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Simple Summary: Due to concerns in public health and its negative impact on the pig industry
the need for Influenza A virus (IAV) surveillance is rising. The gold standard procedure for
detecting IAV is to sample acutely diseased pigs. Endemic infections with unspecific clinical signs
and low disease prevalence need new approaches. Our study aimed to evaluate a standardized
sampling procedure for the detection of IAV in epidemically and endemically infected farms.
We performed a cross-sectional study in 131 farms investigating three different age groups per
farm in 12 European countries. The results of our investigation indicate that 10 nasal swabs each
in suckling piglets, weaners and middle of nursery is a valuable tool for influenza detection and
identification of subtypes. However, for farms with a lower prevalence than 15% it is advisable
to either increase the number of nasal swabs in each age group or to use group sampling methods.
Interestingly, different subtypes were found in different age groups. Thus, our study underlines
that sampling of different age groups is mandatory to obtain a comprehensive overview on all
circulating variants on farm. In addition, our results highlight that sampling strategies should
also consider piglets without obvious clinical signs for IAV infection.

Abstract: Swine influenza A virus (swIAV), which plays a major role in the porcine respiratory
disease complex (PRDC), is eliminated from the respiratory tract within 7–9 days after infection.
Therefore, diagnosis is complicated in endemically infected swine herds presenting no obvious
clinical signs. This study aimed to investigate the right time point for sampling to detect
swIAV. A cross-sectional study was performed in 131 farms from 12 European countries. The
sampling protocol included suckling piglets, weaners, and nursery pigs. In each age group,
10 nasal swabs were collected and further examined in pools of 5 for swIAV by Matrix rRT-PCR,
followed by a multiplex RT-PCR to determine the influenza subtype. SwIAV was detected in 284
(37.9%) of the samples and on 103 (78.6%) farms. Despite the highest number of animals with
clinical signs being found in the nursery, the weaners were significantly more often virus-positive
compared to nursery pigs (p = 0.048). Overall, the swIAV detection rate did not significantly differ
between diseased or non-diseased suckling and nursery piglets, respectively; however, diseased
weaners had significantly more positive pools than the non-diseased animals. Interestingly, in
9 farms, different subtypes were detected in different age groups. Our findings indicate that
to detect all circulating swIAV subtypes on a farm, different age groups should be sampled.
Additionally, the sampling strategy should also aim to include non-diseased animals, especially
in the suckling period.
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1. Introduction

Influenza A infections in swine (swIAV), as part of the porcine respiratory disease
complex (PRDC), can cause severe clinical signs that lead to decreased performance in
growers and fatteners [1] and can also have a negative impact on the reproductive perfor-
mance of the sow herd [2]. As pigs also harbor receptors for the human and avian influenza
virus, they play a role as a “mixing-vessel” for new reassortants, harboring the danger of
zoonotic potential [3–5]. The use of vaccines often forms part of influenza prevention in
swine herds. To enable the selection of the correct vaccination strategy, an exact knowledge
of the subtypes involved, not only on the individual farms but also within the region,
is necessary [6,7]. Today, the main two strategies to detect influenza on farms include
individual samples from diseased animals, which is still viewed as the “gold standard” [8],
or cross-sectional group samplings. In individual samplings, influenza detection is mainly
performed by analyzing the lungs during necropsy, bronchoalveolar lavage, and, very
often, nasal swabs are taken from acutely diseased animals exhibiting sneezing, coughing,
and/or high fever symptoms. Nasal swabs can either be examined as single swabs or are
often in pools of five for further investigation. This reduces the cost of the PCR without
significant loss of sensitivity. Commonly used group-sampling methods include oral fluids,
while the recent publication by Garrido-Mantilla et al. in 2019 [9] resulted in the use of
udder wipes to detect the swIAV virus on farms. Previously, group samplings were mainly
used for monitoring purposes but, as influenza very frequently persists endemically on
farms while not always leading to obvious clinical signs, the need for convenient but
reliable sampling methods has increased. Particularly in endemically infected herds, the
right choice of animals to sample is crucial, as the recurrent circulation of the influenza
strain means that some of the sow population will already have had contact with the virus.
These previously infected sows can transfer maternally derived antibodies (MDA) to their
piglets [10]. MDA can prevent clinical signs in suckling piglets that either get infected by
virus-shedding sows, by airborne transmission, by farm workers [11], or from other sources.
However, clinically protected suckling piglets will shed the same amount of virus particles
after infection as do piglets that did not receive MDA [12,13]; therefore, these clinically
unsuspicious suckling piglets can transfer the virus into the nursery. It has been shown
that after introduction into the nursery, depending on the strain involved, the group sizes,
and the amount of mixing among animals, the infection dynamics can vary greatly [14]. Al-
though these infected piglets do not show obvious clinical signs, coinfections with bacteria
such as Streptococcus suis [15] or Glaesserella parasuis [16], or with other viral agents such
as porcine reproductive and respiratory syndrome virus (PRRSV) [17], can lead to severe
clinical signs [18]. Consequently, these signs appear later in the nursery after the primary
infection with swIAV, which has often been eliminated by the animals at the time point of
visible clinical signs. As the virus can only be detected up to 7–9 days after infection [19],
samples taken from these acutely diseased animals can appear negative in the performed
influenza A PCR. Another factor that can complicate the diagnosis is the co-circulation of
multiple strains on farms with different prevalence and infection dynamics [20].

