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Abstract

Breast cancer is the second common cancer and the leading cause of malignancy among females overall. Breast
cancer stem cells (BCSCs) are a small population of breast cancer cells that play a critical role in the metastasis of
breast cancer to other organs in the body. BCSCs have both self-renewal and differentiation capacities, which are
thought to contribute to the aggressiveness of metastatic lesions. Therefore, targeting BCSCs can be a suitable
approach for the treatment and metastasis of breast cancer. Growing evidence has indicated that the Wnt, NFκB,
Notch, BMP2, STAT3, and hedgehog (Hh) signaling pathways govern epithelial-to-mesenchymal transition (EMT)
activation, growth, and tumorigenesis of BCSCs in the primary regions. miRNAs as the central regulatory molecules
also play critical roles in BCSC self-renewal, metastasis, and drug resistance. Hence, targeting these pathways might
be a novel therapeutic approach for breast cancer diagnosis and therapy. This review discusses known signaling
mechanisms involved in the stimulation or prevention of BCSC self-renewal, metastasis, and tumorigenesis.
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Introduction
Breast cancer (BC) is the most invasive cancer and the
second common cause of malignancy among females
overall [1–3]. BC involves different areas of the breast
(lobules, ducts, and connective tissue) and shows various
physiological properties and different clinical outcomes
[4, 5]. Based on the cancer response, BC can be divided
into estrogen receptor (ER)-positive (response to estro-
gen signaling), progesterone receptor (PR)-positive (re-
sponse to progesterone), ER/PR-positive, and human
epidermal growth factor receptor-2 (HER2)-positive tu-
mors [6–8]. Triple-negative breast cancer (TNBC) as a
subtype of basal-like breast cancer (BLBC) is defined
with negative expression of the ER, PR, and HER2 [9].
The main treatments for BC include chemotherapy [10,
11], radiation therapy [12, 13], hormone-blocking ther-
apy [14, 15], surgery [16], and biological treatment [17].

Despite available interventions, these strategies may not
always be the best treatment options for targeting BC
metastasis [18]. Therefore, a better understanding of the
molecular mechanisms involved in tumorigenesis of BC
is required to develop more effective therapeutic strat-
egies [19, 20]. Breast cancer stem cells (BCSCs) are a
small population of BC cells that play a critical role in
the metastasis of BC to other organs in the body [21].
BCSCs have the ability to self-renew and to differentiate
into specialized cells that are found in malignancy [22,
23]. Accumulating evidence shows that BCSCs are the
leading cause of tumor progression and resistance
against conventional therapy [24–26]. Therefore, target-
ing BCSCs may be an appropriate approach for the
treatment of BC [27–30]. This review discusses known
signaling mechanisms involved in the stimulation or pre-
vention of BCSC self-renewal, metastasis, and
tumorigenesis.
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Cellular and molecular characteristics of BCSCs
In recent years, the existence of BCSCs or breast cancer-
initiating cells (BCICs) in BC has been confirmed [31–33].
BCSCs as a subset of cancer cells exhibit similar properties
with normal stem cells [34]. These cells have a slow cell
cycle and the potential to divide asymmetrically and to seed
tumors when transplanted into a host [35, 36]. BCSCs have
antioxidative, tumorsphere formation, tumorigenicity, and
chemoresistance properties [37]. Based on cell surface
marker expression (by fluorescence-activated cell sorting
(FACS)), BCSCs are CD44(+)/CD24(−/low) tumorigenic
cells that initiate tumors in xenografts [34, 38]. CD44 is a
cell surface glycoprotein and stemness marker in BCSCs
[39]. CD44 binds to hyaluronic acid (HA) and mediates the
interactions between cell/cell and cell/matrix proteins such
as matrix metalloprotease (MMP) and osteopontin (OPN)
[37, 40]. Therefore, the HA hydrogel might be an efficient
strategy that targets BCSCs [37]. CD24 is a glycosylated cell
surface protein that negatively controls the function of
CXCR4 (chemokine receptor) and regulates BCSC metasta-
sis and proliferation [18, 41]. Gene expression of embryonic
stem cell factors, including Oct4, Nanog, SOX2, and DNA
(cytosine-5)-methyltransferase 1 (DNMT1), is observed in
BCSCs [36]. It was validated that BCSCs express CD326
(EpCAM), aldehyde dehydrogenase (ALDH), epithelial-
specific antigen (ESA), and E-cadherin [42, 43]. The
ALDH1 enzyme is a useful therapeutic target that regulates
BCSC functions and malignancies [44, 45]. EpCAM by
Wnt signaling can stimulate cell adhesion, proliferation,
and invasion of BCSCs [46]. CD36 through uptaking fatty
acids and induction of STAT3 and nuclear factor kappa B

