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The use of cyclosporine A (CsA) in transplant recipients is limited due to its side effects of
causing severe hypertension. We have previously shown that CsA increases the activity of
the epithelial sodium channel (ENaC) in cultured distal nephron cells. However, it remains
unknown whether ENaC mediates CsA-induced hypertension and how we could prevent
hypertension. Our data show that the open probability of ENaC in principal cells of split-
open cortical collecting ducts was significantly increased after treatment of rats with CsA;
the increase was attenuated by lovastatin. Moreover, CsA also elevated the levels of
intracellular cholesterol (Cho), intracellular reactive oxygen species (ROS) via activation of
NADPH oxidase p47phox, serum- and glucocorticoid-induced kinase isoform 1 (Sgk1), and
phosphorylated neural precursor cell–expressed developmentally downregulated protein
4–2 (p-Nedd4-2) in the kidney cortex. Lovastatin also abolished CsA-induced elevation of
α-, ß-, and γ-ENaC expressions. CsA elevated systolic blood pressure in rats; the elevation
was completely reversed by lovastatin (an inhibitor of cholesterol synthesis), NaHS (a donor
of H2S which ameliorated CsA-induced elevation of reactive oxygen species), or amiloride
(a potent ENaC blocker). These results suggest that CsA elevates blood pressure by
increasing ENaC activity via a signaling cascade associated with elevation of intracellular
ROS, activation of Sgk1, and inactivation of Nedd4-2 in an intracellular cholesterol-
dependent manner. Our data also show that NaHS ameliorates CsA-induced
hypertension by inhibition of oxidative stress.
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INTRODUCTION

The potent immunosuppressant cyclosporine A (CsA), a cyclic
11–amino acid peptide of fungal origin, leads to a dramatic
improvement in clinical outcomes by reducing allograft
rejection. However, the use of CsA is complicated by the
development of hypertension (Kitahara and Kawai, 2007). Our
previous studies have shown that CsA increases the activity of the
epithelial sodium channel (ENaC) in cultured distal nephron cells
(Wang et al., 2009). However, it remains unclear whether CsA
can elevate blood pressure in vivo. It is well known that ENaC is
responsible for sodium reabsorption in the distal nephron. The
channel complex is composed of three homologous gene
products: α, β, and γ subunits (Canessa et al., 1994). Gain-of-
function mutations of β and γ subunits are found in patients with
Liddle’s syndrome, which has severe hypertension (Shimkets
et al., 1994; Schild et al., 1995). The molecular basis of ENaC
in parallel with altered blood pressure suggests that activation of
ENaC by CsA may mediate CsA-induced hypertension. Our
previous studies have shown that CsA increases membrane
and intracellular cholesterol in cultured A6 distal nephron
cells. The underlying mechanism is associated with inhibition
of ATP-binding cassette transporter A1 (ABCA1), which is
known to mediate cholesterol outward transport (Wang et al.,
2009). Recently, we have shown that molecular knockdown of
ABCA1 in cortical collecting duct (CCD) principal cells elevates
cholesterol in CCD cells and ENaC activity, and these effects are
closely associated with increased blood pressure. Interestingly,
the ABCA1 deletion–induced hypertension can be abolished by a
cholesterol synthesis inhibitor lovastatin (Wu et al., 2019).
However, it remains unclear whether CsA induces
hypertension by stimulating ENaC and whether statins can
attenuate CsA-induced blood pressure and ENaC activity.

It is known that CsA and 4,4′-diisothiocyanostilbene-2, 2′-
disulfonic acid can block the function of ABCA1 transporters.
Therefore, CsA and DIDS may also elevate intracellular
cholesterol to increase ENaC activity in vivo, as we have seen
in cultured distal nephron cells (Wang et al., 2009; Wu et al.,
2019). We have also shown that exogenous cholesterol causes
oxidative stress both in lymphoma cells and in CCD principal
cells (Liu et al., 2013b; Song et al., 2014) and that ROS stimulates
ENaC in cultured distal nephron cells (Ma, 2011; Zhang et al.,
2013). It has been shown that CsA can significantly increase ROS
in HK-2 cells (Huang et al., 2018). These studies together suggest
that CsA may increase ROS in distal nephron cells by elevating
intracellular Cho.

