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Abstract

In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess
neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some
neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins
(BMPs) transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated
from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE) binds and functions with the XIAP-TAK1-TAB1
complex to activate p38MAPK and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain
that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we
showed that deletion of the repeat domain inhibits apoptosis, p38MAPK phosphorylation, and caspase-3 cleavage in P19
neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-a/b
phosphorylation and NF-kB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it
has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE
domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET) to determine that there is a strong
likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE’s unique repeat domain which we also
attribute to be the domain responsible for downstream signaling of NF-kB and activating IKK subunits. From these results,
we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-kB activation
and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold
promising therapeutic strategies in developing pharmaceutical solutions for combating harmful diseases involving
excessive downstream BMP signaling, including apoptosis.
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Introduction

Apoptosis is an evolutionarily conserved mode of programmed

cell death and is necessary for multicellular organism development

and cellular homeostasis. It is mediated by two central death

pathways: the extrinsic pathway, which uses cell surface death

receptors; and the intrinsic pathway, involving mitochondria and

endoplasmic reticulum [1]. Both pathways utilize caspases which

are cleaved from their inactive form by initiator caspases to become

executioners of apoptosis targeting substrates for proteolysis and

leading to the dismantling of cells. p38MAPK is a mitogen-activated

protein kinase that responds to extracellular stimuli (mitogens) to

transduce signals from the cell membrane to the nucleus for

inflammation, cell growth, differentiation, and apoptosis depending

on the stimulus and the stress induced on the cells. One such

stimulus is a group of growth factors and cytokines known as bone

morphogenetic proteins (BMPs) which were originally identified in

their role to induce the formation of bone and cartilage [2] but have

also been found to be instrumental in the differentiation of nerve

cells [3], dorsal-ventral patterning [4], and apoptosis [5].

BMPs are a large subgroup in the TGF-b superfamily. Like other

members of the TGF-b family, BMP signaling is mediated through

the activation of BMP serine/threonine kinase type I and II

receptors by BMP ligands and activation of the SMAD proteins. [6].
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However, studies have confirmed that BMPs can also directly

activate the MAPK pathway [7,8] depending on the order of

assembly of the receptors [9]. TGF-b activated kinase 1 (TAK1) was

originally identified as a mediator for BMP and TGF-b in the

MAPK signal transduction pathway [10]. TAB1 (for TAK1

activating binding protein) activates TAK1 in BMP signal

transduction [11,12] and binds to the BMP receptors through X-

linked inhibitor of apoptosis protein (XIAP) [10]. XIAP contains a

RING zinc finger domain that interacts with the BMP receptors and

three baculoviral IAP repeat (BIR) domains that bind with caspases

to hinder apoptosis [13,14]. TAK1 activates p38MAPK [15], Jun N-

terminal kinases (JNKs), and NF-kB [16].

We first identified NRAGE as a binding partner to the

intracellular domain of p75 neurotrophin receptor (p75NTR)

facilitating apoptosis in sympathetic neural progenitors [17].

NRAGE has been further investigated for its role in neural apoptosis

[17,18,19,20,21], cell cycle regulation [22], cell-cell adhesion [23],

melanoma and pancreatic cancer metastasis suppression [24], and

renal branching morphogenesis [25]. NRAGE is a member of the

MAGE family, which was originally identified in a screen for antigens

expressed on the surface of tumor cells. Although NRAGE is

expressed by tumors, it does not code for tumor antigens, unlike most

MAGE members, is expressed in most developing and adult tissues.

NRAGE contains a unique domain of 25 consecutive hexapeptide

repeats with a consensus sequence of tryptophan-glutamine-x-

proline-x-x (WQxPxx, where x is any amino acid) that we

hypothesize is instrumental in its function. NRAGE binds with the

XIAP-TAB1-TAK1 complex in the BMP MAPK pathway and aids

in the activation of p38MAPK and caspase-3. Furthermore, disruption

of NRAGE in this pathway is sufficient to block phosphorylated

p38MAPK activation in mouse cortical neural progenitors and P19

embryonal carcinoma cells [26]. We have also shown that the XIAP-

TAB1-TAK1 complex requires NRAGE for IKK-a/b phosphory-

lation and NF-kB activation [27]. Recently, we constructed a series of

NRAGE deletion mutations and determined that the repeat and

MAGE2 homology domains are responsible for activating p38MAPK

and caspase-3 [28]. Jordan et al. have determined that NRAGE co-

precipitates with the RING zinc finger domain of XIAP [29].

However, the portion of NRAGE that interacts with XIAP has not

been identified. Here, we used Förster-type resonance energy transfer

(FRET) analyses to reveal that the interaction between NRAGE and

XIAP is not only likely to be direct, but that the interaction is at the

repeat domain in NRAGE. Furthermore, the repeat domain is

required for IKK phosphorylation and NF-kB translocation. Thus

the repeat domain is required for caspase, p38MAPK, and NF-kB

activation, and serves as an intriguing cell signal switch with

therapeutic potential. To test the possibility of targeting the NRAGE

repeat domain for therapeutic purposes, we designed a small peptide

mimicking the NRAGE repeat domain and found that it can inhibits

binding of Xiap/Tak/TAb and reduces apoptosis in P19 cells.

Because development and some diseases have a number of

overlapping pathways including the BMP MAPK pathway, it is

relevant that an investigation be conducted to devise potential

therapeutic options that require a reduction in NF-kB activation as

well as BMP-mediated XIAP-TAB-TAK1 signal transduction such

as neurodegenerative, cardiovascular, and autoimmune disorders.

Results

Endogenous NRAGE and XIAP protein expression
co-localizes primarily in the cytoplasmic compartment
when imaged by confocal microscopy

Since caspase activation is a downstream effect of phosphory-

lated p38MAPK and XIAP is a major regulator of caspases, we

chose to further scrutinize the relationship between NRAGE and

XIAP. NRAGE and XIAP have been shown to interact both by

co-immunoprecipitation [26] and yeast two-hybrid [29] assays.

However, we wanted to determine the endogenous distribution of

intracellular expression of each protein in order to test whether

they could be occupying similar subcellular locations, as would be

expected if direct interactions are occurring. NRAGE was

originally identified by our lab in the context of nerve cells [17].