The aim of the present study was to establish an efficient sampling approach for piglets
on farms, either when an acute influenza outbreak is suspected or in an endemic course of
the disease. To gain an overall overview of the infection dynamics, as well as the subtypes
circulating on farms, a cross-sectional study investigating three different age groups was
performed in 12 different European countries.
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2. Materials and Methods
2.1. Farm Selection and Sampling Protocol

A cross-sectional study was conducted in 12 different European countries. The farms
were selected using the following inclusion criteria: farms with either acute clinical signs
suggesting swIAV, including dyspnea, coughing, sneezing, nasal discharge, anorexia,
and/or lethargy (epidemically infected farms), or farms suspecting endemic swIAV circula-
tion, due to either reproductive failure and fever in sows or recurrent respiratory distress
in the nursery (endemically infected farms). Farm owners voluntarily participated in the
investigation. Between January and December 2021, a total of 131 farms were examined
once (Figure 1).
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Figure 1. The 12 European countries that participated in the study, colored and sized differently
according to the number of farms that were sampled in each country (blue: 1–5 farms, purple:
6–10 farms, yellow: 11–20 farms, red: 21–30 farms). This map was constructed using StepMap®.

The sampling protocol consisted of 10 nasal swabs in each of the following age groups:
suckling piglets (1–4 weeks old), piglets around weaning (4–6 weeks old) and animals in the
middle/end of the nursery period (7–9 weeks old). In the suckling period, one strong piglet
per litter out of 10 litters was sampled. In piglets after weaning and in the middle/end of
the nursery period, one piglet per pen and around 10 pens were sampled. The sample size
was calculated using a fixed design prevalence of 15%, for a minimum of 95% probability of
detection, assuming a diagnostic sensitivity and specificity of 90% and 100%, respectively.
Therefore, the target number of sampled animals per farm was 30 animals within three age
groups [9]. To maximize the probability of IAV detection, whenever possible, those animals
showing clinical signs suggestive of IAV infection were preferentially sampled.