Statins are widely used for reducing hypercholesterolemia by
inhibiting Cho synthesis in the liver. For the first time, we show
that lovastatin also inhibits Cho synthesis in CCD principal cells
(Liu et al., 2013a). Our studies also indicate that lovastatin-
induced decreases in intracellular Cho account for decreased
ENaC activity. Conversely, application of exogenous Cho
increases ENaC activity, which can be acutely observed in
excised inside-out patches (Zhai et al., 2019), indicating that
intracellular Cho is important for ENaC activity. Our data have
also shown that lovastatin reduces the effects of CsA on tight
junctions and apoptosis via ROS-dependent and

ROS-independent pathways (Liu et al., 2013a). However, there
is no direct evidence to show whether and how statins prevent
CsA-induced hypertension. Therefore, additional in vivo
experiments are required to determine the role of intracellular
Cho and ROS in CsA-induced activation of ENaC.

Hydrogen sulfide (H2S), as a reducing agent, participates in
many physiological and pathological processes. Plasma H2S
concentrations are lower in hypertensive patients than in
normal subjects (Sun et al., 2007). Recent studies have
implicated that endogenous H2S levels can be restored by
using H2S donors which decrease blood pressure in different
hypertension models (Meng et al., 2015). The underlying
mechanism is closely related to its reducing effects as we have
shown that hydrogen sulfide prevents ENaC activation by ROS
(Wang et al., 2015;Wang et al., 2018). Therefore, we hypothesized
that NaHS might protect against CsA-induced hypertension.

In this study, we show that CsA increases ENaC activity in
CCD principal cells by elevating intracellular Cho, ROS, and
serum/glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor
cell-expressed developmentally downregulated protein 4–2
(Nedd4-2) and can be corrected by lovastatin. Interestingly,
activation of ENaC accounts for CsA-induced hypertension,
while lovastatin, NaHS, or amiloride can reverse CsA-induced
hypertension.

MATERIALS AND METHODS

Animals
All procedures in the experiments using the animals were
performed according to the guidelines from ARRIVE and the
U.S. NIH (Kilkenny et al., 2010). In addition, all experimental
protocols were approved by the Ethical Committee of Harbin
Medical University for Animal Research. Male Sprague-Dawley
rats (200–250 g, Experimental Animal Center of Harbin Medical
University, Harbin, China) were used. They were randomly
assigned to eight groups: control, CsA, CsA + lovastatin, CsA
+ amiloride, CsA + NaHS, lovastatin, amiloride, or NaHS. A
minimum of six rats were included in each group. The animals
were kept in a climate-controlled light-regulated space with 12-h
light and 12-h dark cycles. They were allowed free access to
normal diet and water. CsA was given at 18 mg/kg/day in olive oil
via intraperitoneal injection. Lovastatin was given at 10 mg/kg/
day in sodium carboxymethylcellulose via gastric gavage.
Amiloride was given at 5 mg/kg/day in water via gastric
gavage. NaHS was given at 0.056 mg/kg/day in water via
intravenous injection. The control group received the vehicle
instead.

Cell Culture
The A6 cell line is derived from distal nephron segments of
Xenopus laevis and serves as an appropriate cell model which has
been extensively used for studying ENaC. A6 cells were purchased
from the American Type Culture Collection (Rockville, MD,
United States) and grown in medium consisting of three parts
DMEM/F-12 (1: 1) medium (Gibco, United States) and one part
H2O, with 15 mM NaHCO3 (total Na+� 101 mM), 2 mM
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L-glutamine, 10% fetal bovine serum (Invitrogen, United States),
25 units/ml penicillin, and 25 units/ml streptomycin. A6 cells
were cultured in plastic flasks in the presence of 1 μM
aldosterone at 26°C and 4% CO2. After the cells reached 70%
confluence, they were subcultured on the polyester membranes of
Transwell inserts (Corning Costar Co., United States) for
confocal microscopy analysis. To allow them to be fully
polarized, cells were cultured for at least 2 to 3 weeks before
performing the experiments (Wang et al., 2018).