Therefore, our experiments, when possible, were carried out in

P19 cells, which are a known and accepted model for studying

neuronal systems since they can be differentiated into neural- and

glial-like cells in the presence of retinoic acid. We used an Alexa

Fluor 488 IgG antibody to identify endogenous NRAGE

(NRAGE-Alexa488) in fixed P19 cells and an Alexa Fluor 546

IgG antibody to identify endogenous XIAP (XIAP-Alexa546).

Cells labeled with NRAGE-Alexa488 (Fig. 1A) and XIAP-

Alexa546 (Fig. 1B) were imaged and the proteins were found to

co-localize in the cytoplasm (Fig. 1C). Cells with neither Alexa488

nor Alexa546 were not fluorescent (data not shown).

FRET shows direct interaction between endogenous
NRAGE and XIAP

We have shown by immunoprecipitation experiments and

Western blot analysis that NRAGE interacts with XIAP in P19

cells with and without BMP-4 treatment [26]. We sought to

further test and refine our hypothesis, namely that NRAGE and

XIAP are close enough to each other to bind directly, by using

fluorescence resonance energy transfer (FRET), an established

technique that relies on close (,10 nm) spatial proximity of

fluorescent molecules (see Materials and Methods). With FRET, a

‘‘donor’’ fluorescent molecule can be quenched and cause

fluorescence of an ‘‘acceptor’’ molecule if the respective proteins

Figure 1. Endogenous NRAGE and XIAP expression in P19 cells.
P19 cells were fixed with 4% PFA and permeabilized followed by
application of primary antibodies for NRAGE and XIAP and widefield
imaging. Secondary Alexa 488 and 546 antibodies were used to identify
NRAGE (A) and XIAP (B) respectively. (C) Merged imaging shows NRAGE
and XIAP mainly occupy the cytoplasm with smaller concentrations in
the nucleus. (D) Phase contrast image.
doi:10.1371/journal.pone.0020659.g001
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of interest tagged with each fluorescent molecule are close enough

together such that the tags are within ,10 nm of one another.

Here, we assessed for FRET using donor dequenching [30], a

method that determines the increase in donor fluorescence

intensity (dequenching) caused by the loss of energy transfer when

the acceptor photobleaches. The advantage of the donor

dequenching method is that the parameters used to calculate the

energy transfer efficiency can be determined from several images

of the same field of cells, allowing each cell to be its own control,

making this method straightforward and quantitative [31].

Evidence of increased donor fluorescence after acceptor photo

bleachingphotobleaching indicates energy transfer between the

donor and acceptor, which can only occur when the donor-

acceptor distance is less than 10 nm, a distance that is likely too

small to be occupied by another protein. Observation of FRET,

therefore, would support our hypothesis of a direct interaction

between NRAGE and XIAP.

Continuing with our approach in identifying endogenous

NRAGE-Alexa488 and XIAP-Alexa546 in fixed P19 cells, we

performed donor dequenching FRET analyses. Confocal images

of NRAGE-Alexa488 were typically and noticeably brighter in

fluorescence intensity after photo bleachingphotobleaching the

Alexa546 used to detect XIAP (Fig. 2A, first and second columns)

supporting the strong possibility of a direct interaction between

NRAGE and XIAP. To quantify the intensity changes of

Alexa488, pseudo-colorpseudocolor intensity donor images

(Fig. 2A, third column) before and after acceptor photo

bleachingphotobleaching were compared pixel-by-pixel, generat-

ing a histogram of intensity changes (Fig. 2B, blue bars) which was

stored as a matrix. The matrix was imported into our data analysis

software where it was fitted to characterize the statistical peak

location (Fig. 2B, red line). The asymmetric double sigmoidal

fitting function (Asym2Sig) was chosen because it was able to

successfully fit all measured distributions. In this example, our

analysis showed peak energy transfer efficiency, Epeak, of

5060.017% (Fig. 2C). Values for E at 50% indicate that the

distance between donor and acceptor fluorophores (assuming an

average over all dipole orientations) are equal to the Förster

distance R0. Here, the calculated R0 is 6.0 nm for Alexa488:A-

lexa546 FRET (see Table 1), indicating that a direct interaction

between endogenous NRAGE and XIAP is strongly suggested. We

determined that FRET assessed by donor dequenching occurred

at a significant level from over a dozen sets of confocal images

containing 2 to 6 cells each. Average peak energy transfer

efficiency, Ēpeak, for endogenous NRAGE-Alexa488:XIAP-

Alexa546 was 4060.098%, significantly higher than our negative

control (Fig. 2E). Theoretically, distances between donor and

acceptor fluorophores of 2R0 lead to a drastically reduced energy

transfer efficiency of 1.5%. Observation of a low energy transfer

value (of a few percent or less) would be expected in cases where

molecules do not interact and are spatially separated on the

average. However, excitation can also be transferred from one

fluorophore to another of the same kind (called homo-FRET) as

seen experimentally in our negative control of endogenous

NRAGE labeled with only donor Alexa488 and which we used

as our baseline for lack of protein-protein interaction (Fig. 2C and

D). The positive control was endogenous NRAGE doubly labeled

with Alexa488 and Alexa546.

EGFP:DsRed FRET indicates a direct interaction between
the NRAGE WQxPxx repeat domain and XIAP

NRAGE contains three domains – the MAGE2 homology

domain (MHD2) at the N-terminus, the MAGE homology domain

(MHD) at the C-terminus, and the repeat domain in the middle.

Jordan et al identified three NRAGE clones that bind XIAP using

a yeast two-hybrid screen, each of which contained the N-terminus

through most of the repeat domain, or through the C-terminus, or

in between [29]. We utilized our NRAGE-EGFP mutation series

which delete from the N-terminus and keep the C-terminus intact

[28] (Fig. 3A) and co-transfected each one with XIAP-DsRed into

NIH3T3 cells, fixed, and analyzed for FRET. Examples of

appreciable FRET (Fig. S1A) and negligible FRET (Fig. S1C) are

shown for NRAGE F4R2-EGFP:XIAP-DsRed and NRAGE

F6R2-EGFP:XIAP-DsRed respectively. Side-by-side evaluations

of false-color and pseudo-colorpseudocolor images of NRAGE

F4R2-EGFP:XIAP-DsRed show significant donor (EGFP) inten-

sity enhancement after acceptor DsRed photo bleachingphoto-

bleaching (Fig. S1A) while NRAGE F6R2-EGFP:XIAP-DsRed

images show insignificant donor intensity enhancement (Fig. S1B).