The collection of nasal swabs was performed by inserting the swab 2–4 cm into both
nostrils of each piglet and rotating it 360 degrees. Swabs were placed into a plastic tube with
2 mL of viral media (Virocult®). Each tube contained a pool of 5 individual swabs, resulting
in 6 pooled samples per farm. Plastic tubes were sent under cooling conditions (using ice
packs) to the laboratory for RNA extraction and testing. In the laboratory, each pool of
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nasal swabs in the first step was investigated by real-time PCR (rRT-PCR) targeting the
matrix gene of influenza A. Results with a cycle threshold (Ct) value < 38 were considered
positive, and a Ct > 38 was considered negative. All positive samples with a Ct value
below 30 were further investigated via multiplex RT-PCR to determine the influenza A
subtype by hemagglutinin (HA) and neuraminidase (NA) gene amplification, targeting
H1av, H1pdm, H1hu, H3hu, N1 (including N1all and N1pdm), and N2. If only the HA
could be determined, samples were counted as typable. IAV rRT-PCR and multiplex
RT-PCR were performed according to the protocol of Henritzi et al. 2016 [21].

The preliminary reported influenza status of the herds (endemically and epidemically),
the farm size, which was categorized into three groups (50–499 sows, 500–999 sows, and
1000–10 000 sows) [22], influenza vaccination status, and the clinical signs shown by the
sampled animals were recorded (no clinical signs or clinical signs). Herd examination also
included a technical questionnaire, assessing the production and management parameters
and details regarding the sampled age groups.

2.2. Statistical Analysis

All statistical analyses were performed using Stata 13.1 (Stata Statistical Software,
College Station, TX, USA). The significance level was set at 0.05.

Descriptive statistics of the collected data were produced. Chi-square tests were
performed in order to investigate whether herd-level positivity differs according to the
influenza status of the herd, vaccination status of the herd, and farm size. The investigation
of the existence of an association between the rRT-PCR results and the collected information
on potential risk factors was performed with the use of a three-level mixed-effect logistic
regression model. The rRT-PCR result (either positive or negative) was the dependent
variable, while the information/parameters collected were the independent variables and
were offered as explanatory variables in the model. Recorded information included the
age category of the piglets in the sampled pools, the influenza status of the herds (endemic,
epidemic), the farm size, influenza vaccination status, and clinical signs of the sampled
animals (no clinical signs or clinical signs). Our data were organized in a hierarchical
structure; sampled piglets were clustered in farms and farms were clustered in countries;
thus, random effect terms were incorporated to account for the within-herd and within-
country correlation of observations resulting from the multilevel design of the study. For the
screening process of candidate variables for multivariable modeling, a bi-variable approach
was used, as suggested by Martin (1997) [23]. The age group of the sampled piglets was
hypothesized to be important for the final model; thus, it was forced in all models during
the screening process [14,24]. All independent variables were initially screened one by one
in bivariate mixed-effects logistic regression models, along with the piglets’ “age group”.
During this screening process, the level of significance was set at 0.25 [25]. Subsequently,
variables with p < 0.25 were offered to a full regression model at the same time, which
was further reduced by backward elimination [26] until only significant variables at the 5%
level remained. Pairwise interactions between the remaining variables were created and
were offered one at a time to the model. Lastly, previously excluded variables were offered
one by one to the final model, to avoid omitting any variable that could add significantly to
the model.

Subsequently, the above model was adapted accordingly and rerun thrice, within
each piglet age group category, to investigate potential differences in the probability of
occurrence of a positive rRT-PCR result between samples with and without apparent clinical
signs, within samples from suckling piglets, weaners, and nursery piglets, respectively.

Additionally, in order to investigate the existence of a potential difference in rRT-
PCR-positive results with a cycle threshold (Ct) value below 30, between the different
sampled age groups of piglets, a mixed-effects logistic regression model was employed. The
dependent variable represented the positive rRT-PCR results with either a Ct value > 30 and
<38 or <30. The procedure for model-building and the selection of explanatory independent
variables followed that described above.
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Finally, as sampling was targeted primarily in piglets presenting clinical signs in-
dicative of swine influenza, we were interested in investigating the degree of difficulty in
finding these symptoms in the sampled age-group categories. In other words, we inves-
tigated potential differences in the probability of detection of the clinical signs between
the sampled age categories of piglets. For this purpose, a three-level mixed-effect logistic
regression model was employed, with the presence or absence of any clinical signs in the
pool of sampled piglets as the dependent variable and the age-group category as the inde-
pendent variable, while random effects terms at country and farm level were incorporated
as well.