SBP Measurement
The systolic blood pressure (SBP) of the rats was measured in
conscious rats by using the tail-cuff method (CODA, 20310, Kent
Scientific Corporation, United States). The rats were allowed to
rest on the platform for 15 min at 37°C before measurement. Data
from the first 2 days of each blood pressure cycle were discarded
as this was considered a transition period in which the rats
become accustomed to the procedure. Systolic blood pressure
was an average of three measurements each day for 3 weeks.

Single-Channel Recordings of Patch-Clamp
Technique
Cell-attached patch clamp was used to assess ENaC activity in
isolated, split-open rat CCDs, as previously described (Bao et al.,
2014; Wu et al., 2019). Principal cells were identified by their
characteristic morphology in the split-open tubule. Specifically,
principal cells appear in the Hoffman modulation image to be
large, polygonal, or round cells with concave surfaces;
intercalated cells have asymmetric shapes with convex but
convoluted surfaces. The CCDs adhered to a cover glass
coated with Cell-Tak (Cat. No. 354240, Corning, NY,
United States), and the cover glass was placed on a chamber
mounted on an inverted Nikon Eclipse TE2000 microscope. The
tubule was perfused with a bath solution containing (in mM)
140 NaCl, 5 KCl, 1 CaCl2, and 10 HEPES adjusted to pH 7.4 with
NaOH. Patch pipettes were pulled from borosilicate glass with a
Sutter P-97 horizontal puller (Sutter, Novato, CA,
United States), and the resistance of the pipettes ranged from
6 to 8 MΩ when filled with the pipette solution (in mM) 140
LiCl, 5 KCl, 1 CaCl2, and 10 HEPES adjusted to pH 7.4 with
LiOH. To assess ENaC activity, cell-attached patches were
formed under voltage-clamp conditions (Vpipette � 0 mV) on
the apical plasma membrane of principal cells. ENaC activity
was determined during at least 15-min recording period. Only
the patches with a seal resistance >2 GΩ were used. Single-
channel ENaC currents were recorded in a cell-attached
configuration with an Axon Multiclamp 200 B amplifier
(Axon Instruments, Foster City, CA, United States)
interfaced via Digidata 1420 (Axon Instruments) at room
temperature (22–25°C). Data were sampled at 5 kHz with a
low-pass filter at 1 kHz using Clampex 10.2 software (Molecular
Devices, Sunnyvale, CA, United States). Before analysis, the
single-channel traces were further filtered at 50 Hz. The single-
channel amplitude was constructed by all-point amplitude
histogram, and the histograms were fit using multiple
Gaussians and optimized using a simplex algorithm. The

open probability (PO) values of ENaCs were calculated using
Clampfit 10.2 (Molecular Devices, Sunnyvale, CA,
United States).

Immunofluorescence Staining
Kidneys were perfused in situ with PBS followed by 4%
paraformaldehyde. Kidneys were removed, put in 18% sucrose
solution at 4°C overnight, embedded into optimal cutting
temperature compound (TissueTek, Sakura Finetek, Torrance,
CA, United States), and cut at 6 μm thickness with a freezing
microtome (CryoStar NX70, Thermo Fisher Scientific, Waltham,
MA, United States). Kidney sections were then permeated with
0.25% Triton X-100 and blocked with 1% BSA for 30 min prior to
incubation with the primary antibody. For double staining, we
double-labeled the cells with antibodies against AQP-2, a
collecting duct principal cell marker (1:100, sc-515770, Santa
Cruz, United States), and ENaC (α-ENaC, 1:200, SPC-403D,
Stress Marq, Canada; β-ENaC, 1:200, SAB5200106, Sigma-
Aldrich, United States; γ-ENaC, 1:200, SPC-405D, Stress
Marq, Canada) at 4°C overnight, followed by corresponding
secondary fluorescence antibodies for 1 h. Hoechst 33342
(10 μM, Thermo Fisher scientific, Waltham, MA,
United States) was used to stain nuclei. Antibodies were
detected using appropriate fluorescently conjugated secondary
antibodies coupled to Alexa Fluor® 568 donkey anti-goat IgG (1:
1000, A-11057, Invitrogen, United States) or Alexa Fluor® 488
donkey anti-rabbit IgG (1:1000, A-21206, Invitrogen,
United States).

