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Meta-analysis of gene expression 
studies in endometrial cancer 
identifies gene expression profiles 
associated with aggressive disease 
and patient outcome
Tracy A. O’Mara1, Min Zhao2 & Amanda B. Spurdle1

Although endometrioid endometrial cancer (EEC; comprising ~80% of all endometrial cancers 
diagnosed) is typically associated with favourable patient outcome, a significant portion (~20%) of 
women with this subtype will relapse. We hypothesised that gene expression predictors of the more 
aggressive non-endometrioid endometrial cancers (NEEC) could be used to predict EEC patients 
with poor prognosis. To explore this hypothesis, we performed meta-analysis of 12 gene expression 
microarray studies followed by validation using RNA-Seq data from The Cancer Genome Atlas (TCGA) 
and identified 1,253 genes differentially expressed between EEC and NEEC. Analysis found 121 genes 
were associated with poor outcome among EEC patients. Forward selection likelihood-based modelling 
identified a 9-gene signature associated with EEC outcome in our discovery RNA-Seq dataset which 
remained significant after adjustment for clinical covariates, but was not significant in a smaller RNA-
Seq dataset. Our study demonstrates the value of employing meta-analysis to improve the power 
of gene expression microarray data, and highlight genes and molecular pathways of importance for 
endometrial cancer therapy.

Endometrial cancer is the most commonly diagnosed gynecological cancer in developed countries, account-
ing for approximately 7% of new cancer cases in women worldwide1. Unlike most other cancer in females, 
age-standardized rated are steadily increasing2. Endometrioid endometrial cancers (EECs) are the most com-
monly reported histological subtype of endometrial cancer (~80% of all new cases), are estrogen-related tum-
ors, and generally associated with good prognosis. Conversely, non-endometrioid endometrial cancers (NEECs; 
commonly serous papillary or clear cell histology) are estrogen-independent, and tend to be high-grade, clini-
cally aggressive tumors3. A subset of EEC patients (~20%) will suffer recurrent tumors, with a 5-year survival 
rate reduced from 75–80% to less than 10%4. Although a recent study has reported the utility of POLE mutation 
status for identifying women with good prognosis5, there is currently no accepted method to identify markers 
that predict EEC patients with poor clinical outcome. Markers to predict EEC patients with poor prognosis will 
identify those women requiring more extensive surgery and adjuvant therapy to improve patient outcome. Such 
biomarkers may be discovered by comparing “global” molecular data for poor and good outcome EEC patients, 
but unfortunately few public datasets have been annotated for this phenotype. We hypothesized that a compari-
son of all EEC patients with poor-outcome NEEC patients might provide an alternative, better powered, strategy 
to identify biomarkers of EEC patients with poor outcome.

Global gene expression analysis is recognized as an effective strategy for determining profiles that could be 
used to classify cancer tissues into clinically meaningful subgroups. For example, the classification of breast can-
cers into luminal A, luminal B, normal, HER2 and basal-like subtypes, and the discovery of two distinct types of 
B-cell lymphoma (germinal center B-cell like lymphoma and activated B-cell like lymphoma) resulted from gene 
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expression microarray studies6,7. It is recognized that results reported from individual microarray studies often 
display variability8. Indeed, variability can be observed for results from endometrial cancer microarray studies. 
For example, in total ~1,300 genes have been reported as differentially expressed across microarray studies assess-
ing gene expression profiles between EEC and NEEC tumors9–16, however only 160 genes were reported in more 
than one study and no gene was reported by more than four studies.

To overcome the discrepancy and low reproducibility of individual microarray studies of endometrial cancer,  
we have performed a meta-analysis of 12 microarray gene expression studies to assess genes differentially 
expressed between NEEC and EEC cancers, as a means to identify genes that are important for development of 
aggressive endometrial cancer subtypes. The differential expression of these genes was validated using an inde-
pendent endometrial cancer set with RNA-Seq data from The Cancer Genome Atlas (TCGA). We then explored 
the hypothesis that the aggressive gene signature identified by expression profiles associated with NEEC tumors 
can be used to predict EEC patients with poor prognosis and used validated aggressive signature genes to con-
struct survival prediction models for EEC patients in the TCGA cohort. Our study demonstrates the value of 
employing meta-analysis for gene expression microarray data, and has highlighted genes and molecular pathways 
of importance for endometrial cancer prognosis and therapy.