3. Results

A total of 131 farms fulfilled the inclusion criteria and could be incorporated into the
present study. Overall, 750 pools of nasal swabs were analyzed for IAV.

3.1. Clinical Signs

In the suckling period, the percentage of animals showing clinical signs indicative
of IAV infection was 33.6% (87/259), whereas, in weaners, 64.7% (159/246) of the pooled
samples originated from diseased animals. In the nursery, clinical signs were obvious in
80.4% (197/245) of the sampled animals (Figure 2).
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Figure 2. The percentage of piglets with and without clinical signs indicative of swine influenza
(including, dyspnea, coughing, sneezing, nasal discharge, anorexia, and/or lethargy) among suckling
piglets, weaners, and nursery pigs in relation to all samples (n = 750).

Following the initial screening process, four variables, namely, the “age group cate-
gory”, “herd size category”, “course of disease (acute/endemic)” and “clinical signs in the
sampled pools” variables were eligible for and included in the full model. After the model-
building processes, only the “age group category” and “clinical signs in the sampled pools”
retained significance and remained in the final model. Their interaction was non-significant
(p = 0.771).

Regarding the potential differences between the age group categories in terms of the
probability of finding and sampling piglets with clinical signs suggestive of swine influenza,
the three-level mixed-effect logistic regression model resulted in the following associations:
testers were 8.18 times (p < 0.001, 95% C.I.: 4.80; 13.94) more likely to find animals with
clinical signs in the weaners compared to the suckling piglets, 28.37 times (p < 0.001, 95%
C.I.: 15.09; 53.33) more likely to find piglets with clinical signs in the nursery compared
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to the suckling period, and 3.46 times (p < 0.001, 95% C.I.: 2.05; 5.87) more likely to detect
animals with clinical signs in the nursery compared to weaners (Figure 2).

3.2. IAV rRT-PCR Results at Farm Level

IAV was found by rRT-PCR in 103 (78.6%) out of the 131 investigated farms, in at
least one of the samples (Table 1). Regarding the farm characteristics, 46 (82.1%) of the
59 farrow-to-finish farms and 58 (80.6%) of the 72 farrowing farms with attached nursery
units were IAV-positive. In total, 41 epidemic farms and 90 endemic farms were included
in this survey. Out of the epidemic farms, 82.9% (n = 34) and 76.7% (n = 69) of the endemic
farms tested positive for Influenza A. The median herd size over all herds was 700 sows.
Overall, 74.5% (n = 35) of the 47 farms ranging between 50 and 499 sows were positive for
IAV, 68.2% (n = 30) of the 44 farms of between 500 and 999 sows, and 92.5% (n = 37) of the
40 farms between 1000 and 9000 sows. Sow vaccination (either reproductive or in a mass
vaccination protocol) was implemented in 71 farms, of which 83.1% were IAV-positive,
whereas of the 60 non-vaccinated herds, 80% were positive for IAV.

Table 1. Detection of IAV by RT-PCR at the farm level in the different countries and sampled
age groups.

Country No. of Farms
No. of

Positive
Farms

Suckling
Piglets Weaners Nursery

(1–4 w.o.a.) (4–6 w.o.a) (7–9 w.o.a)
No. of

Positive
Farms

No. of
Positive
Farms

No. of
Positive
Farms

Others * 3 2 2 1 1
Denmark 26 23 12 17 12

France 10 6 2 4 3
Germany 20 17 11 13 10
Ireland 6 5 4 4 3

Italy 19 12 6 6 8
Netherlands 5 4 3 4 3

Poland 7 7 3 6 5
Spain 17 12 8 3 3
UK 18 15 6 10 14

Total 131 103 57 68 62
w.o.a. = weeks of age; * = Belgium, Greece, Hungary.

