogeneous and express radial glia cell
markers such as RC1 and BLBP and NSC markers such as
CD15 (also known as Lewis X antigen or SSEA-1), GFAP,
PSA-NCAM, Musashi1, CD133/prominin-1, Sox2, Sox3,
and Sox9, as well as vimentin and nestin [10, 23–26]. Nestin
is expressed in dorsal and ventral poles of ependymal cells
and CD15 and BLBP in dorsal regions [24]. In adult mouse
spinal cord, the numbers of nestin-containing cells (NCCs)
are the greatest in cervical vertebrae 1–7, the second in tho-
racic 1–12, and the smallest in lumbar 1–5, and no significant
difference exists in the left vs. right side [27].

3. Response of Endogenous Spinal Cord NSCs
after Injury

Following injury, endogenous spinal cord NSCs go through 3
steps: activation, migration, and differentiation.

3.1. Spinal Cord NSC Activation. Studies have shown that spi-
nal cord injury induces activation of spinal cord NSCs which
otherwise would remain in a quiescent state or assume very
slow proliferation under normal conditions [7, 28–30]. Epen-
dymal cells, astrocytes, and NG2+ oligodendrocytes are all
stimulated to divide after injury [9, 31, 32]. Spheres derived
from injured spinal cords grow 3-4 times faster and larger
than those from intact spinal cords [8]. Some ependymal cell
markers such as Sox2, Sox3, and FoxJ1 are downregulated
when the progeny cells leave the central canal and contribute
to glial scar formation [10]. Another cell population called
radial glia that express vimentin, BLBP, and nestin increase
the expression of these markers after injury [33, 34]. Reports
show that SCI increases the number of Nestin+/Sox2+ cells in
the spinal cord, especially in the central canal in rats [35–37].
The expression of nestin, which is a marker of NSCs, is
upregulated in the central canal after acupuncture injury with
a 25 G needle (Figure 1).

Changes of microenvironment, such as an increased level
of certain soluble factors, a hypoxic condition due to vascular

destruction, and immune responses, may contribute to NSC
activation after CNS injury [38–43]. In human spinal cords,
multipotent NSCs have been isolated and studied in vitro,
and the number of Nestin+/GFAP+ cells is increased after
traumatic injury as examined by histopathological analysis
of the spinal cord tissues [44–46]. Mitogenic agents such as
EGF and FGF promote spinal cord NSC proliferation
in vitro and in vivo, and EGF promotes migration from the
central canal [47–49]. VEGF, whose expression level is
increased after SCI, activates spinal cord NSC proliferation
through VEGFR2 and EGFR signal pathways [37]. Spinal
cord extracts of rats after SCI promote embryonic rat NSC
proliferation in vitro through elevating Notch1 and Hes1
expression, and Notch pathway activation might be one com-
ponent in the injury niche of the spinal cord that promotes
NSC self-renewal [50].

3.2. Spinal Cord NSC Migration and Differentiation.
Migration of the activated NSCs away from the central
canal towards the lesion site can be detected by 3 days after
spinal cord injury [10, 51]. The migrating cells change their
morphologies and lose expression of FoxJ1, Sox2, and Sox3
[10]. Reports show that the recruited NSCs at lesion sites
mainly differentiate into astrocytes and, to a less degree,
oligodendrocytes, but into no neurons after injury [10].
Yet controversy still exists in the field. Using Nestin-Cre-
ERT transgenic mice as a tracing model, Ren et al. and
Zukor et al. indicated that ependymal cell-derived proge-
nies contribute minimally to the protective scar-forming
astrocytes [52, 53].

4. Cellular Strategies for SCI Repair

Spinal cord injury is a neurodegenerative disease that results
in loss of neurons, astrocytes, and oligodendrocytes, leading
to physical impairments [54, 55]. In addition, inflammatory
reactions, ischemia, and apoptosis cause secondary damage
to spinal tissues. Cell therapy, or combined with the
administration of growth factors and/or biomaterials, has
shown promising potentials for SCI repair [56–61]
(Figure 2). Transplantation of derivatives of embryonic cells,
induced pluripotent stem cell (iPSC), NSC, or induced NSC
(iNSC) has produced regenerative effect and partial recovery
from injury [62–64].