The fitted distribution of this example of NRAGE F4R2:XIAP

had a peak energy transfer efficiency of 3060.010% (Fig. S1B)

compared to a peak energy transfer efficiency of just 360.018%

for an example of NRAGE F6R2:XIAP (Fig. S1D).

Using our complete set of NRAGE-EGFP constructs, we found

that the FRET results diverged into two groups – one showing

appreciable FRET signals suggesting a direct interaction between

NRAGE and XIAP and a second with low FRET signals

suggesting apparent non-interaction. There were appreciable

and statistically significant FRET signals between XIAP-DsRed

and each of the NRAGE deletion mutations F1R2- (0.2860.15%),

F2R2- (0.1860.05%), F3R2- (0.2260.10%), and F4R2-EGFP

(0.2160.05%), similar to the EGFP-DsRed fusion positive control

(0.2760.07%) compared to the negative control (0.0860.05%) in

which EGFP and DsRed were co-transfected as separate plasmids

with no fusion (Fig. 3B). NRAGE F1R2, F2R2, F3R2, and F4R2

each retain at least half of the repeat domain through to the end of

the C-terminus whereas the remaining group of NRAGE-EGFP

constructs eliminates most of the repeat domain. Interestingly, this

group also showed a significant percentage of early apoptosis by

Annexin V positive staining in our previous work [28]. FRET

signals were not significant between XIAP-DsRed and each

NRAGE F6R2- (0.0860.06%), F7R2- (0.1460.11%), F8R2-

(0.0760.06%), and F9R2-EGFP (0.1360.10%) in which there is

no repeat domain or only very little (6 amino acids in F6R2)

similar to the negative control (Fig. 3B). This group also had a

significantly lower incidence of Annexin V staining [28]. Overall,

there was some cell-to-cell variability in FRET signals with some

cells showing significant positive FRET signals and some showing

low FRET signals. This may be explained by the binding of other

members of the NRAGE-XIAP complex, namely TAB1 and

TAK1, that could be responsible for bringing NRAGE and XIAP

in inconsistent proximity to each other, with the low FRET signals

meaning that there is likely to be too great a distance for a direct

interaction.

ECFP:EYFP FRET recapitulates that the NRAGE repeat
domain interacts with XIAP

We concentrated our efforts on the repeat domain of NRAGE,

specifically the F4R2 and F6R2 partition, as a critical point in the

NRAGE-XIAP interaction because of the significantly higher

FRET signal of XIAP for F4R2 than F6R2 and to provide

additional evidence on the importance of the NRAGE repeat

domain. To recapitulate that NRAGE F4R2 and F6R2 is where

interaction with XIAP takes place and does not take place

respectively, we decided to again use donor dequenching FRET,

but this time by the well known FRET pair CFP and YFP.

Additionally, we wanted to know whether fusing the fluorescence

tags to the N-termini of NRAGE and XIAP would adversely affect

NRAGE Repeat Domain in BMP MAPK Signaling
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Figure 2. FRET analyses of the endogenous interaction between NRAGE and XIAP in P19 cells. (A) Confocal images of NRAGE-Alexa488
and XIAP-Alexa546 before and after acceptor photobleaching of Alexa Fluor 546 molecules showing an increase in fluorescence intensity of donor
Alexa Fluor 488 molecules also evident by pseudocolor donor Alexa488 intensity images. (B) Asym2Sig fit (red line) of experimental histogram (blue
bars) distribution energy transfer efficiencies of the donor images from (A) indicating a peak energy transfer efficiency of 50%. (C) Confocal and
pseudocolor intensity images of donor only NRAGE-Alexa488 negative control showing little intensity change. (D) Corresponding histogram (blue
bars) and fit (red line) of the negative control indicating a much lower energy transfer efficiency. (E) Average peak energy transfer efficiencies for
endogenous NRAGE and XIAP interaction compared to positive and negative controls where *P,0.01 and **P,0.005; n is the number of images each
containing 2 to 6 cells. N488, NRAGE-Alexa488; N546, NRAGE-Alexa546; X546, XIAP-Alexa-546.
doi:10.1371/journal.pone.0020659.g002
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their binding as compared to the EGFP and DsRed constructs

which were fused to the C-termini. 293T cells were co-transfected

with either ECFP-NRAGE F4R2 and EYFP-XIAP or ECFP-

NRAGE F6R2 and EYFP-XIAP before being fixed and imaged

for FRET (see Fig. S2 for examples). Typically, cells showed a

higher and significant average FRET efficiency signal between

ECFP-NRAGE F4R2 and EYFP-XIAP (0.2560.03%) than for

ECFP-NRAGE F6R2 and EYFP-XIAP (0.1260.04%) when

compared to the CFP-YFP fusion positive control (0.3760.04%)

and CFP:YFP negative control (0.1960.04%) (Fig. 3C). Consistent

with the outcome of the EGFP:DsRed FRET, this shows that the

NRAGE repeat domain is necessary for XIAP interaction.

The NRAGE repeat domain is required for NF-kB
activation in the non-canonical BMP pathway

In light of our FRET results strongly suggesting that the repeat

domain was the key domain for XIAP interaction, we wanted to

determine if this domain was also critical for downstream

signaling. Because the BMP pathway is also known to regulate

the nuclear factor NF-kB through XIAP-TAB1-TAK1 [32,33,34],

we questioned what effect the NRAGE deletion mutations might

have on this transcriptional activation. In unstimulated cells, NF-

kB is sequestered in the cytoplasm by kB inhibitors. However,

when activated by signals often from outside of the cell, IkB kinase

(IKK) becomes activated which induces degradation of kB

inhibitors thus freeing NF-kB for nuclear translocation and

transcription of target genes. Constitutive phosphorylation of

IKK-a and IKK-b subunits was found in only the WQxPxx repeat

domain-containing constructs F1R2 through F4R2 (Fig. 4A). In

addition, we evaluated the transcriptional activity of NF-kB by

NF-kB-luciferase reporter vector after transfection of the NRAGE-

EGFP constructs in HEK293 cells. Similar to the western blot data

(Fig. 4A), transfection with full length NRAGE F1R2 and repeat

domain-containing constructs F2R2 through F4R2 resulted in

constitutive NF-kB transcriptional activation (Fig. 4B), resulting in

a 10 to 60 fold induction compared to the GFP control. NRAGE

mutant constructs which did not contain the MAGE2 homology

domain or the repeat domain (F6R2 through F9R2) did not

activate the NF-kB pathway.