There was no statistically significant association between influenza A positivity at the
herd level and the disease status of a farm (epidemic or endemic) (p = 0.913), the vaccination
status (vaccinated/non-vaccinated sows) (p = 0.747), or the farm size (p = 0.485).

3.3. IAV rRT-PCR Results on Sample Level

Of the 750 investigated samples, 284 (37.9%) were positive for IAV. The percentage
positivity for IAV for the suckling period, weaners, and nursery were 32.8 (85/259), 43.1%
(106/246), and 38% (93/245), respectively. Pooled samples from weaners of 5–6 weeks
of age (w.o.a.) showed no difference (p = 0.45) in terms of the odds of a positive PCR
result, compared to suckling piglets (1–4 w.o.a.), and pooled samples from nursery pigs
(7–9 w.o.a.) showed no difference (p = 0.28) in terms of the odds of a positive PCR result
compared to suckling piglets. However, samples from weaners were 1.56 times more likely
to be positive (p = 0.048, 95% CI: 1.004401; 2.42) compared to samples from nursery pigs
(Table 2).
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Table 2. Detection of IAV by rRT-PCR on a sample level in the different countries and sampled
age group.

Suckling Piglets Weaners Nursery
(1–4 w.o.a.) (4–6 w.o.a.) (7–8 w.o.a)

Country (No.) Farms
no. samples/ no. samples/ no. samples/

no. positive no. positive no. positive

Others (n = 3) * 5/2 5/1 5/1
Denmark (n = 26) 52/17 52/31 51/19

France (n = 10) 20/4 19/7 20/3
Germany (n = 20) 41/16 36/18 36/16

Ireland (n = 6) 12/5 12/7 12/5
Italy (n = 19) 42/8 34/6 34/10

Netherlands (n = 5) 10/6 10/7 10/5
Poland (n = 7) 7/3 8/6 7/5
Spain (n = 17) 34/16 34/5 34/4
UK (n = 18) 36/9 36/18 36/25

Total: 12 Countries 259/86 a,b 246/106 b 245/93 a

w.o.a. = weeks of age; * = Belgium, Greece and Hungary. Different superscripts between age groups indicate a
significant difference (p < 0.05) between the number of positive samples.

There was no statistically significant association between the influenza A positivity of
samples and the disease status of a farm (epidemic or endemic) (p = 0.248), the vaccination
status (vaccinated/non-vaccinated sows) (p = 0.72), and the farm size (p = 0.07).

Pooled samples from piglets with clinical signs were 3 times (p < 0.001, 95% CI: 1.82;
4.94) more likely to be positive, compared to pooled samples from piglets without clinical
signs. The results of the mixed-effects logistic regression models within each age group
category detected no significant difference in the odds of a positive RT-PCR result, neither
between pooled samples from healthy and clinically diseased suckling piglets (p = 0.195,
OR = 2.74, 95% CI: 0.59; 12.62) nor between pooled samples from healthy and clinically
diseased piglets from the nursery (p = 0.103, OR= 4.63, 95% CI: 0.73; 29.25). However, a
statistically significant difference in the odds of a positive RT-PCR result between pooled
samples from healthy and clinically diseased weaners (p = 0.031) was detected. Particularly,
samples originating from weaners with clinical signs were approximately 7 (OR = 7.12, 95%
CI: 1.2; 42.26) times more likely to be positive, compared to weaners without clinical signs
(Figure 3).

In terms of the Ct values of the samples, 63.5% (54/86) of the positive samples from
suckling piglets showed a Ct value below 30, allowing us to perform a subtyping multiplex
RT-PCR. Of the weaners, 60.4% (64/106), and in the nursery, 50.5% (47/93) of the positive
samples showed Ct values below 30.