Results
An overview of the study design can be found in Fig. 1.

Microarray Studies and Meta-Analysis. Following a literature review and repository search, twelve 
endometrial cancer microarray studies (Table 1) were merged and probes for 3,176 genes were extracted as being 
common across at least 10 studies. Principal components analysis using co-expression profiling and reproduc-
ibility estimates identified three studies as outliers (Supplementary Figure 1 and Supplementary Table 1). After 
considering sample size and number of probes assessed by each platform, an additional study (study 10) was 
removed from further analysis. The remaining eight studies were remerged, increasing the number of probes to 
14,673 genes common across all studies. Genes displaying differential expression between NEEC and EEC tissue 
were identified for each study. Meta-analysis of individual study results found 2,053 genes (1126 upregulated, 927 
downregulated) to be significantly differentially expressed between EEC and NEEC (Adjusted P-value <  0.05; 
Supplementary Table 2), and a consistent direction of effect observed across all eight studies.

TCGA RNA-Seq Validation. Analysis of differential expression between NEEC and EEC tissue in 317 inde-
pendent samples from the TCGA Illumina GA RNA-Seq dataset validated the result for 1,581 genes from the 
2,053 genes (77%) identified by microarray meta-analysis (Adjusted P-value <  0.05 and same direction of effect; 
Supplementary Table 2). Class prediction analysis predicted 1,253 from the 1,581 genes would be able to distin-
guish the subtype (EEC or NEEC) of new tumors tested using compound covariate predictor and leave-one-out 
cross-validation. Pathway analysis found these 1,253 genes to be enriched in pathways for cell cycle (Adjusted 
P-value =  5.4 ×  10−7), mitotic cell cycle (Adjusted P-value =  9.34 ×  10−7), progesterone-mediated oocyte matu-
ration (Adjusted P-value =  7.9 ×  10−5) and oocyte meiosis (Adjusted P-value =  2.3 ×  10−4). Restricting to the 145 
most significantly differentially expressed genes identified by meta-analysis (P-value <  10−19 and standardized 
fold change > 2) was able to cluster NEEC and EEC samples in k-means cluster analysis (83.2% accuracy; Fisher’s 
Exact P-value <  2.2 ×  10−16; Fig. 2). Similar clustering was observed in analysis of TCGA RNA-Seq data from 
92 EEC and 57 NEEC tumor samples generated by HiSeq (82.6% accuracy; Fisher’s Exact P-value <  2.2 ×  10−16; 
Supplementary Figure 2).

Functional enrichment and network analyses of the 145 most significantly differentially 
expressed genes. Because of computational limitations, functional enrichment analyses were restricted to 
the 145 most significantly differentially expressed genes identified by meta-analysis (P-value <  10−19 and stand-
ardized fold change > 2). Since we have a total of 14,673 genes shared across all eight studies for differential 
expression analysis, we used these 14,673 genes as background for the calculation of significant P-values. In total, 
we found three significant functional terms: N4-(beta-N-acetylglucosaminyl)-L-asparaginase activity, Mucin 
type O-Glycan biosynthesis, and Walt’s disease. In our background gene list, there are only two genes (AGA 
and ASRGL1) related to N4-(beta-N-acetylglucosaminyl)-L-asparaginase activity. Both of these were detected 
in the 145 genes (GO:0003948, corrected P-value =  0.0192). For the KEGG pathway Mucin type O-Glycan 
biosynthesis, three genes (GALNT4, GCNT3, and ST6GALNAC1) were detected in our 145 genes (corrected 
P-value =  0.0456). The change of structure of mucin-type O-glycans can alter the adhesive properties of cells as 
well as cells’ potential to invade and metastasize in colon and breast cancers17. More interesting, we found five 
genes (CDKN2A, COL8A2, RASSF6, TMC4, and TMC5) from our 145 genes are associated with Walt’s disease 
(corrected P-value =  0.0040), which are infections in the skin caused by the human papillomavirus (HPV). In fact, 
the infection of HPV could precede the endometrial cancer progression18.