Isolated NRAGE repeat domain FRETs with XIAP
We proceeded to investigate only the repeat domain of NRAGE

and its interaction with XIAP because the NRAGE constructs

containing at least half the repeat domain (F1R2 through F4R2)

yielded reproducible FRET results. We created deletion mutations

of only the NRAGE repeat domain, tagging each one with EYFP

at the C-terminus of NRAGE (Fig. 5A and B). To evaluate direct

interaction with XIAP, we co-transfected each YFP-tagged

NRAGE mutant repeat domain along with CFP-XIAP into

293T cells and performed donor-dequenching FRET imaging and

analyses. Significant FRET was observed between each NRAGE

repeat domain-EYFP and ECFP-XIAP. In fact, the FRET

efficiency increased progressively with each sequentially smaller

NRAGE repeat domain (Fig. 5C) meaning that the distance

between ECFP and EYFP fluorescent tags was decreasing due to

the apparent direct binding between decreasing NRAGE repeat

domain deletions and XIAP. Peak average energy transfer

efficiencies were measured at 0.2760.04% for ECFP-

XIAP:F10R3-EYFP, 0.2960.06% for ECFP-XIAP:F11R3-EYFP,

0.3160.04% for ECFP-XIAP:F12R3-EYFP, and 0.3460.04% for

ECFP-XIAP:F13R3-EYFP.

A small peptide modeled after the NRAGE repeat domain
inhibits interactions between BMP MAPK members

We wanted to further exploit the NRAGE repeat domain and

designed a small peptide mimetic modeled after this domain (see

Materials and Methods and Fig. 6). As shown in Figure 7A, we

used western blotting of cytoplasmic endogenous NRAGE

immunoprecipitates from P19 cells to evaluate the interactions of

non-canonical BMP members. XIAP was much more easily

detected in cells that did not receive BMP-4 (Fig. 7A, lanes 1, 3, 4,

and 7) than cells that did receive BMP-4 (Fig. 7A, lanes 2, 5, 6, and

8). However, TAK1 was hardly detectable in BMP-4 treated cells

that received a simultaneous treatment of NRAGE peptide and

EndoPorter delivery reagent (Fig. 7A, lane 8) than in any other

treated cells (Fig. 7A, lane 1 through 7). When cells were exposed

to BMP-4, detection for XIAP and TAK1 diminished in peptide/

EndoPorter treated cells (Fig. 7A, lane 8) compared to cells

without the NRAGE peptide (Fig. 7A, lane 2). NRAGE was easily

detected in cells that were untreated, or received BMP-4, or the

NRAGE peptide alone, or EndoPorter alone(Fig. 7A, lanes 1

through 4), but was greatly diminished in cells treated with BMP-4

and EndoPorter, BMP-4 and NRAGE peptide, and NRAGE

peptide/EndoPorter (Fig. 7A, lanes 5 through 7); and similar to

XIAP and TAK1, hardly detectable in cells that received BMP-4

and NRAGE peptide/EndoPorter (Fig. 7A, lane 8). This suggests

that complexes that are comprised of NRAGE, XIAP, and TAK1

do not reside in the cytoplasmic compartment.

Efforts were made to see if culturing with the peptide could

inhibit the interaction of overexpressed fluorescently tagged full-

length NRAGE and XIAP using donor dequenching CFP:YFP

FRET, but no inhibition was evident at peptide concentrations of

10 nM, 100 nM, nor 1 mM (data not shown). It is possible that

introducing a fixed amount of the NRAGE peptide to the cells

with EndoPorter is not enough to compete with the co-transfection

and resulting constituitive expression of NRAGE and XIAP.

Therefore, we created the DNA equivalent of the NRAGE peptide

and tagged it with either CFP or YFP (see Materials and Methods

and Fig. 6B) for delivery into cells by transfection to see if it was

binding directly to full-length NRAGE or XIAP by CFP:YFP

FRET assessment. Co-transfections of the NRAGE peptide DNA

with NRAGE showed very favorable energy transfer efficiencies of

0.3660.06% and 0.4160.04% while co-transfections of the

NRAGE peptide DNA with XIAP also showed significant energy

transfer efficiencies of 0.3460.04% and 0.4660.06% when

compared to the negative control (Fig. 7B) meaning that the

NRAGE peptide binds directly to both NRAGE and XIAP. It is

possible that binding could be occurring in either NRAGE

peptide-XIAP, NRAGE peptide-NRAGE, or NRAGE peptide-

Table 1. FRET Distances, R0.

FRET Pair Published R0 Calculated R0

Alexa488 : Alexa546 6.4 nm{ 6.00 nm1

EGFP : DsRed 4.7160.09 nm{ 5.05 nm1

ECFP : EYFP 4.9260.10 nm" 4.90 nm1

{Spence MTZ, ed. The Handbook A guide to Fluorescent Probes and Labeling
Technologies: Invitrogen Corporation, 2005.
{Erickson MG, Moon DL, Yue DT. DsRed as a Potential FRET Partner with CFP
and GFP. Biophysical Journal 2003; 85:599–611.

"Patterson GH, Piston DW, Barisas BG. Förster Distances between Green
Fluorescent Protein Pairs. Analytical Biochemistry 2000; 284:438–40.

1Discrepancies between published and calculated FRET distances are possibly
due to the specific variability of the experimental environments, choice of
published donor quantum yields and acceptor extinction coefficients, and
source of fluorescent spectra intensities.

doi:10.1371/journal.pone.0020659.t001
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NRAGE-XIAP sub-complexes and that there may be a certain

number of sub-complexes needed to initiate downstream signaling,

since it has been shown that Xiap diamerizes in the XIAP-TAK-

TAB complex and that disruption of the diamerization leads to the

inhibition of downstream signaling [33].