For filipin staining, frozen kidney sections were fixed in 4%
paraformaldehyde and then incubated with 1.5 mg/ml glycine.
The kidney sections were incubated overnight at 4°C with AQP-2
antibody and then incubated with secondary antibodies for 1 h at
room temperature. After washing with PBS, the cells were
incubated with filipin (SAE0087, Sigma-Aldrich, United States)
for 1 h at room temperature and viewed via a confocal
microscope using a DAPI filter. Identical acquisition settings
were used for all images.

Dihydroethidium (DHE) staining was used to investigate the
levels of ROS in CsA-induced damage sections of the kidney.
Cryosections were prepared and incubated in dihydroethidium
(5 μM,D23107, Invitrogen, United States) solution in the dark for
15–25 min. The sections were washed with PBS and
counterstained with DAPI. All slides were imaged using a
confocal microscope (Fluoview1200, Olympus, Japan). Pixel
intensity was quantified across a line drawn from the tubule
lumen through the center of individual cells without a visible
nucleus and adjacent to the nucleus in cells with a visible nucleus
using National Institutes of Health ImageJ software. Control
fluorescence intensity is used as a calibrator, and relative
fluorescence intensity is calculated against this calibrator.

A6 cells were washed twice with NaCl solution prior to the
performance of any experiments. Immediately following
experimental manipulation, the polyester membrane support
was quickly excised and mounted on a glass slide with a drop
of NaCl solution to keep the cells alive. A6 cells grown on
Transwell inserts were loaded with 2.5 μM 5-(and-6)-carboxy-
2′,7′-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA),
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a membrane-permeable ROS-sensitive fluorescent probe
(Invitrogen, United States) that becomes fluorescent when
oxidized. Prior to application of CsA, lovastatin, or NaHS, the
A6 cells were treated with an iron chelator, 50 μM 2,2′-dipyridyl,
that suppresses the damaging Fenton reaction for 3 min (Shatalin
et al., 2011). Labeled cells were washed twice in a modified DPBS
before confocal microscopy analysis. ROS levels were measured
according to fluorescence intensity.

Western Blotting
The freshly isolated kidney cortex was minced and washed once
with PBS and then homogenized using a homogenizer (VCX150,
Sonics and Materials, United States) with RIPA lysis buffer
(P0013B, Beyotime, China) containing protease inhibitor
(4693116001, ROCHE) and phosphatase inhibitor (4906837001,
ROCHE). Tissue lysates were centrifuged at 12,000 rpm at 4°C for
10 min to remove debris. Protein concentration was determined
using the BCA protein assay (Applygen, Beijing, China). Forty
micrograms of total protein were separated on 10% SDS-
polyacrylamide gels and transferred onto polyvinylidene
difluoride (PVDF) membranes, blocked by 5% nonfat dry milk
or 5% fat-free bovine serum albumin for 1 h, followed by
incubating with primary antibody α-ENaC (1:1000, SPC-403D,
Stress Marq, Canada), β-ENaC (1:1000, SAB5200106, Sigma-
Aldrich, United States), γ-ENaC (1:1000, SPC-405D, Stress
Marq, Canada), NCF1/p-47phox (1:1000, ab795, Abcam,
United Kingdom), Sgk1(1:500, ab59337, Abcam,
United Kingdom), Nedd4-2 (phospho S448) (1:500, ab168349,
Abcam, United Kingdom), and GAPDH (1:10000, ab8245,
Abcam, United Kingdom) for overnight. After being washed
with PBST, the membranes were incubated with goat anti-
rabbit IRDye® 800 CW (1:10000 dilution, P/N 926–32211, LI-
COR, Germany) or goat anti-mouse IRDye® 800 CW (1:10000
dilution, P/N 926–32210, LI-COR, Germany) at room temperature
for 1 h. The bands were quantified by using the Odyssey infrared
imaging system (LI-COR) and Odyssey v3.0 software.

Chemicals
All chemicals for electrophysiological recordings were purchased
from Sigma-Aldrich (St Louis, MO, United States), except when
specified. CsA was purchased from Tocris (Ellisville, MO,
United States).