(NFkB) can promote expression of the stem cell marker
OCT4, metastasis, and migration of BCSCs [47, 48]. His-
tone deacetylases (HDACs) such as HDAC1 and HDAC7
play essential roles in BCSC maintenance [49]. CD47,
CD133, CD166, CD61, ABCG2, and Lgr5 are the other
markers used for the isolation of BCSCs [50] (Fig. 1).
There is a high degree of intertumor and intratumor

heterogeneity in breast cancer [51, 52]. Thus, a single
tumor may contain BCSCs with distinct molecular pro-
files [53, 54]. Based on immunohistochemical analyses,
cells with the CD44+CD24−/low phenotype are not
enough to characterize BCSC. Several candidate markers
such as the ESA antigen, ALDH1 expression, Prominin-
1 (CD133), and CD131 and the capacity to form spher-
oid can be independent factors for the characterization
of BCSCs [49, 55, 56].

Critical signaling pathways involved in the
stimulation or prevention of BCSC propagation
and metastasis
Tumor microenvironment and signaling pathways have
critical roles in the propagation and differentiation of
BCSCs [57, 58] (Fig. 2). Growing evidences have indi-
cated that the Wnt/β-catenin, NFκB, BMP2, Notch,
STAT3, and hedgehog (Hh) signaling pathways govern
epithelial-to-mesenchymal transition (EMT) activation,
growth, and tumorigenesis of BCSCs in the primary re-
gions [38, 59–62]. However, many of these crucial sig-
naling pathways play important functional roles in
normal stem cells [63, 64]. Several specific molecules, in-
cluding NFkB, BCL6, SOX2, FOXC2, and hypoxia-

Fig. 1 Cellular and molecular characteristics of breast cancer stem cells (BCSCs)
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inducible factor-1 (HIF1), have been contributed to
BCSC EMT and malignancies [39]. Recent studies
showed that the Wnt-, STAT3-, HDAC-, and estrogen
receptor alpha (ESR1)-related pathways can cause
TNBC-associated BCSCs (TNBCSC) to undergo unex-
pected differentiation, EMT, and metastasis [49, 65].

Signaling pathways induced by CD44 in BCSCs
CD44 is known to cooperate with the receptor tyrosine
kinase (RTK) and regulate BCSC proliferation and migra-
tion [39]. Blockade of CD44 impairs the properties of
BCSCs, including cell adhesion, malignancy, progression,
metastasis, EMT, and therapy resistance [39, 66]. Several
signaling pathways such as Wnt/β-catenin, PI3K/Akt, Ras-
MAPK, and Rho GTPases are stimulated by CD44 [67,

68]. Thus, CD44 may be a predictor biomarker for BCSC
isolation and therapy resistance [69]. However, CD44 is
not a suitable marker for the detection of luminal BCSCs
(CD44−/CD24+ or CD44−/CD24−) [39, 70]. CD44 can
suppress the formation of the E-cadherin/β-catenin com-
plex and enhance nuclear β-catenin and genes related to
cell invasion and tumorigenesis in BCSCs [71]. CD44 also
interacts with STAT3 and NF-kB to activate the catalytic
subunit of telomerase (hTERT), enhance metastasis, and
trigger the EMT process in BCSCs [69, 72, 73].

WNT signaling
The Wnt pathway plays a pivotal role in BCSC pheno-
type shaping, proliferation, migration, chemoresistance,
and radioresistance [62, 74]. Canonical and noncanonical