The NRAGE peptide inhibits downstream activation of
NF-kB

We showed that IKK-a/b is phosphorylated in HEK293 cells

transfected with NRAGE-EGFP constructs F1R2 through F4R2

which contain the repeat domain (Fig. 4). We wanted to

determine if culturing with the NRAGE peptide could deter

IKK phosphorylation. Western blotting of lysates from HEK293

cells that received the NRAGE peptide in the presence of BMP-4

show minimal detection of phosphorylated IKK (Fig. 7C, lane 2)

when compared to cells stimulated by BMP-4 without the peptide

(Fig. 7C, lane 1). Detection of phospho-IKK-a/b was negligible

in cells not stimulated by BMP-4 whether or not they received the

peptide treatment (Fig. 7C, lanes 3 and 4) confirming that

stimulation by BMP or NRAGE overexpression is needed to

activate IKK. In addition, NF-kB activation was reduced from

20.8561.55 fold increase over renilla in HEK293 cells cultured

without the NRAGE peptide to 0.8560.06 when cultured with

the NRAGE peptide and after being stimulated with BMP-4

(Fig. 7D).

The NRAGE peptide DNA inhibits apoptosis in P19 cells
Retinoic acid (RA) and BMP-4 each alone induce apoptosis in

P19 neural progenitor cells and in combination induce death in up

to 40% of the cell population in as little as 24 hours of exposure

[35,36]. Overexpression of NRAGE has a similar effect to RA and

BMP-4 co-treatment on apoptosis in P19 cells [37]. Survival

following RA and BMP-4 co-treatment can be increased to

untreated levels by suppressing NRAGE expression [26]. There-

fore, we sought to determine if the NRAGE peptide could inhibit

RA and BMP-4 induced apoptosis in P19 cells by measuring levels

of cleaved caspase-3, a protein of the caspase family that plays a

central role in the execution phase of cell apoptosis. Correlating

with our previous work that apoptosis in P19 cells occurs through

p38MAPK signaling, total p38MAPK was more evident in cells that

received RA and BMP-4 treatment then cells without treatment

(Fig. 8A). We transfected fluorescently tagged NRAGE peptide-

YFP DNA and YFP control DNA into P19 cells then induced

apoptosis with RA and BMP-4, collected total cell lysates, and

immunoblotted for cleaved and full-length caspase-3. As shown in

Figure 8A, less cleaved caspase-3 and higher levels of full-length

caspase-3 could be detected in NRAGE peptide-YFP transfected

P19 cells than YFP control transfected or untransfected wild-type

P19 cells. We also show a significant decrease in phospho-p38

expression of the BMP-4 induced peptide-YFP cells.

We wished to determine if there were any other pro- or anti-

apoptotic proteins that may be expressed or inhibited in P19 cells

Figure 3. FRET efficiencies are higher between NRAGE
constructs containing the repeat domain and XIAP than with
NRAGE constructs without the repeat domain. (A) Schematic of
NRAGE deletion mutations and their fusion scheme with EGFP and ECFP
fluorescent tags. (B) Average peak energy transfer efficiencies between
NRAGE-EGFP and XIAP-DsRed showing that full-length NRAGE (F1R2),
F2R2, F3R2, and F4R2 have significantly higher FRET activity with XIAP

than NRAGE F6R2, F7R2, F8R2, and R9R2 compared to the negative
control. (C) Average peak energy transfer efficiencies of ECFP-NRAGE
F4R2:EYFP-XIAP and ECFP-NRAGE F6R2:EYFP-XIAP recapitulating signif-
icant FRET and negligible FRET respectively with the EGFP:DsRed FRET
in (B). *P,0.05, **P,0.005; n is the number of images each containing 1
to 3 cells. F1-G(NRAGE F1R2-EGFP), F2-G(NRAGE F2R2-EGFP), F3-
G(NRAGE F3R2-EGFP), F4-G(NRAGE F4R2-EGFP), F6-G(NRAGE F6R2-
EGFP), F7-G(NRAGE F7R2-EGFP), F8-G(NRAGE F8R2-EGFP), F9-G(NRAGE
F9R2-EGFP); C-F4, NRAGE ECFP-F4R2; C-F6, NRAGE ECFP-F6R2; X-R,
XIAP-DsRed; Y-X, EYFP-XIAP; G, EGFP; R, DsRed; C, ECFP; Y, EYFP.
doi:10.1371/journal.pone.0020659.g003
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pre-treated with the NRAGE peptide. To this end, we used cell

lysates from established stably-integrated NRAGE peptide-YFP

and YFP control P19 cell lines on human apoptosis protein

antibody profiler antibody arrays to detect pro- and anti-

apoptosis proteins with and without RA and BMP-4. Except

for positive controls, no proteins were identified in the absence of

apoptosis induction in YFP control cells nor NRAGE peptide-

YFP cells (Fig. 8B, left two arrays). However, when both cell lines

were exposed to RA and BMP-4 for 24 hours, SMAC/Diablo

was detected in both with lower levels in NRAGE peptide-YFP

cells (Fig. 8B, right two arrays and Fig. 8C). SMAC/Diablo is a

mitochondrial protein that is released during apoptosis and

promotes cytochrome c-dependent caspase activation by neutral-

izing IAPs [39,40]. The decreased detection of SMAC/Diablo in

NRAGE peptide-YFP cells suggests that the NRAGE peptide

may be preventing apoptosis by preserving the integrity of the

mitochondrial outer membrane (Fig. 8C). To give further

evidence that the nrage peptide alters the apoptotic affects, we

show that compared to full length NRAGE-YFP or the NRAGE

repeat domain the NRAGE peptide-YFP cell line shows a

decreased affect on apoptosis and an increase in proliferation

Ifig 8D).

Discussion

Apoptosis is a form of programmed cell death which takes place

in all organisms during normal development and regular

maintenance, preserving tissue homeostasis. However, in situations

where it functions uncontrollably, it can endanger survival of the

organism by either causing too much cell death as in neurode-

generative disorders or to too little cell death as in some cancers.