Statistical Analyses
All data are shown as mean ± SEM. Student’s t test was used to
determine the significance of differences between two groups,
whereas one-way ANOVA was used for comparison of multiple
groups. Differences were considered statistically significant at
p < 0.05.

RESULTS

CsA Stimulates ENaC in Split-Open CCD
Principal Cells in a Cho-Dependent Manner
To determine whether CsA in vivo stimulates ENaC in a Cho-
dependent pathway, Sprague–Dawley rats were either under

control conditions or treated with CsA, CsA plus lovastatin, or
lovastatin for three weeks. The cell-attached voltage-clamp
configuration was established on the apical membrane of
principal cells attached to split-opened CCD, which was
acutely isolated from these rats. Our results show that ENaC
PO was significantly increased in rats treated with CsA, from
0.30 ± 0.02 (control) to 0.60 ± 0.03 (CsA) and that the increase
was abolished in the presence of lovastatin (0.29 ± 0.04). In
contrast, lovastatin alone had no effects on ENaC PO (0.30 ± 0.01)
(Figures 1A,B). These results suggest that CsA stimulates ENaC
in a Cho-dependent manner.

CsA Elevates Intracellular Cho in CCD
Principal Cells and Lovastatin Abolishes the
Elevation
To determine whether CsA can affect intracellular Cho
concentrations in CCD principal cells, confocal microscopy
experiments were performed using kidney slices from rats
treated, as described in Figure 1. The kidney slices were
stained with filipin, a fluorescent Cho-binding compound, to
examine relative intracellular Cho concentrations and with an
AQP-2 antibody to map CCD principal cells. Compared with that
of control rats, the fluorescence intensity of filipin in CCD
principal cells from CsA-treated rats had significantly
increased, and the increase was reversed by lovastatin (Figures
2A,B). These data suggest that CsA elevates intracellular Cho in
CCD principal cells, and the elevation can be abolished by
lovastatin.

Lovastatin Ameliorates CsA-Induced
Elevation of Both ROS and p47phox

Expression
To determine whether lovastatin reduces CsA-induced elevation
of ROS, the kidney slices were stained with DHE, a fluorescent
indicator of oxidative stress, as previously reported (Dong et al.,
2012). Confocal microscopy data show that the levels of DHE
were significantly increased in all kidney tubular epithelial cells
from CsA-treated rats and that the increase was abolished by
lovastatin (Figures 3A,B). Furthermore, Western blots
demonstrate that lovastatin abolished CsA-induced elevation
of p47phox, a regulatory subunit of NADPH oxidase (Figures
3C,D). These data suggest that CsA causes oxidative stress by
stimulating p47phox expression probably via elevation of
intracellular Cho.

Lovastatin Abolishes CsA-Induced Increase
in Sgk1 and p-Nedd4-2
Previous studies have shown that elevation of ROS mediates the
aldosterone-induced increase in Sgk1 (Yamahara et al., 2009).
Therefore, we performed Western blot experiments to
determine whether CsA can also stimulate Sgk1 expression.
Indeed, Sgk1 was significantly increased in the kidney cortex of
CsA-treated rats, while the increase was ameliorated by lovastatin
(Figures 4A,B). As a downstream protein of Sgk1 signaling, the
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expression of phosphorylated Nedd4-2 was also assessed. The
phosphorylation of Nedd4-2, which releases ENaC from Nedd4-
2 and increases ENaC density on the cell surface, was significantly

increased in CsA-treated rats (Figures 4C,D). These data suggest
that lovastatin reverses the CsA-induced increase in α-, β-, and
γ-ENaC by reducing Sgk1 and phosphorylated Nedd4-2.

FIGURE 1 | Lovastatin ameliorates CsA-induced ENaC activity. (A) Representative single-channel recordings of ENaC activity in principal cells of cortical collecting
ducts from rats either under control conditions or treated with CsA in the absence or in the presence of lovastatin. Downward events show ENaC opening. (B) Summary
data of ENaC PO under each condition listed in (A) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test).