Culture of mouse embryonic stem (ES) cells was first
reported by Evans and Kaufman in 1981 [65] and human
ES cells by Thomson and colleagues in 1998 [66]. ES cells
can be easily propagated in vitro and form teratoma when
injected in vivo; therefore, ES cells need to be differentiated
into neural lineage precursors prior to transplantation. Stud-
ies have shown that neurally differentiated cells derived from
mouse ES cells, when transplanted into a rat spinal cord 9
days after traumatic injury, could survive and differentiate
into astrocytes, oligodendrocytes, and neurons and migrate
as far as 8 mm away from the lesion boundary. Engraftment
also improves the hind limb functions of the injured rats [67].
Transplantation of human ES-derived oligodendrocyte pro-
genitor cells (OPCs) promotes remyelination and restores
locomotor performance after SCI [68].
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iPSCs are generated by a reprogramming process through
overexpression of transcription factors such as Sox2, Klf4,
Oct4, and c-Myc (SKOM) as reported by Takahashi and
Yamanaka in 2006 [69]. Generation of iPSCs can also be real-
ized via viral transduction, mRNA transfection, and/or small
molecules [69–75]. iPSCs can be easily expanded to a large
scale in culture and also of an autologous origin, thus circum-
venting most of the immune recognition-associated prob-
lems. However, a manufacturing scale-up process may affect
the differentiation ability of iPSCs and thus the purity of
desired derivatives accordingly; enrichment by applying
immune-magnetic beads may be used to address this issue
in some contexts. Researchers have grafted human iPSC-
derived neurospheres into the injured mouse spinal cords,
and the grafts can form synapses and improve locomotor
recovery [76, 77].

ES and iPSCs are pluripotent and can be differentiated
into many lineages of cells, and thus have remarkable poten-
tials to be used in a wide spectrum of conditions; however,
the clinical application of ES cells is complicated by ethical

problems; NSCs derived from embryos have similar issues
in some countries, albeit to a less degree. Use of iPSC-
differentiated NSCs may circumvent these ethical issues.
Researchers have examined embryonic NSCs in repair of
SCI in animal models. Neurons derived from transplanted
NSCs extracted from embryonic forebrains restore disrupted
neuronal circuitry in mouse SCI models; nevertheless,
another study shows that NSCs from the E14 rat cerebral cor-
tex or the adult rat subventricular zone are restricted to a glial
lineage when engrafted into the normal or lesioned spinal
cord [78, 79]. The seemingly difference between these
two studies may be due to the fact that the former study
transplanted embryonic NSCs together with valproic acid
(VPA), which may promote neuronal differentiation from
NSCs [79]. Okubo and colleagues have reported that
iPSC-derived neural progenitor cells, together with gamma-
secretase inhibitors, promote functional recovery in the
subacute and chronic phases of SCI [80, 81], and they are
proposing an initiative to conduct a first-in-human clinical
trial using hiPSC-NPCs to treat chronic SCI patients [82].

CC

(a)

CC

(b)

(c) (d)

Figure 1: Transverse sections show an elevated expression of nestin in the rat central canal (CC). (a) Intact spinal cord. (b) 3 days after injury.
(c and d)Magnified CC of the insets in (a) and (b), respectively. Nestin, green; DAPI, blue. Arrows show the Nestin+ cells. Scale bars: (a and b):
200μm; (c and d): 50 μm.
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5. Potential of Endogenous Spinal Cord
NSCs for SCI Repair