In the mixed-effect logistic regression model for the investigation of the association
of the probability of positive rRT-PCR results with either a Ct value > 30 and <38 or <30,
with potential risk factors among the recorded parameters, only age group and clinical
signs in the sampled pools were eligible for inclusion in the full model. However, none of
these variables retained significance at the 0.05 level in the final model. Thus, there was
no difference in the odds of occurrence of a Ct value > 30 and <38 or <30 among positive
samples, both between any age group category (p = 0.051, p = 0.069, and p = 0.969), in
suckling piglets vs. weaners, in suckling piglets vs. nursery, and in nursery vs. weaners,
respectively, and between pooled samples with or without clinical signs (p = 0.183).
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Figure 3. The percentage of positive and negative pools in influenza A-PCR among suckling piglets,
weaners, and nurseries with and without clinical signs. Different superscripts within each age group
indicate a significant difference (p < 0.05) between samples with “healthy” animals and animals with
“clinical signs”.

3.4. IAV Subtyping Results at Farm Level

In 78 (75.7%) of the 103 IAV rRT-PCR-positive farms, one or more subtypes could
be identified by multiplex RT-PCR. Figure 4 gives an overview of the different subtypes
detected in the study.
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In 66 of these farms, only one subtype was detected. In 48 farms, this subtype was
found in only one of the three investigated age groups; in 14 farms, the subtype was
detected in two age groups, and in 4 farms, it was detected in all three age groups. In
12 farms, two subtypes were identified. From these findings, the two subtypes were
detected in the same age group in 3 farms, whereas, in the other 9 farms, the subtypes were
circulating in different age groups (see the Supplementary Materials for an overview of the
results in terms of farms). Furthermore, 2 of these 9 farms were positive for three different
subtypes (Figure 5).
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Figure 5. Combinations of IAV subtypes detected/farm/age group in 78 farms, with a minimum of
one per multiplex RT-PCR-determined subtype, out of 131 sampled farms.

3.5. IAV Subtyping Results on a Sample Level

Out of the 285 rRT-PCR-positive samples, 165 (57.9%) samples with a Ct value below
30 were tested by multiplex RT-PCR to detect the subtype. The highest subtyping rate was
found in the suckling piglets. The majority of all positive samples, 55.8% (48/86), could be
subtyped, compared to 54.7% (58/106) and 44.1% (41/93) of subtyped samples in weaners
and the nursery, respectively. The different subtypes detected in this study are displayed in
Table 3.

Table 3. IAV Subtypes detected by multiplex RT-PCR in 147 samples with a Ct value < 30 of
749 samples taken from 131 farms.

Subtype Suckling Piglets Weaners Nursery
Total(1–4 w.o.a.) (4–6 w.o.a.) (7–9 w.o.a.)

H1avN1 4 8 2 14
H1avN2 11 13 5 29
H1avNx 2 2 1 5
H1huN2 5 4 14 23
H1huN1 4 4 0 8
H1huNx 1 1 2 4

H3N2 2 1 1 4
H3Nx 1 1 2 4

H1pdmN1 9 11 8 28
H1pdmN2 5 2 3 10
H1pdmNx 5 11 3 19

total 49 58 41 148
w.o.a. = weeks of age.
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4. Discussion

Diagnosis of swIAV can be very challenging, particularly in endemically infected herds
with rather unspecific clinical signs and a low prevalence within the herd [20]. The use
of serologic assays is hampered by the anti-genetic variability of swIAV, leading to cross-
reactivity among subtypes. Additionally, antibodies after exposure cannot be discriminated
from antibodies formed after vaccination [27,28]. Direct detection by the use of RT-PCR
assays is limited by the short course of infection as the virus is mainly shed during days
1 and 5 after infection, and is eliminated from the lungs after 9 days [7,19]. Therefore,
the time point of sampling and the selection of the correct pig are crucial for an effective
diagnosis. To the knowledge of the authors, this is the first large-scale study investigating
sampling approaches in sow farms in a cross-sectional design. To account for variations in
infection dynamics due to the different management strategies in the different European
countries, farms from 12 European countries were included in our investigations.