FIGURE 2 |CsA increases intracellular cholesterol in the rat’s CCD. (A)Confocal microscopy images of cholesterol levels (blue, labeled with filipin) in the kidney from
rats either under control conditions or treated with CsA in the absence of or presence of lovastatin. Scale bars: 50 μm. (B) Summarized fluorescence intensity of all the
images under each condition as shown in (A) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test).
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FIGURE 3 | Lovastatin ameliorates CsA-induced elevation of ROS and P47phox expression. (A) Confocal microscopy images of DHE (red) from rats either under
control conditions or treated with CsA in the presence or in the absence of lovastatin. Scale bars: 50 μm. (B) Summary data of fluorescence intensity under each
condition listed in (A) (*p < 0.05, n � 6 in each group). (C) Western blot of the kidney cortex lysates from control conditions or CsA-treated rats in the absence and
presence of either lovastatin, using antibodies against p47phox andGAPDH as a loading control. (D) Summary data ofWestern blots, showing p47phox expression in
the kidney cortex under each condition listed in (C) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test).

FIGURE 4 | Lovastatin ameliorates CsA-induced elevation of both Sgk1 and phosphorylated Nedd4-2 expression in the rat kidney. (A)Western blots of Sgk1 in the
kidney cortex from rats either under control conditions or treated with CsA in the absence or presence of lovastatin. (B) Summary data of Western blots, showing Sgk1 in
the kidney cortex under each condition listed in (A) (*p < 0.05, n � 6 in each group). (C)Western blot of phosphorylated Nedd4-2 (p-Nedd4-2) in the kidney cortex from
rats treated as in (A,B). (D) Summary data ofWestern blots, showing p-Nedd4-2 under each condition listed in (C) (*p < 0.05, n � 6 in each group, one-way ANOVA
followed by the Bonferroni post hoc test).
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Lovastatin Abolishes CsA-Induced
Expression of α-, β-, and γ-ENaC in CCD
Principal Cells
To test whether lovastatin attenuates ENaC expression induced
by CsA, both confocal microscopy andWestern blot experiments
were performed. The data show that fluorescence intensities of
α-ENaC (Figures 5A,B), β-ENaC (Figures 6A,B), and γ-ENaC
(Figures 7A,B) in the CCD principal cells and the protein levels
of α-ENaC (Figures 5C,D), β-ENaC (Figures 6C,D), and
γ-ENaC (Figures 7C,D) in the kidney cortex were increased
in CsA-treated rats, suggesting that CsA stimulates the expression
of α-ENaC, β-ENaC, and γ-ENaC. Importantly, the stimulation
was abolished by lovastatin. These data suggest that lovastatin not
only abolishes CsA-elevated ENaC PO, as described above, but
also ameliorated CsA-increased ENaC expression.

Lovastatin or NaHS Attenuates
CsA-Induced Elevation of Systolic Blood
Pressure
Our recent studies have shown that molecular knockout of
ABCA1 causes elevation of SBP by elevating intracellular Cho
(Wu et al., 2019). To further determine whether CsA elevates SBP
by stimulating ENaC through a signal transduction cascade
associated with elevation of intracellular Cho and ROS, the

rats were either under control conditions or treated with CsA,
CsA plus amiloride (amiloride alone as a control), CsA plus
lovastatin (lovastatin alone as a control), or CsA plus NaHS
(NaHS alone as a control) for three weeks. As shown in
Figure 8A, even at 1 week after CsA treatment, SBP was
significantly increased. The increase was reversed to the
baseline levels in the presence of amiloride, lovastatin, or
NaHS. To test whether CsA causes oxidative stress in vitro,
intracellular ROS of A6 cells were examined. The data show
that CsA also elevated intracellular ROS and that the elevation
was reversed by lovastatin or NaHS (Figures 8B,C). These data
suggest that hypertension caused by CsA can be ameliorated by
amiloride, lovastatin, or NaHS.