Figure 4. Activation of the NF-kB pathway requires the NRAGE
repeat domain in the BMP pathway. (A) HEK293 cells were
transfected with the NRAGE-EGFP constructs and western blotted for
IKK-a/b-phosphorylation and total IKK. (B) NRAGE-EGFP transfected
HEK293 cells were also assessed for NF-kB activation by Luciferase
assay. *P,0.05, **P,0.005. F1-G(NRAGE F1R2-EGFP), F2-G(NRAGE F2R2-
EGFP), F3-G(NRAGE F3R2-EGFP), F4-G(NRAGE F4R2-EGFP), F6-G(NRAGE
F6R2-EGFP), F7-G(NRAGE F7R2-EGFP), F8-G(NRAGE F8R2-EGFP), F9-
G(NRAGE F9R2-EGFP).
doi:10.1371/journal.pone.0020659.g004

Figure 5. NRAGE repeat domain deletion mutations and XIAP
interaction by FRET. (A) Schematic of 4 designs of the repeat domain
in NRAGE denoted by their primers as F10R3, F11R3, F12R3, and F13R3
and their fusion scheme with a EYFP fluorescent tag and (B) protein
expression in P19 total cell lyses. (C) Peak energy transfer efficiency
averages show progressively increasing FRET signals between ECFP-
XIAP and NRAGE repeat domain deletions-EYFP when compared to
controls (*P,0.05; **P,0.005; n is the number of images each
containing 1 to 3 cells). C-X, ECFP-XIAP; Fx-Y, NRAGE FxR3-EYFP.
doi:10.1371/journal.pone.0020659.g005
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We initially identified NRAGE as a binding partner with

p75NTR that not only blocks binding between p75NTR and TrkA

to override apoptosis, but also facilitates cell cycle arrest and nerve

growth factor-dependent apoptosis in sympathetic neuron precur-

sor cells [17]. However, NRAGE is also expressed throughout

embryonic and adult tissues in a spatial and temporal pattern

independent of p75NTR expression, suggesting an alternative role

[22]. NRAGE is a member of the MAGE family containing two

MAGE homology domains and a third repeat domain made up of

25 hexameric peptides with a consensus sequence of WQxPxx that

is only consistent with NRAGE homologs in mouse, rat, and

human. Using our NRAGE-EGFP deletion mutations, we found

that apoptosis in P19 cells was significantly reduced without the

repeat domain [28]. BMPs play profound roles in regulation of

neural differentiation, apoptosis, and dorsal-ventral patterning.

NRAGE interacts with BMP MAPK members XIAP, TAK1, and

TAB1, which form a complex that interacts with BMP receptors

facilitating TAK1 transduction signals [41]. The NRAGE-XIAP-

TAB1-TAK1 complex enables BMP-mediated apoptosis in

cortical neural progenitors, neural differentiated P19 cells, and

undifferentiated P19 cells, which can be correlated to increases in

the well known apoptotic indicators cleaved caspase-3 and

phosphorylated p38MAPK [26,28]. XIAP can inhibit apoptosis by

binding with caspases and interrupting their activation through

their BIR domains [13,14]. Therefore, we focused our efforts on

the binding between NRAGE and XIAP.

Previously, FRET has been used in XIAP signaling to quantify

the distance between the BIR2 and BIR3 domains in determining

the additional hydrophobic binding surface area versus the BIR3

domain alone for the enhancement of a SMAC peptide mimetic

that enhances caspase-driven apoptosis for cancer therapeutics [42].

We report here the first time FRET has been used to not only

show a high probability of a direct interaction between NRAGE

and XIAP, but also to map the interacting site to the NRAGE

repeat domain. We utilized our inventory of NRAGE-EGFP

deletion mutations to determine that the NRAGE repeat domain

is critical for XIAP binding and developed an NRAGE peptide

mimetic that inhibits caspase-driven apoptosis. XIAP is also known

to direct the activity of NF-kB as it is an essential component in

TGF-b signaling that stimulates NF-kB in metastatic 4T1 breast

cancer cells [43]. Conversely, XIAP- and TAK1-TAB1-mediated

NF-kB activation can be inhibited by Siva1 to enhance apoptosis

by JNK activity [34]. We also determined that the NRAGE repeat

domain is responsible for NF-kB activation which can be inhibited

by the NRAGE peptide. NRAGE overexpression induces

activation of caspases-3, -9, and -7, and caspase dependent cell

death in a JNK-dependent mitochondrial pathway to facilitate

p75NTR-mediated cell death in PC12 cells [38]. Our data shows

that culturing with the NRAGE peptide before inducing apoptosis

can alleviate caspase-3 activation and reduce p-38 phosphoryla-

tion. This may be applicable in attenuating p75NTR-dependent

death which occurs in oligodendrocytes and hippocampal neurons

[44,45].

The endogenous prion protein (PrP) is predominantly an

extracellular glycosyl-phosphatidyl-inositol-anchored protein

whose function is unknown, but whose conversion to a disease-

associated form leads to prion diseases such as Creutzfeldt-Jakob

disease in humans, Scrapie in sheep, and Bovine Spongiform

Encephalopathy in cattle. A subset of PrP is present in the cytosol

and may have a physiological function in apoptosis regulation

depending on the neuronal cell type and its context. PrP binds to

the repeat region of NRAGE and affects mitochondrial membrane

potential which can lead to apoptosis [19]. Therefore, application

of the NRAGE in this realm may provide important information

in the investigation of preventing prion diseases.

In the future, we intend to resolve how the NRAGE peptide is

functioning to inhibit BMP MAPK pathway activation. For

example, if it is binding to either NRAGE or XIAP; or if it is

binding to both, but in separate complexes. Lu et al. have

determined that XIAP-TAB1-TAK1 form a dimer that transduces

downstream signaling for NF-kB. However, mutation of XIAP’s

BIR1 domain disrupts dimerization resulting in downstream

inhibition NF-kB signaling [33]. Therefore, it is also possible that

culturing with the NRAGE peptide is also disrupting XIAP-

TAB1-TAK1 dimerization resulting in the downstream inhibition

of NF-kB activation and yielding protective affects for apoptosis-

induced cells while possibly allowing some binding to occur

between NRAGE, XIAP, TAB1, and TAK1.