The detection rate in sows is regarded as low, due to frequent exposure and the
development of immunity [21,29]. Additionally, the duration and the amount of shedding
of the virus by sows might be reduced in previously exposed sows. According to Ryt-
Hansen et al. (2022), it is more likely to find swIAV-positive suckling piglets than sows in
the farrowing unit [30]. Therefore, sows were not included in our sampling protocol.

Until now, the sampling of animals with clinical signs has been propagated. However,
in endemic scenarios with rather unspecific clinical signs and a low disease prevalence,
finding diseased swIAV-positive animals can be challenging. The results of our study
suggest that the approach of focusing on clinically diseased animals must be scrutinized
critically as, despite the highest number of animals showing clinical signs being in the
nursery, the weaners were significantly more often swIAV-positive, compared to the nursery
pigs. The high percentage of nursery pigs with clinical signs may be explained by the fact
that swIAV, as part of the PRDC complex [31], predisposes the animals to co-infections.
However, as coinfections were not investigated within the scope of our study, the role of
coinfections in the evolution of clinical signs in the study farms can only be speculated.
Previous research revealed that often, high health-status animals challenged with influenza
A viruses alone did not show severe clinical signs, and only mild pathological lesions
were detected during necropsy [6,32]. However, coinfections with other pathogens (either
bacteria or other viruses) could lead to more severe clinical signs and pathological lesions
in the lungs [15,16,18,33]. Thus, in animals showing obvious clinical signs, influenza A
virus, which might have been the promoter of the disease, is no longer detectable by PCR
due to the fast clearance of the virus.

It has been shown in previous studies that pigs around weaning age are an appropriate
target population for swIAV sampling [34–37]. In accordance with the aforementioned
studies, we observed a significantly higher chance of detecting influenza by rRT-PCR in
weaners compared to suckling piglets or nursery pigs, which most likely results from the
mixing of piglets after weaning, either for transport or within the pens. Furthermore, the
additional subsequent spread of the virus in the nursery units, due to airflow or even farm
stuff [11], plays a role. The speed of infection depends on the subtypes involved [38], the
extent of mixing, and the group sizes within the nursery units [34]. Interestingly, in our
study, the weaners were the only group where a closer look at clinical signs increased the
chance of finding a positive animal, as diseased animals were significantly more often
positive, compared to healthy animals. The occurrence of clinical signs in swIAV-positive
weaning pigs can be explained by the decline in MDA at around 5 weeks of age, since the
presence of MDA does not prevent infection but does confer clinical protection. Our find-
ings demonstrate, in accordance with previous investigations, the importance of weaners
in the infection dynamics of influenza within herds [39,40]. However, sampling strategies
should not only focus on weaners but also include suckling piglets as, particularly in
endemically infected farms, suckling piglets also play an important role in the maintenance
and dissemination of the virus [14,24,41]. Suckling piglets that received maternally derived
antibodies (MDA+), either due to the vaccination of the sows or previous infection, will
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be clinically protected. However, the presence of MDA confers only limited protection
against the infection and the spread of the virus, as MDA+ piglets have been shown to
shed the virus in the same amounts as animals without MDA (MDA-) [12,13,42]. Therefore,
in endemically infected herds, or even on farms where sows are vaccinated and are, thus,
providing antibodies to their piglets, the chance of finding influenza A-positive suckling
piglets without clinical signs is very high [10,24]. Our data underline this finding, as there
was no significant difference in the swIAV-positivity of a farm in terms of vaccination status
or the course of disease (endemic/epidemic). It has been shown that the risk of already
swIAV-positive suckling piglets is increased by the introduction of unprotected gilts, as they
shed vast amounts of the virus when they first get infected shortly before farrowing [30], or
due to cross-fostering and the use of nurse sows [43,44]. However, for sampling purposes,
it must be considered that suckling piglets may already be infected without exhibiting
clinical signs. Our data clearly show that in farms either suspecting an endemic circulation
of swIAV or an acute outbreak, the percentage of healthy swIAV-positive suckling piglets
(7.2% of all samples) was higher than the percentage of diseased swIAV-positive suckling
piglets (4.2% of all samples). As suckling piglets can serve as a reservoir for swIAV, the
main aspects that have to be considered to reduce swIAV circulation during the suckling
period include the vaccination management of sows and gilts [30,45] and the management
of suckling piglets, to minimize transmission [11].