DISCUSSION

The present study suggests the following: (a) lovastatin eliminates
CsA-increased ENaC activity by reducing intracellular Cho in
CCD principal cells, (b) lovastatin ameliorates CsA-induced ROS
elevation by reducing the regulatory subunit of NADPH oxidase,
p47phox, and (c) CsA increases SBP in rats, which can be corrected
by directly blocking ENaC with amiloride or by reducing either
intracellular Cho with lovastatin or ROS with NaHS.
Immunosuppressant drugs such as CsA and tacrolimus have
been long known to induce hypertension (Joss et al., 1982;

FIGURE 5 | Lovastatin decreases CsA-induced α-ENaC expression in the rat kidney. (A) Representative confocal microscopy images of α-ENaC (green) in the
kidney from rats either under control conditions or treated with CsA in the absence or presence of lovastatin. Scale bars: 50 μm. (B) Summary data of α-ENaC
fluorescence intensity in kidney slices under each condition listed in (A). (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test). (C)
Western blots of α-ENaC in the kidney cortex from rats either under control conditions or treated with CsA in the absence or presence of lovastatin. (D) Summary
data ofWestern blots, showing α-ENaC in the kidney cortex under each condition listed in (C) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni
post hoc test).
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Starzl et al., 1990). Although CsA and tacrolimus can induce
severe hypertension, these drugs are continuously used for
reducing the allograft rejection in transplant recipients.
Therefore, how to reduce their side effects in causing
hypertension has clinical significance. Here, we show that CsA
causes hypertension by stimulating ENaC through a signaling
cascade associated with elevation of intracellular Cho and ROS. It
is known that CsA is a potent blocker of a Cho transporter
ABCA1 (Nagao et al., 2013) and that molecular knockout of
ABCA1 in CCD principal cells stimulates ENaC by elevating
intracellular Cho (Wu et al., 2019). These studies together suggest
that CsA elevates blood pressure by reducing ABCA1 function
and therefore increasing intracellular Cho to stimulate ENaC in
distal nephron cells. The role of Cho in mediating CsA-induced
hypertension is further validated by the evidence that inhibition
of Cho synthesis with lovastatin can reverse the effects.

We have previously shown that Cho increases the
concentrations of intracellular ROS in both lymphocytes and
CCD principal cells (Song et al., 2014; Zhai et al., 2019). CsA
increases intracellular ROS by stimulating NADPH oxidase and
increasing the regulatory subunit of NADPH oxidase, p47phox

(Liu et al., 2013a). CsA acts as an inhibitor of the Cho transporter
ABCA1 to increase Cho in distal nephron cells (Wang et al.,
2009). Since Cho-rich membrane microdomains are required for
the assembly and activity of NADPH oxidase (Vilhardt and van
Deurs, 2004; Rao Malla et al., 2010), our data suggest that CsA-
induced Cho accumulation in principal cells may account for

activation of NADPH oxidase and the followed elevation of
intracellular ROS. Our previous studies show that palmitate
stimulates ENaC by increasing ROS in cultured distal nephron
cells (Wang et al., 2018) and that oxidized LDL also stimulates
ENaC by increasing intracellular ROS (Liang et al., 2018). In this
study, we show that CsA increases ROS probably by increasing
the expression of subunit of NADPH oxidase, p47phox. Since it is
known that elevated ROS increase Sgk1 expression (Yamada
et al., 2008) and reduced ROS decrease Sgk1 expression
(Shibata et al., 2007), we argue that CsA may increase Sgk1
expression by increasing ROS. Sgk1 is a protein kinase that
stimulates ENaC by phosphorylating Nedd4-2 and
subsequently inhibiting ENaC degradation from the apical
membrane (Shibata et al., 2007). However, it remains to be
determined whether ROS promote the expression of Sgk1 and
Nedd4-2.

Our data show that lovastatin can be used as a treatment for
CsA-induced hypertension. However, it is still controversial
whether statins can be used to treat CsA-induced
hypertension. Clinical case analysis shows that statins induce
rhabdomyolysis, a skeletal muscle breakdown complication, and
cause renal injury in transplant recipients, especially on CsA
treatment (Alejandro and Petersen, 1994; Lasocki et al., 2007).
These studies suggest that for the patients receiving CsA
treatment, statins should be reduced (Arnadottir et al., 1993).
In contrast, other data suggest that statins can actually improve
the outcomes of renal transplant recipients receiving CsA