To explore the global interaction features of the 145 most significantly differentially expressed genes, we further  
mapped this gene list to the human pathway-based interactome. As shown in Fig. 3, we were able to reconstruct 
a network of 168 genes, of which 106 (63%) were from the 145 gene list, and 570 gene-gene interactions. The 
majority of genes in the reconstructed map are linked to each other and the vast majority of genes (~90%) in the 
network are connected by less than five steps. Twenty hub genes (defined as nodes with 20 or more connections) 
were identified in our network, of which 13 (65%) were from the 145 gene list: AGA [33], DNM1 [32], EPHB2 
[30], ATP2C2 [29], ENTPD3 [28], NUDT11 [28], ASRGL1 [27], ACSL5 [27], LOXL3 [27], EPHB1 [26], SAT1 [26],  
GCNT3 [23], MGST2 [22]. Interestingly, both AGA and ASRGL1, related to N4-(beta-N-acetylglucosaminyl)- 
L-asparaginase activity, are highly connected in the reconstructed network, which may provide clues as to how 
these two genes interact with other cancer genes.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:36677 | DOI: 10.1038/srep36677

EEC-only Survival Analysis. Expression from 121 of the 1,581 genes validated as differentially expressed 
between NEEC and EEC associated with EC-specific survival in EEC patients at a P-value <  0.005 (Table 2). 
Twenty-three of these 121 genes were among the 145 most significantly differentially expressed genes 
(Supplementary Table 2). Using these 121 genes as input, forward selection, likelihood-based modelling selected a 
9-gene signature as being associated with EC-specific survival among EEC patients. The expression of the 9-gene 
signature were used to construct a prognostic index for each patient (see methods), which associated with poorer 
survival (log-rank P-value =  2.6 ×  10−4, Fig. 4A). This association remained significant after multivariate analysis, 
adjusting for clinical covariates, stage and grade (HR 8.2; 95% CI 1.7–40.7; P-value =  0.01). Prognostic indexes 
were calculated for 92 non-overlapping TCGA patients with RNA-Seq data generated using the Illumina HiSeq 
platform, however the difference in EC-specific survival between the high and low risk groups was non-significant 
in this smaller dataset (log-rank P-value =  0.16; Fig. 4B).

Discussion
In this study we have investigated differential gene expression between NEEC and EEC to identify 1,253 genes that 
are involved in aggressive disease, thus providing insight into the biological underpinnings of these two groups 
of endometrial cancer. By taking a meta-analysis approach, using stringent selection criteria and performing 

Figure 1. Study Overview. EEC - endometrioid endometrial cancer; NEEC - non-endometrioid endometrial 
cancer; TCGA - The Cancer Genome Atlas; EC-specific survival - endometrial cancer-specific survival.
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validation in a large, independent RNA-Seq data, we have minimized false positive associations and produced 
genes robustly associated with NEEC. The reliability of this analysis was indicated by the validation of 77% of the 
identified genes in RNA-Seq data from an independent set of TCGA samples. We then further explored whether 
genes associated with aggressive disease were associated with poor prognosis among women with EEC, identify-
ing a 9-gene signature which was able to group EEC patients as high- or low-risk, which remained significant after 
adjustment for clinical features, stage and grade.