The design of effective control measures for swIAV requires thorough knowledge of
all circulating strains on the farm. As the protection of the most commonly used whole-
virus-inactivated (WIV) vaccines is primarily linked to the HA [46], therefore, a vaccination
program can be implemented, based on HA identification; samples where only the HA
could be determined were also included in our analysis. In our study, not all samples
with a Ct value < 30 could be successfully subtyped. This may be due to the quality of
the specimen or the design of the primers of the subtype determining multiplex RT-PCR.
False-negative results often stem from an insufficient match between the primers and the
target strain [21,29]. Due to the high genetic diversity of swIAV, the continuous surveillance
of new variants is of the utmost importance for the adjustment of PCR assays. The authors
intentionally abstained from presenting and analyzing the different subtypes detected in
the different countries, due to the low sample sizes of farms in certain countries.

Subtyping was performed to assess the number of subtypes circulating on the farm and
to give advice regarding the sampling approach for the detection of all subtypes circulating
on the farm. More than one subtype was found in 11 (10.7%) of the positive farms. The
simultaneous detection of multiple strains in the same population is not new and has been
described before [21,38–40,47]. However, we were able to identify different subtypes in
different age groups in 9 of our study farms (8.7% of positive farms). Additionally, in most
of the farms with a single detection of one subtype, this subtype was only found in one
of the three investigated age groups. According to our results, no significant difference
in the subtyping rate between the different age groups exists. This strongly indicates that
focusing on one age group can lead to a diagnostic gap; the sampling of different age
groups is advisable for veterinary practitioners to establish an appropriate control strategy.

The sample size used in this study was calculated using a fixed design prevalence of
15%, for a minimum of 95% probability of detection, and assuming a diagnostic sensitivity
and specificity of 90% and 100%, respectively. This led to a target number of 30 sampled
animals per farm, which were taken from three age groups [9]. To increase the chance
of detecting virus-shedding animals, it was mandatory to sample diseased animals, if
available, in the sampled age groups. Based on the high percentage of positive farms
(76.8%), it can be assumed that the sample size of 30 animals per farm, allocated to three age
groups, was appropriate to detect swIAV in both epidemically and endemically infected
farms, under the circumstances of our study. Also farm size did, in contrast to other
publications not have an effect on IAV positivity [22,48], allowing the conclusion, that the
sample protocol is valid for all farm sizes.
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However, it is crucial to consider that all included farms had a history of respiratory
distress and/or reproductive failure; thus, in farms with rather nonspecific clinical signs
and/or a low intraherd prevalence, a higher sample size is needed to detect the virus. In
these cases, the use of group methods can present a cost-effective alternative sampling
strategy to testing individual samples. However, in order to identify the subtype/s, and if
needed for sequencing purposes, individual samples are superior to group samples [9].

5. Conclusions

This article provides new insights into sampling approaches to detect swIAV on sow
farms. The results of our investigation indicate that for influenza A diagnosis, the use of
10 nasal swabs each in suckling piglets, weaners, and in the middle of the nursery stage
is a valuable tool for influenza detection and the identification of subtypes in endemic
and epidemic farms, independent of farm size and the vaccination status of the sows.
However, for farms with an expected prevalence of lower than 15%, it is advisable to
either increase the individual sample size or use additional group-sampling methods.
Furthermore, our study underlines that the sampling of different age groups is mandatory
to obtain a comprehensive overview of all circulating variants on a farm. It additionally
highlights the fact that sampling strategies should also consider piglets without obvious
clinical signs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci9070338/s1, Table S1: Individual results for each farm,
including information about country, course of disease, vaccination status, no. of samples, and no. of
positive and subtype viruses detected in each age group of 131 farms tested (w.o.a. = weeks of age).
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