Even though exogenous cell transplant may promote recov-
ery after SCI, the carcinogenic risk, the invasive nature, and
complications associated with transplantation procedures
pose some challenges in the field. Furthermore, it is difficult
to fully control the fate of the transplants [83]. Ependymal
cells have been shown as the endogenous spinal cord NSCs.
Some animals such as tailed amphibians exhibit powerful
endogenous neurogenic capacity and are able to almost
fully repair their damaged spinal cords and functionality
after SCI [84–87]. Turtles spontaneously reconnect their

severed spinal cords, leading in some cases to substantial
recovery [88]. It has attracted a lot of interest with the idea
that endogenous spinal cord NSCs might contribute to func-
tional recovery. An in-depth understanding of the molecular
mechanisms underlying the regeneration-permissive niches
in these organisms may lend critical knowledge to help
promote endogenous neurogenesis of the mammalian
spinal cord after injury [89]. Also, it is reasonable to
predict that, given the complicated nature of SCI, an
individual approach targeting a single molecule/pathway
may not be sufficient to offer a panacea, and tailoring
specific combinations of therapies would provide a better
outcome [90].

Celluar grafts

Aligned biomaterials Non-aligned biomaterials

Cocktail

Growth factors

Small molecules

Specific antibodies

Lesion site

Transplantation

Figure 2: Combined cellular strategies for SCI repair.
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Ependymal cells differentiate into astrocytes to form scar
tissues, and about half of the scar-associated astrocytes are
derived from ependymal cells. The astrocytes migrate
towards the core of the scar and produce laminin that is help-
ful for axon growth [91]. The GFAP+ astrocytes derived from
the resident astrocytes are localized in the brim of the scar
and secrete chondroitin sulfate proteoglycans (CSPG) which
are inhibitory to axon growth [92, 93]. Eliminating ependy-
mal cell-derived astrocytes or total reactive astrocytes in the
scar tissue may enhance immune cell infiltration and lead
to enlarged lesion volume, increased neuronal death, and
aggravation of the functional outcome [94, 95]. Blocking
the generation of ependymal cell progenies results in 79%
animals failing to form compact scar tissues, secondary
enlargement of lesions, and further axonal loss [96]. In addi-
tion, the recent studies report that astrocyte scar aids in axon
growth, and RNA sequencing reveals that astrocytes and
nonastrocytic cells in SCI lesions express multiple axon
growth supporting molecules [97]. More interestingly, in
fresh water turtles, the activated ependymal cells contributed
to the generation of cycling cells that are an important part of
the reconstructive bridging scaffold permissive for axon
regrowth after SCI [98].

Isolation of ependymal cells from SCI rats and transplan-
tation of these cells into severe contusion models lead to
long-distance migration from the transplant bolus to the
neurofilament-labeled axons in and around the lesion zone
[99]. Retrovirus-mediated overexpression of the Neuro-
genin2 and Mash1, with growth factor treatment, enhances
the production and maturation of new neurons and oligo-
dendrocytes, when directly injected into the injured spinal
cord [100]. Spinal cord NSCs also possess a property of plas-
ticity. For example, adult spinal cord-derived stem cells that
normally do not generate neurons after injury can differenti-
ate into interneurons if injected into the adult hippocampus
[101, 102]. These studies indicate that ependymal cells have
a potential to repair SCI, given sufficient conditions to
manipulate the intrinsic properties of these cells and/or
the surrounding microenvironment [103]. Furthermore,
enhanced physical activity promotes the proliferation and
differentiation of endogenous ependymal cells, indicating a
key role of exercise on SCI recovery [104, 105]. Siegenthaler
et al.’s work showed that voluntary exercise attenuates
age-related reparative deficits following contusion SCI
and the recovery rate of locomotor functions in injured
aged rats is comparable to that of injured young rats without
excise [106].

6. Discussion

There are 3 types of dividing cells in an intact spinal cord,
NG2+/Olig2+ oligodendrocyte progenitors, GFAP+/CX30+/-
Sox9+ astrocytes, and FoxJ1+ ependymal cells, which consti-
tute around 80%, <5%, and <5%, respectively, of the
dividing cells. Among these 3 types of cells, only ependymal
cell-derived neurospheres are multipotent and can generate
neurons, astrocytes, and oligodendrocytes in vitro. In vivo,
ependymal cells are activated after injury and mostly differ-
entiate into astrocytes and oligodendrocytes but few neurons.