We identified 601 genes to be upregulated in EEC compared to NEEC. Unsurprisingly, given the accepted rela-
tionship of EEC with unopposed estrogen exposure, the most significantly upregulated genes included estrogen 
responsive genes (KIAA1324, TFF3, MLPH) and genes involved in estrogen-related processes (FOXA2, ESR1, 
PGR). Expression of genes involved in epithelial (Ca2+ ) signaling (ATP2C2, TRPM4) were also found to be 
highly associated with EEC, a pathway thought to be important for epithelial cancer cells19. Two other genes 
identified as upregulated in ECC have previously been reported to be overexpressed in EEC by numerous studies; 
TFF310,13–15 and CEACAM110,14. Both are involved in extra-cellular matrix processes and cell-adhesion pathways 
and have been implicated in other cancer types reviewed in refs 20 and 21.

There were 652 genes found to be upregulated in NEEC tissue compared with EEC. A number of genes are 
involved in cell-cycle processes, such as GPR19, CDKN2A, USP11 and MX2. GPR19 encodes for a G protein-coupled  
receptor and is reported to be associated with lung cancer and melanoma22. It is suggested that G protein-coupled 
receptors are the most “druggable” family of proteins23. The significant association of GPR19 expression in NEEC 
observed warrants further investigation into the utility of drugs targeting GPR19 in treatment of this disease. 
Defects in the mitotic spindle checkpoint genes have been implicated in aneuploidy, a well-recognized feature of 
NEECs, and a previous gene expression study12 found that genes involved in the regulation of the mitotic spindle 
checkpoint were overexpressed in NEEC. Our results are consistent with this previous study, with mitotic cell 
cycle pathway genes found to be enriched in pathway analyses of differentially expressed genes.

Network reconstruction identified two N4-(beta-N-acetylglucosaminyl)-L-asparaginase activity genes (AGA 
and ASRGL1) as hub genes. This is the first observation of the significant differential expression of these two 
N4-(beta-N-acetylglucosaminyl)-L-asparaginase genes, across multiple endometrial cancer expression datasets. 
The additional high connections in the constructed network also implicate these two genes as potentially prom-
ising biomarkers for NEEC.

The most significantly upregulated gene in NEEC was L1CAM (L1 cell adhesion molecule), a member of the 
immunoglobulin super family, which is involved in embryonic brain development24. L1CAM is thought to be 
implicated in epithelial-to-mesenchymal transition, a critical event in tumor progression25 and its expression 
has been reported be associated with many cancers including breast, gastric and colorectal cancers reviewed by 
ref. 26. Expression of L1CAM has been reported to be associated with aggressive subtypes of endometrial cancer, 
including NEECs27. Furthermore, L1CAM has been reported to have utility as a predictor of clinical outcome in 
endometrial cancer27,28. Consistent with these publications, L1CAM was found to be significantly associated with 
EC-specific survival among EEC patients (P-value =  8.7 ×  10−4).

The 9-gene EC-specific survival signature included genes previously implicated in other cancers, particularly 
colorectal cancer. Reduced expression of EPHB229 and PDLIM130 are reported to be indicators of poor prognosis 
of colorectal cancer. Both genes appear to exhibit tissue-specific effects, with upregulation of EPHB2 reported to 