Fig. 2 Critical signaling pathways involved in breast cancer stem cell (BCSC) propagation and metastasis
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Wnt signaling by targeting CD44 promotes the “stem-
ness” of BCSCs [75, 76]. The Wnt/β-catenin/TCF4 axis
through the Snail protein promotes the expression of
miR-125b and chemoresistance in BCSCs [77]. Snail en-
hances the expression of CD44 marker and ALDH activ-
ity in BCSCs [78]. Protein C receptor (ProCr) and LRG5
are novel Wnt targets and potent biomarkers of BCSCs
[79, 80]. MMP3 has been proven that targets Wnt sig-
naling and contributes to the maintenance of BCSCs
[81]. Nestin is a type VI intermediate filament protein
that positively targets the Wnt/β-catenin pathway and
enhances the metastatic ability of BCSCs [82]. DNMT
has been proposed to inactivate the cytoplasmic β-
catenin antagonists such as secreted frizzled-related pro-
teins (SFRPs) and DICKKOPF protein (DKK) and to
promote the expression of Wnt/β-catenin signaling in
BCSCs [83, 84]. Therefore, targeting Wnt/β-catenin sig-
naling may be a potent marker for removing BCSCs [18,
71]. Recent studies showed that NSC668036 targeted the
PDZ domain and suppressed Disheveled (Dvl) and FZD
interactions in Wnt/β-catenin signaling (pre-clinical
trial) [85]. OMP-18R5 (Vantictumab) is a monoclonal
antibody against FZD receptors that targets FZDs and
blocks BCSC growth (phase I) [86]. XAV939 has been
demonstrated that interacts with the type 1 and 2
tankyrase-binding domain (TBD) of the Axin molecule
and blocks Wnt/β-catenin signaling in BCSCs (phase I)
[85]. PKF118-310 (PKF) is a small molecule inhibitor of
Wnt/β-catenin signaling that targets BCSCs in a HER2-
overexpressing mouse model [87]. Pyrvinium pamoate
(PP) is an anti-helminthic drug and a WNT pathway
suppressor that inhibits the expression of the NANOG,
SOX2, and OCT4 genes, and the growth of BCSCs [88].

BMP2 signaling
In breast cancer xenograft models, BMP-2 can promote
EMT transition and bone metastasis [89]. BMP2 via tar-
geting CD44 expression and suppressing the Rb signal-
ing pathway induces EMT, stemness, and
chemoresistance in BCSCs [89]. Activation of the PI3K/
Akt pathway as well as Rb interaction with CD44 has
been shown to play essential roles in BMP-2-dependent
EMT in BCSCs [89]. However, BMPs are able to cause
G1 arrest, increase apoptosis, and suppress BCSC prolif-
eration [90]. Therefore, the BMP family may have dual
behaviors in stimulation or suppression of BCSCs [91].
Thus, employing BMP family inhibitors may be useful
for targeting BCSCs [49, 92, 93].

Hedgehog signaling
Hedgehog signaling by interaction with the Smoothened
(SMO) protein can influence BCSC stemness and malig-
nancies [49, 94]. Neuropilin-2 (NRP2) is a VEGF recep-
tor that stimulates the expression of glioma-associated

oncogene-1 (GLI-1) and α6β1 integrins and contributes
to BCSC initiation [95]. GLI-1 by promoting angiogen-
esis accelerates BCSC progression [96]. Studies suggest
that α6β1 integrins can trigger focal adhesion kinase
(FAK) signaling and mediate BCSC self-renewal ability
[97]. Therefore, targeting the VEGF/NRP2, α6β1, GLI1,
and FAK signaling pathways can provide an attractive
strategy for BC treatment [98]. Genistein is an isoflavone
component present in soy products that has been shown
to suppress hedgehog downstream signaling and block
BCSC growth and survival [99]. Besides, aqueous extract
of Trametes robiniophila Murr (Huaier) by blocking
hedgehog downstream signaling can decrease BCSC
growth, self-renewal, and proliferation [100, 101].

Notch signaling
The Notch pathway through JAG-1 and NOTCH-4 can
stimulate and maintain the invasion, mesenchymal-like
properties, and drug resistance of BCSCs [102, 103].
NOTCH4 by targeting SLUG and GAS1 is involved in
BC development [104]. In normal cells, the NUMB pro-
tein blocks the Notch intracellular domain (NICD) in
the cytoplasm and inhibits the Notch pathway. miR-
146a has been reported to suppress the function of
NUMB, activate the Notch pathway, and trigger the for-
mation of BCSCs [105]. Thus, downregulation of miR-
146a and miR-146b expression may weaken the capacity
for self-renewal in BCSCs [106]. MAP 17 (PDZKIP1) is a
small cargo protein that negatively regulates the NUMB
activity, activates the Notch pathway, and promotes the
maintenance of BCSCs [107]. 6-Shogaol as a ginger-
derived compound by targeting the expression of the
Notch-Hes1-Cyclin D1 (CYLD) axis can suppress au-
tophagy and apoptosis and then blocks the growth of
BCSCs [108]. MK-0752 is a gamma-secretase inhibitor
that inhibits the NICD domain and targets the BCSC
population (phases I and II) [109]. Vismodegib (GDC-
0449) is a Notch/hedgehog inhibitor drug that inhibits
BCSC growth in tamoxifen-resistant breast cancer
(phase I) [110] (http://clinicaltrials.gov).