Figure 6. Design of the NRAGE peptide. (A) A list of the 25
hexamers in the order in which they appear in the NRAGE repeat
domain partitioned into 4 distinguishing groups. A repeat consensus
sequence was determined for each group and was then resolved into a
single final consensus sequence as indicated by the red amino acids
which was repeated 4 times for the NRAGE peptide. (B) Schematic of
nucleotides comprising the NRAGE peptide including a Xho I site and a
Kozak sequence to facilitate excision and transcription respectively.
doi:10.1371/journal.pone.0020659.g006
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Materials and Methods

NRAGE cloning
NRAGE-EGFP deletion mutations F1R2 to F9R2 were made

as previously described [28] and are denoted as NRAGE FxR2-

EGFP where ‘x’ is ‘1’ through ‘9’ for the respective deletion

mutation. NRAGE F5R2 was not accomplished. NRAGE F4R2

and F6R2 were also PCR’d from EGFP-N3 constructs [28] using

HotMasterMix (Eppendorf, Hamburg, Germany) and cloned into

pGEM-T Easy vector (Promega, Madison, WI) and then into

pECFP-C1 (Clontech/Takara Bio, Mountain View, CA) using

EcoR I and Sal I restriction enzymes so that the C-terminus of

ECFP was fused to the N-terminus of NRAGE (denoted as ECFP-

FxR2 NRAGE where ‘‘x’’ is the appropriate deletion mutation).

NRAGE F10R3 to F13R3 repeat domain fragments were

PCR’d from full-length NRAGE-EGFP made previously [28]

using HotMasterMix (Eppendorf) according to Fig. 5A and linearly

decrease by 1/4 the repeat domain from F10R3 to F11R3 to

F12R3 and to F13R3 with F10R3 being the full-length repeat

domain. Forward primers contain a Kozak consensus sequence to

facilitate translation [46,47] and were 59-CCCGCCACCAT

GGGGCAGACACCACTGGCT-39 for F10, 59-ACCGCCAC-

CATGGGGCAGAACCCA GTTGCA-39 for F11, 59-ATCGC-

CACCATGGACCCAATGGCCTGGCAG-39 for F12, and 59-

GACGCCACCATGGCACCTGACTGGTCAATG-39 for F13.

Reverse primer R3 was 59-CAGATTAGTCGACGGTCG-

TAAGTTCT GCCA -39. All PCRs were done at 1 minute at

94uC incubation; 30 cycles of 30 seconds at 94uC denaturing,

30 seconds at 58uC annealing, and 30 seconds at 65uC extension;

and a final incubation of 4uC. Each PCR product was cloned into

pGEM-T Easy vector (Promega) and then into pEYFP-N1

(Clontech) using EcoR I and Sal I restriction enzyme sites so that

Figure 7. The NRAGE peptide inhibits some cytoplasmic BMP MAPK pathway members, binds to NRAGE and XIAP, and inhibits
downstream activation of NF-kB and IKK. (A) Western blot of endogenous expression of NRAGE, XIAP, and TAK1 in P19 cells after XIAP or
NRAGE immunoprecipitation in lyses and NRAGE and Beta-Actin expression of total cell lysates from cells that underwent BMP-4 treatment with and
without the NRAGE peptide compared to untreated cells. (B) CFP:YFP FRET assessment of CFP or YFP tagged NRAGE peptide, full-length NRAGE, and
XIAP in fixed 293T cells. (C) Western blotting shows that activation of IKK by BMP-4 in HEK293 cells is inhibited in cells cultured with the NRAGE
peptide. (D) NF-kB activation is inhibited in HEK293 cells cultured with the NRAGE peptide compared to HEK293 cells that did not receive the peptide
as assessed by luciferase assay. Treatments were 10 ng/ml BMP-4, 10 nM NRAGE peptide, and 6 mM EndoPorter delivery reagent where indicated.
**P,0.005. C-NR, CFP-NRAGE; Y-NR, YFP-NRAGE; C-X, CFP-XIAP; Y-X, YFP-XIAP; pep-C, NRAGE peptide-CFP; pep-Y, NRAGE peptide-YFP. (E) GFP control
P19 cells and the F10R3 NRAGE repeat domain P19 cells treated with and without 10 ng/ml BMP-4, then cell membranes and cytoplasm ran seperatly
to see the affects of XIAP and NRAGE expression. Beta Actin was used as loading control.
doi:10.1371/journal.pone.0020659.g007
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Figure 8. Apoptosis is inhibited in P19 cells cultured with the NRAGE peptide. (A) Western blot of P19 cells transfected with the NRAGE
peptide-YFP had less detection of cleaved and more full-length caspase-3 compared to wild-type or YFP transfected cells after 24 hours exposure of
1 mm RA and 10 ng/ml BMP-4. c. Higher levels of total-p38MAPK are detected in all cells that received apoptosis treatment. b-actin was used for
loading control. (B) Stably integrated YFP and NRAGE peptide-YFP cells without retinoic acid (RA) and BMP-4 were lysed and incubated to human
apoptosis profiler antibody nitrocellulose arrays (left 2 panels). Arrays were stripped and semi-stable YFP and NRAGE peptide-YFP cells incubated with
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the N-terminus of EYFP was fused to the C-terminus of NRAGE

(denoted as NRAGE FxR3-EYFP where ‘‘x’’ is the appropriate

deletion mutation).

All ECFP, and EYFP constructs were verified by sequencing

and by exhibiting fluorescence emitted at the respective wave-

lengths as viewed from an Axiovert 200 microscope (Carl Zeiss,

Göttingen, Germany). Fluorescent filters were 436/20 nm excita-

tion, 455 nm dichroic, 480/40 nm emission for ECFP (Chroma,

Bellows Falls, VT) and 500/20 nm exciter, 515 nm dichroic, 535/

30 nm emission for ECFP (Chroma).