Study Reference 
Number

Study Name/
Accession Number NEEC (n) EEC (n) Platform Probes (n) Reference

1 E-MTAB-2532 39 159 Agilent 4 ×  44K 30356 Tangen et al. 2014 PLoS One 9(5):e98069

2 E-GEOD-2109 38 162 Affymetrix U133 Plus 2.0 42995 http://www.intgen.org/

3 E-GEOD-56026 12 51 Affymetrix U133 Plus 2.0 42995 Kharma et al. 2014 Cancer Res 
74(22):6519–30

4 GSE24537 11 22 Illumina HT-12v3.0 35263 Mhawch-Fauceglia et al. 2011 PLoS One 
6(3):e18066

5 E-GEOD-23518 10 10 Illumina HT-12v3.0 48785 Mhawch-Fauceglia et al. 2010 PLoS One 
5(11):e15415

6 TCGA 13 41 Agilent G4502A 17814 https://tcga-data.nci.nih.gov/tcga/

7 E-GEOD-17025 12 79 Affymetrix U133 Plus 2.0 42995 Day et al. 2011 BMC Bioinformatics 12:213

8 GSE32507 14 24 Agilent 4 ×  44 K 40990 Chiyoda et al. 2012 Genes Chromosomes 
Cancer 51(3):229–39

9 Shedden 5 13 Affymetrix Hu6800 6245 Shedden et al. 2005 Clin Cancer Res 
11:2123–2131

10 Risinger 16 19 Custom 7435 Risinger et al. 2003 Cancer Research 63:6–11

11 Moreno-Bueno 11 24 Custom 6439 Moreno-Bueno et al. 2003 Cancer Research 
63:5697–5702

12 Zorn 28 7 Custom 5661 Zorn et al. 2005 Clin Cancer Res 
11(18):6422–6430

Total included in 
final analysis 149 548

Table 1.  Gene expression microarray studies included in meta-analysis. Studies in italics were regarded 
as outliers in quality control assessment and excluded from the final analysis. NEEC: Non-endometrioid 
endometrial cancer, EEC: Endometrioid endometrial cancer.

http://www.intgen.org/
https://tcga-data.nci.nih.gov/tcga/
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be associated with poor breast cancer survival31 and elevated expression of PDLIM1 reported to promote meta-
static processes in breast and glioma32,33. C4BPA and NLRC3, genes involved in immune processes, are reported 
to be dysregulated in pancreatic34 and colorectal cancer, respectively35. FBP1 plays a role in glucose metabolism 
and aerobic glycolysis, and has been reported to be downregulated in hepatocellular carcinoma, colorectal, breast, 
gastric, and renal cancer, reviewed in ref. 36. Downregulation of FBP1 is reported to contribute to tumor progres-
sion and poor survival of hepatocellular carcinoma36 and renal cell carcinoma patients37 and has been touted as 
a target for therapeutic interventions for these diseases. Given the results for FBP1 expression in our study, it is 
conceivable that therapeutics developed targeting FBP1 may also be beneficial in the treatment of EEC.

In conclusion, we have used a stringent meta-analysis and validation approach to identify distinct gene expres-
sion profiles in EEC and NEEC tumors. Importantly, a 9-gene signature was associated with poorer EC-specific 
survival in EEC patients, indicating its utility to predict prognosis. These genes may also provide new targets for 
therapy or the opportunity for the repositioning of currently available drugs. Results from this study contribute to 
the understanding of the molecular mechanisms of endometrial cancer subtypes, and have identified avenues to 
develop improved methods for identifying and treating poor prognosis patients with this disease.

Materials and Methods
Acquisition of Microarray Expression Datasets. A literature review and repository search was con-
ducted up to September 2015 to identify endometrial cancer microarray expression studies. Twenty-one endome-
trial cancer microarray studies were accessed from publication supplementary data, the NCBI Gene Expression 

Figure 2. Gene expression patterns in endometrial cancer patients using RNA-Seq data from The Cancer 
Genome Atlas. Unsupervised hierarchical clustering and heatmap showing individual expression pattern in 
145 most significantly differentially expressed genes identified by microarray meta-analysis. Patient subgroup 
(NEEC - blue, EEC - red) is depicted by the bar across the top of the heat map. Normalized expression value is 
displayed by the heatmap, where blue represents upregulated genes and red represents downregulated genes. 
EEC - endometrioid endometrial cancer; NEEC - non-endometrioid endometrial cancer.
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Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), or by 
contacting the publication authors (Supplementary Table 3). Microarray data generated by TCGA were down-
loaded from TCGA data portal (https://tcga-data.nci.nih.gov/tcga/).