FIGURE 6 | Lovastatin decreases CsA-induced β-ENaC expression in the rat kidney. (A) Representative confocal microscopy images of β-ENaC (green) in the
kidney from rats either under control conditions or treated with CsA in the absence of or presence of lovastatin. Scale bars: 50 μm. (B) Summary data of β-ENaC
fluorescence intensity in kidney slices under each condition listed in (A). (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test). (C)
Western blots of β-ENaC in the kidney cortex from rats either under control conditions or treated with CsA in the absence or presence of lovastatin. (D) Summary
data ofWestern blots, showing β-ENaC in the kidney cortex under each condition listed in (C) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni
post hoc test).
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FIGURE 7 | Lovastatin decreases CsA-induced γ-ENaC expression in the rat kidney. (A) Representative confocal microscopy images of γ-ENaC (green) in the kidney
from rats either under control conditions or treated with CsA in the absence of or presence of lovastatin. Scale bars: 50 μm. (B) Summary data of γ-ENaC fluorescence
intensity in kidney slices under each condition listed in (A). (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test). (C)Western blots of
γ-ENaC in the kidney cortex from rats either under control conditions or treated with CsA in the absence or presence of lovastatin. (D) Summary data of Western blots,
showing γ-ENaC in the kidney cortex under each condition listed in (C) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test).

FIGURE 8 | Lovastatin or NaHS corrects CsA-elevated systolic blood pressure (SBP) by stimulating ROS. (A) SBP from rats either under control conditions or
treated with CsA in the absence or presence of lovastatin or NaHS (*p < 0.05, significantly different from the control group, #p < 0.05, significantly different from the CsA
group, n � 7 in each group, one-way ANOVA followed by the Bonferroni post hoc test). (B) Images represent the levels of intracellular ROS detected by a membrane-
permeable fluorescent probe, carboxy-H2DCFDA, in A6 cells under indicated conditions. (C) Summarized fluorescence intensity of all the images under each
condition as shown in (B) (*p < 0.05, n � 6 in each group, one-way ANOVA followed by the Bonferroni post hoc test).
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treatment (Imamura et al., 2005; Lisik et al., 2007). Several lines of
evidence suggest that statins at low or modest dosages are quite
safe and effective for the transplant recipients with
hypercholesterolemia (Kuo et al., 1989; Yoshimura et al., 1992;
Cheung et al., 1993; Arnadottir et al., 1994; Vanhaecke et al.,
1994). Therefore, whether lovastatin can be used as a treatment
for CsA-induced hypertension remains to be further determined.
Although CsA-induced hypertension can be corrected by directly
blocking ENaC with amiloride, it is known that amiloride can
cause acute kidney injury (Mutchler and Kleyman, 2019).
Therefore, searching other compounds to treat CsA-induced
hypertension is necessary. Besides lovastatin, here, we show
that NaHS ameliorates CsA-induced hypertension and that
NaHS attenuates CsA-induced oxidative stress. This is not
surprising because our previous studies have shown that NaHS
can produce similar antagonistic effects on palmitate-induced
elevation of intracellular ROS and ENaC activity (Wang et al.,
2018). These data suggest that beside lovastatin, H2S may serve as
another treatment for CsA-associated hypertension.

It has long been noticed that CsA can induce vascular
constriction (Richards et al., 1990; Lessio et al., 2005).
However, the underlying mechanism remains unclear. We and
other investigators have shown that ENaC is expressed in the
endothelial cells and mediates vascular tension (Jeggle et al., 2013;
Liang et al., 2018). Therefore, CsA may not only stimulate ENaC
in the kidney but also activate ENaC in the endothelial cells, to
increase blood pressure. However, there are differential effects of
CsA on ENaC expression between CCD principal cells and
endothelial cells. Specific deletion of ABCA1 in CCD principal
cells only increases the expression of γ-ENaC (Wu et al., 2019).
Here, we show that pharmacological blockade of ABCA1 in both
CCD principal cells and endothelial cells with systemic
application of CsA increases the expression of all three ENaC
subunits in the kidney. We argue that there might be specific

pathways for increased expression of α- and β-ENaC in the
endothelial cells, which lack CCD principal cells. These
deserve to be further determined in our future studies.
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