The limited ability to differentiate into neurons may be partly
due to the high expression of Notch1 and Hes1 in the niche
after injury, which could be one of the components that
inhibit neuronal differentiation [107]. A better understand-
ing of the inhibitory microenvironment will help to find
means to unleash the neuronal specification potential, both
of the endogenous ependymal cells and of the incoming
NSC transplants [108, 109]. In addition, how the NSC trans-
plants interact with the endogenous ependymal cells is not
very clear and warrants a further study.

Previously, researchers have tried to transplant NSCs into
the injured spinal cord immediately after SCI. However, this
may not be the optimal time window for cellular inter-
vention. Expression of inflammatory factors is increased
in 6-12 hours after SCI and remains elevated in the fol-
lowing 4 days [110]. Astrocytes release various immune
chemicals, such as CSPG, which is beneficial for acute
SCI recovery but may be detrimental with chronic exposure,
and MCP-1, which plays potent roles in the recruitment of
macrophages and monocytes. The infiltrated neutrophils
and macrophages can secrete myeloperoxidase, MMP-9,
TNF-α, TGF-β, IL-1α, IL-1β, IL-6, IL-10, iNOS, Arg-1, etc.
[111–113]. The inflammatory responses are the major cause
of secondary tissue degeneration, namely, secondary SCI. In
addition, neurotrophic factors, CNTF for example, which
promotes differentiation into astrocytes, are increased after
injury. However, factors that promote neuronal and oligo-
dendrocytic genesis, such as NT3 and BDNF, remain at a
low level. This contrasting expression of factors that block
neurogenesis vs. enhance neurogenesis may be, at least in
part, a reason for nonneuronal generation of endogenous
NSCs after injury. It is possible that the optimal time for cel-
lular intervention may not be the acute phase after injury.
The secretion of inflammatory factors would last for 1 week,
and the vascular reconstruction that is beneficial for neuro-
genesis occurs during 7-14 days [114]. Therefore, some
researchers proposed that the optimal time window for cell
transplantation might be 7-14 days postinjury [115].

The number of endogenous spinal cord NSCs is small
in the central canal, despite their potential for SCI repair.
A sufficient number of spinal cord NSCs may be essential
to achieve certain reparative effects. To promote prolifera-
tion of endogenous NSCs, researchers have attempted to
inject VEGF into spinal cords [37] or by electrical stimu-
lation [116]. To promote the differentiation of endogenous
NSCs into neurons, researchers have employed linearly
organized biomaterials together with drugs such as cetuxi-
mab and taxol to repair the injured tissue [117]. However,
more work is required to achieve a desirable level of acti-
vation and neuronal differentiation of endogenous spinal
cord NSCs following SCI.

Furthermore, promoting both neurogenesis and oligo-
genesis is important for cell therapies for SCI repair. Some
molecules or drugs, such as erythropoietin and cetuximab,
have been reported to promote differentiation into neurons
or oligodendrocytes [118–123]. Repression of the immune
system in a balanced manner would also be conducive to
recovery. For example, chondroitinase ABC (ChABC) deliv-
ery increases the digestion of CSPG and shifts themacrophage
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towards a M2 phenotype [124]; a single injection of rapamy-
cin, a blocker of the mTOR pathway, reduces macrophage/
neutrophil infiltration and inhibits astrocyte activation, lead-
ing to increased neuronal survival and axonogenesis towards
the lesion site [125]. Finding an optimal interventional strat-
egy, possibly with a combinatory approach, to promote neu-
rogenesis and oligogenesis and eventually reconstruct the
damaged neuronal circuitry and functionality, is the goal in
the field for SCI repair. Manipulating the intrinsic properties
of ependymal cells at the central canal and turning the inhib-
itory niche at injury site to a permissive one, together with the
exogenous application of NSC/neural precursor grafts and
modulatorymolecules/drugs, may be tailored to suit the com-
plex conditions of individual patients with SCI in the future.
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