Of these 21 studies, eight were excluded as follows: four studies lacked EEC and NEEC subtype informa-
tion (E-GEOD-36389, E-GEOD-21882, E-GEOD-63678 & refs 38 and 39); one study using a custom plat-
form of which the probe annotations could not be updated40; four studies performed by the same research lab 
(ArrayExpress accession no: E-GEOD-14860, E-MTAB1358, E-MTAB-1007 and E-MTAB-2532) included over-
lapping sample sets, and, thus, only the largest study (E-MTAB-2532), was selected for inclusion in our analysis.

Figure 3. Network reconstruction and mutation analysis of the 145 most significantly differentially 
expressed genes between EEC and NEEC. (A) Reconstructed network using protein-protein interaction data. 
Genes shown in orange (n =  106) are from the 145-gene list. The remaining genes in blue (n =  62) are linker 
genes that bridge the 106 genes into the network. Hub genes have been denoted with red text and boxes. EEC - 
endometrioid endometrial cancer; NEEC - non-endometrioid endometrial cancer.

Symbol Gene
Cox proportional 
regression p-value

PRRG1 Proline Rich Gla (G-Carboxyglutamic Acid) 1 2.0 ×  10−3

C4BPA Complement Component 4 Binding Protein, Alpha 5.4 ×  10−4

PDLIM1 PDZ and LIM Domain 1 7.9 ×  10−4

FBP1 Fructose-Bisphosphatase 1 2.2 ×  10−3

PPP2R3A Protein Phosphotase 2 Regulatory Subunit B”, Alpha 7.7 ×  10−3

NLRC3 NLR Family, CARD Domain Containing 3 9.2 ×  10−4

TRIM46 Tripartite Motif Containing 46 1.8 ×  10−3

ST6GALNAC1 ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 3.6 ×  10−3

EPHB2 EPH Receptor B2 2.1 ×  10−3

Table 2.  Genes included in 9-gene signature predictive of endometrial cancer specific survival.

http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://tcga-data.nci.nih.gov/tcga/
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Expression Microarray Analysis. Analysis of microarray expression data was performed used the 
MetaOmics suite of packages in R41. Gene probe annotations were updated for each dataset using SOURCE 
(http://source-search.princeton.edu/) and expression data log transformed (by taking the logarithmic val-
ues of the signals to the base of two). Multiple probes mapping to the same gene were summarized using the 
inter-quartile range method, since this method is considered to be more biologically relevant than averaging 
probes values42. Expression data were filtered to remove the bottom 20% of unexpressed and uninformative genes 
(i.e. genes with low mean expression intensity values and low variation in expression intensity values) as advised 
by the authors of the MetaOmics packages.

Quality control measures were generated using the MetaQC package41, to identify studies which should be 
excluded from the meta-analysis, such as outlier studies with gene co-expression profile considered inconsistent 
using both unsupervised pair-wise comparisons between studies and pathway knowledge provided by curated 
gene sets from MSigDB (http://software.broadinstitute.org/gsea/msigdb). Other measures generated included 
those aimed at quantifying the reproducibility of differentially expressed genes.

Genes common across all studies were extracted and datasets merged. Differentially expressed genes were 
identified for each study using moderated t-tests and p-values combined using Fisher’s combined probability test. 
Gene expression level differences between EEC and NEEC tissue for each study were expressed as an effect size, 
a unit-free standardized mean difference, and combined using a random effects model. Adjustment for multiple 
comparisons on the combined p-values was performed using the false discovery rate procedure of Benjamini and 
Hochberg. All meta-analyses were performed using the MetaDE package41.

TCGA RNA-Seq data validation. RNA-Seq RSEM gene expression data (level 3 generated for 317 TCGA 
EEC and NEEC tissues by the Illumina GA platform and 162 TCGA EEC and NEEC by the Illumina HiSeq 
platform were downloaded from the cancer browser (https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/). 
RNA-Seq data generated by the two sequencing platforms (GA and HiSeq) were treated as two separate data-
sets to avoid bias from batch effects. Samples that overlapped with the TCGA microarray dataset were excluded 
from RNA-Seq analysis. RNA-Seq data was normalized using the voom function from the package limma in R. 
Unsupervised hierarchical clustering was performed using the ggplot package in R. Class comparison, class pre-
diction and KEGG pathway enrichment were performed using BRB-ArrayTools software (http://brb.nci.nih.gov/
BRB-ArrayTools/index.html).