PI3K-AKT signaling
Epidermal growth factor receptor (EGFR/HER)-related
signaling have been implicated in the pathogenesis of
BCSCs and resistance to chemotherapeutic drugs [111,
112]. This signaling activates molecules such as STAT3,
protein kinase B (PKB or AKT), and tyrosine kinase Src
and stimulates the MAPK (Ras/Raf/Mek/Ek), PI3K/Akt,
and STATs pathways [35]. PI3K-AKT signaling is re-
quired for BCSC phenotype, EMT, and drug resistance
[113]. The role of PI3K/Akt in BCSCs may be mediated
by HER2 [114]. HER1- and HER2-positive BCSCs are
able to self-renew [115, 116]. HER2 dysregulation leads
to a rise in the phosphorylation of Akt in the ALDH+
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population of BCSCs [35]. Therefore, the effects of
HER2 signaling in BCSCs can be increased through the
PI3K/Akt pathway [35]. Transglutaminase (TG2) has
been shown that stimulates NFkβ, Akt, and FAK signal-
ing and initiates BCSC growth and survival [117]. Tbox
transcription factor 3 (Tbx3) through FGF signaling is
associated with BCSC phenotypes and oncogenesis [118,
119]. In addition, the ZFHX3 transcription factor by en-
hancing TBX3 transcription increases the proliferation
and tumor growth of BCSCs [120]. A recent study indi-
cated that Runt-related transcription factor 2 (RUNX2)
by activating the PI3K/AKT pathway contributes to
tumorigenicity, metastasis, and EMT in BCSCs [121]. It
has been reported that Disulfiram (DS) as an anti-
alcoholism drug can inhibit NFκB activation, inhibit
ALDH enzymatic activity, and reduce BCSC stemness
and chemoresistance [122]. Everolimus (RAD001) is a
PI3K/Akt/mTOR pathway inhibitor that blocks BCSC
growth [123, 124]. Lapatinib ditosylate (NCT01868503)
by targeting EGFR/HER2 impacts on the subpopulation
of BCSCs (phase II) [125] (http://clinicaltrials.gov/).

Signaling pathways induced by miRNAs in BCSCs
Recently, studies have been suggested that epigenetic
changes such as DNA methylation and histone modifica-
tions enhance the events of BCSC metastasis [126–128].
miRNAs are epigenetic modulators that target mRNAs
without modifying the gene sequences [129, 130]. In hu-
man cancer, miRNA expression can be controlled by
epigenetic modifications [131]. miRNAs also play an im-
portant role in the proliferation, migration, and invasion
of BCSCs [132–135]. The expression of microRNAs can
be deregulated in BCSCs [130]. Several miRNAs includ-
ing mir-21, mir-22, mir-29a, and mir-221/222 increase
tumorigenesis, and miR-34a, miR-628, miRNA-140-5p,
and miRNA-4319 decrease metastasis in BCSCs [39,
136, 137].

Stimulation of tumorigenesis
miRNAs as the central regulatory molecules serve crit-
ical roles in BCSC self-renewal, metastasis, and drug re-
sistance [138–140] (Fig. 3). miR-21 by targeting the
phosphatase and tensin homolog (PTEN) protein stimu-
lates AKT/ERK1/2 signaling and contributes to the
BCSC progression, EMT, and metastasis [113].
LY294002 and U0126 as the inhibitors of the PI3K-AKT
and ERK1/2 pathways suppress EMT and BCSC pheno-
type [113]. miR-22 has been shown to target the TET
(ten eleven translocation) family of methylcytosine diox-
ygenases and inhibit demethylation of the miR-200 pro-
moter, promote EMT, BCSC stemness, and metastasis
[141]. miR-31 targets Wnt/β-catenin signaling and in-
creases BCSC stemness and tumorigenesis [142]. It has
been evident that miR-29a represses SUV420H2 (a