Function enrichment analysis. Functional enrichment analysis using WebGestalt (https://www.webge-
stalt.org/) was performed to identify potentially important gene pathways from KEGG and and gene ontology 
(GO). All 14,673 genes shared across all eight studies for differential expression analysis were used as background 
in these analyses. P-values were corrected for multiple testing by Benjamini-Hochberg adjustment and only path-
ways with a corrected P-value <  0.01 for any gene set were considered significant.

Network Analysis. Recent advances in high-throughput technologies have generated data for 
protein-protein interaction (PPI). This huge data have stimulated pathway reconstruction for improving the 
systems-level understanding of specific cellular events. However, most of PPI data derived from mass-spectrum 
and yeast-two-hybrid technologies are only physical interaction, which may not really exist in vivo. Additionally, 
the physical interaction-based PPI network tends to a highly skewed degree distribution, which may not rep-
resent the global interactome involving basic cellular processes. To avoid the inaccuracy, a non-redundant 
pathway-based human interactome was built based on the PPIs in PathCommons43. These PPIs are derived 

Figure 4. Kaplan-Meier plots for EC-specific survival for high- and low-risk EEC patient groups identified 
using 31-gene prognostic signature. (A) 241 samples with RNA-Seq data generated by the Illumina GA 
platform from the TCGA. (B) 92 samples with RNA-Seq data generated by the Illumina HiSeq platform from 
the TCGA. EEC - endometrioid endometrial cancer; TCGA - The Cancer Genome Atlas; EC-specific survival - 
endometrial cancer-specific survival.

http://source-search.princeton.edu/
http://software.broadinstitute.org/gsea/msigdb
https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/
http://brb.nci.nih.gov/BRB-ArrayTools/index.html
http://brb.nci.nih.gov/BRB-ArrayTools/index.html
https://www.webgestalt.org/
https://www.webgestalt.org/
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from human-curated pathway databases, including HumanCyc, the NCI signaling pathway database, Reactome, 
and KEGG pathway. The final human pathway-based interactome contains 3629 genes and 36034 interacting 
edges. Using a module searching method as previously described44, we extracted a subnetwork from all human 
pathway-based interactomes. This algorithm mapped all interesting input genes to the human interactome, and 
then it generated a sub-network with the shortest paths between input genes and other genes. Network visualiza-
tion was performed using Cytoscape 2.845.

Survival analysis. Validated genes were used in survival prediction analyses of 241 EEC patients from 
TCGA with Illumina GA RNA-Seq and outcome data available, using the survival package in R. Gene expres-
sion was grouped using the auto-cutoff method as described in ref. 46. Briefly, each percentile of expression 
between the first and third quartiles was computed and best performing threshold was used as the cut-off in 
the Cox proportional hazards model. Forward selection, likelihood-based modelling to identify the 9-gene 
prognostic signature from all genes associated with EC outcome was performed using the rbserv package in 
R. Prognostic indexes using the 9-gene signature were calculated for each patient by subtracting the sum of 
the normalised expression values of genes with lower expression in EEC compared to NEEC (PDLIM1, FBP1, 
NLRC3, ST6GALNAC1, C4BPA) from the sum of expression values of genes with higher expression (PPP2R3A, 
TRIM46, EPH2, PRRG1). Indexes were grouped into low- and high-risk group using the auto-cutoff method as 
described above. Kaplan-Meier survival curves were and differences between groups assessed using log-rank test. 
Multivariate analyses of other clinical features were performed using Cox proportional hazard models. Endpoint 
for endometrial cancer specific survival (EC-specific survival) was defined as time from diagnosis until death 
with endometrial tumor present. Results were then tested in 92 EEC patients from TCGA with Illumina HiSeq 
RNA-Seq and outcome data available.
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