histone methyltransferase) and promotes EMT progress,
migration, and metastasis in BCSCs [143]. miR-124
through targeting STAT3 regulates the HIF-1 pathway
and enhances doxorubicin (DOX) resistance of BCSCs
[144]. miR-125b has been suggested that targets the
Snail protein and increases the CD44+ and chemoresis-
tance BCSCs [77]. miR-1287-5p through PI3K/AKT sig-
naling plays critical roles in the prognosis and survival of
BCSCs [145]. PIK3CB is a PI3Kinase pathway chemical
inhibitor that interacts with miR-1287-5p and suppresses
breast carcinogenesis [145]. It has been validated that
miR-137 via targeting BCL11A (a zinc-finger transcrip-
tion factor) and Wnt signaling enhances FSTL1 levels
and chemoresistance in BCSCs [146]. The hypoxic
microenvironment around BCSCs can induce the ex-
pression of miR-210. Hypoxia-mediated miR-210 by tar-
geting E-cadherin improves BCSC invasion and
proliferation [147]. miR-155 enhances BCSC stemness
markers, including CD44, CD90, and ABCG2. Thus,
downregulation of miR-155 promotes DOX sensitivity in
BCSC [148]. It has been shown that miR-9 and miR-221
via targeting multiple genes involved with carcinogenesis
are able to promote BCSC stemness and the capacity for
tumor cell renewal [149]. miR-9 by targeting forkhead
box O1 (FOXO1), E-cadherin, and leukemia inhibitory
factor receptor (LIFR) promotes the BCSC recurrence
and invasiveness [150]. miR-221/222 has been reported
to regulate the expression of PTEN and enhance the
growth and maintenance of BCSC [151]. Some findings
suggest that miR-146a and miR-146b by targeting the
Notch pathway are involved in the development of
BCSCs [105].

Suppression of tumorigenesis
Some miRNAs may act as tumor suppressors and over-
come tumorigenesis and drug resistance in BSCS [138,
152]. miR-34a is an important miRNA that targets the
insulin-like growth factor II (IGFII), mRNA-binding pro-
tein (IMP3)-induced stemness, and Wnt/β-catenin sig-
naling and decreases BCSC self-renewal [153]. miR-628
by targeting SOS Ras/Rac guanine nucleotide exchange
factor 1 (SOS1) inhibits BCSC migration and invasion
[154]. miR-140-5p as a critical tumor suppressor blocks
the Wnt/β-catenin, SOX2, and SOX9 pathways and in-
hibits the growth, tumorsphere formation, and progres-
sion of BCSCs [155, 156]. This miRNA through the
Wnt1/ABCB1 pathway promotes the sensitivity of
BCSCs to Dox [156]. miR-142-3p by targeting β-catenin
pathway can reduce CD44, CD133, ALDH1, and radiore-
sistance in BCSCs [157]. miR-4319 can suppress the ex-
pression of the E2F2 transcription factor and decrease
the tumorigenicity of TNBCSC [158]. Another investiga-
tion shows that miR-130a-3p by targeting the expression
of RAB5B (member of RAS oncogene family) inhibits
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Fig. 3 miRNAs involved in the stimulation or suppression of tumorigenesis in breast cancer stem cells (BCSCs)
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the carcinogenic features of BCSCs [159, 160]. miRNA
Let-7 has been shown to block the Wnt pathway, inhibit
the growth and stemness of BCSCs, and promote the
anti-cancer effect of tamoxifen (a chemotherapeutic
drug) [161]. Recent work has also identified Let-7c
through estrogen-activated Wnt signaling can suppress
the self-renewal abilities of BCSCs [162]. miR-205 via
modulating STAT3 signaling reduces the expression of
CD44 and ALDH1 stem-cell markers and inhibits BCSC
migration and invasion [163]. miR-519d by targeting
MCL-1 (a member of the proapoptotic Bcl-2 family) in-
creases the sensitivity of BCSC to cisplatin (a chemo-
therapeutic drug) [164]. miR-600 through the Wnt
pathway targets stearoyl desaturase 1 (SCD1) and re-
duces BCSC self-renewal and tumorigenicity [165]. Also,
miRNA-1 has been identified that targets frizzled recep-
tors (FZDs) in the Wnt pathway and decreases BCSC
proliferation and metastasis [166]. miR-375 by degrading
the HOXB3 gene reduces BCSC phenotypes, EMT, and
tamoxifen resistance [167]. Therefore, tumor-
suppressing miRNAs with their functional pathways
could be introduced as an effective strategy for targeting
BCSCs [168, 169].

Conclusion
Several signal transduction pathways, including Wnt/β-
catenin, hedgehog, Notch, BMPs, and PI3K/Akt/NFkB,
are deregulated in BCSCs. These signaling pathways
stimulate proliferation, migration, invasion, EMT,
chemotherapy, and radiotherapy resistance in BCSCs.
miRNAs also through several signaling pathways can
regulate the stemness features and tumorigenesis of
BCSCs. Inhibition of key signaling pathways with small
molecule inhibitors, nanoparticles, herbal medicine, and
genetic modifications might be effective therapeutic ap-
proaches for targeting BCSCs [31, 85, 170, 171].
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