XIAP cloning
XIAP accession # U88990 (National Center for Biotechnology

Information) was PCR’d using forward primer 59-GTCC-

TATTTTCAAGAAT TCATGACTTTTAACAG-39, reverse

primer 59-TGCCTACTATAGAGTCCCGGGAAGACATAA-

AAA-39, and HotMasterMix (Eppendorf). PCR cycles were

1 min., 94uC incubation; 30 sec., 94uC denature; 30 sec., 51uC
annealing; and 1 min. 30 sec., 65uC extension for 30 cycles. XIAP

PCR product was cloned into either pCR-Blunt II-TOPO vector

(Invitrogen, Carlsbad, CA) or pGEM-T Easy vector (Promega)

and then cloned into pDsRed-Monomer, pECFP, or pEYFP

(Clontech) such that XIAP-DsRed has the fluorescent tag

downstream to XIAP while ECFP- and EYFP-XIAP have the

fluorescent tag upstream. All constructs are of full-length XIAP

and were verified by immunoblotting with rabbit anti-XIAP

antibody (Cell Signaling) and the Axiovert 200 microscope (Zeiss)

for fluorescence using the fluorescent filters above and 565/30 nm

excitation, 585 nm dichroic, 620/60 nm emission for DsRed

(Zeiss).

Cell cultures
NIH3T3, HEK293, 293T, and P19 cells were purchased from

American Type Culture Collection (ATCC), Manassas, VA, and

maintained according to ATCC specifications. For P19 cells stably

expressing NRAGE peptide-YFP or control YFP vector, P19 cells

were transiently transfected with NRAGE peptide-YFP or YFP

control vector DNA using Lipofectamine 2000 (Invitrogen)

following manufacturer’s protocol. YFP+ cells were selected by

culturing with P19 complete medium containing G418 antibiotic

(Sigma).

Immunocytochemistry for fluorescence and confocal
microscopy for FRET

P19 cells were seeded at 40,000 cells per well in an 8-well

chamber #1.5 German borosilicate coverglass systems (8-well

Nunc; Nalge Nunc, Langenselbold, Germany) pre-treated with

0.01% poly-D-lsine. 24 hours later cells were rinsed 36 with

DPBS, fixed and permeabilized with 220uC methanol for

10 minutes, and rinsed again 36with DPBS. Cells were blocked

with 0.1% Nonidet P-40 and 1% goat serum in DPBS and

incubated at room temperature for one hour. Rabbit antiserum

anti-NRAGE antibody (Upstate Biotechnolgy) and mouse mono-

clonal anti-XIAP antibody (R & D Systems) were applied at 1:200

each in blocking solution and incubated at 4uC overnight. Cells

were rinsed 36with DPBS and secondary goat anti-rabbit Alexa

Fluor 488 IgG and goat anti-mouse Alexa Fluor 546 IgG

(Invitrogen) were applied at 1:1000 and incubated for four hours

in darkness at room temperature followed by rinsing 36 with

DPBS. For FRET, cells were left hydrated in DPBS and imaged

for FRET. Images of co-localization were obtained using the

inverted Axiovert 200 microscope (Zeiss), a 636/0.75NA air

objective, and a CoolSnap HQ camera (Photometrics, Tucson,

AZ). Fluorescent filters were 470/40 nm excitation, 495 nm

dichoric, 525/50 nm emission for Alexa Fluor 488 (Zeiss). The

DsRed filter cube used to verify XIAP-DsRed construct was also

used for Alexa Fluor 546.

Transfections for FRET
NIH3T3 cells were seeded in 96-well tissue CellStar culture

treated plates (USA Scientific, Ocala, FL) at 20,000 cells per well

in antibiotic free OPTI-MEM medium (Invitrogen) and co-

transfected 24 hours later with 200 ng NRAGE-EGFP and

400 ng XIAP-DsRed using Lipofectamine 2000 (Invitrogen) for

4–5 hours before replacing the transfection medium with complete

culture medium. Twenty-four hours post-transfection, cells were

trypsinized and transferred to 8-well chamber #1.5 German

borosilicate coverglass systems (8-well Nunc; Nalge Nunc,

Langenselbold, Germany). After 48 hours post-transfection (to

allow for full maturation of fluorophores), cells were rinsed 36
with DPBS, fixed with 4% paraformaldehyde for 20 minutes at

room temperature, rinsed 36 with DPBS, and left hydrated in

DPBS.

293T cells were seeded in 96-well tissue CellStar culture treated

plates (USA Scientific) at 20,000 cells per well in antibiotic free

culture medium and co-transfected 24 hours later using Lipofec-

tamine 2000 (Invitrogen) left on overnight. For NRAGE F4,6R2

and XIAP experiments, cells were co-transfected with 200 ng

ECFP-NRAGE and 400 ng EYFP-XIAP. For NRAGE

F10,11,12,13R3 and XIAP experiments, cells were co-transfected

with 400 ng ECFP-XIAP and 200 ng NRAGE-EYFP. 24 hours

post-transfection, cells were trypsinized and transferred to an 8-

well Nunc pre-treated with 0.01% poly-D-lysine. 48 hours post-

transfection, cells were rinsed 36 with DPBS, fixed with 4%

paraformaldehyde for 20 minutes at room temperature, rinsed 36
with DPBS, and left hydrated in DPBS.

Luciferase assay
HEK293 cells plated at a density of 30,000 cells/well in 24 well

culture plates were transfected with NF-kB-firefly luciferase and

Renilla luciferase control plasmid (Stratagene) via GeneJuice (EMD

Biosciences). Cells were then incubated with 3 ml EndoPorter and

varying concentrations of NRAGE peptide for 48 hours. Cells

were then serum starved for 4 hours prior to stimulation with

10 ng/ml BMP-4 for 24 hours. The Dual Luciferase Assay Kit

(Promega) was used for the analysis of NF-kB transcriptional

activity. All data are presented as a fold increase of NF-kB over

Renilla activity and were performed in triplicate.

Confocal imaging
For EGFP/DsRed NIH3T3 cells and Alexa Fluor P19 cells,

cells were imaged using a TCS NT confocal system (Leica,

Bannockburn, IL). Excitation for EGFP was at 488 nm from an

Argon+ laser and for DsRed at 568 nm from a Krypton laser and

1 mM RA+10 ng/ml BMP-4 for 24 hours were lysed and incubated to the same respective arrays and found to bind with SMAC/Diablo, but with less
detection for NRAGE peptide-YFP cells. (C) Western blot analysis of total cell lysate of SMAC/Diablo expression of YFP and NRAGE peptide-YFP cells
with and without BMP-4 stimulation. (D) Annexin V and BRDU flow analysis of YFP control cells, NRAGE full length, NRAGE repeat, and NRAGE-peptide
cell lines (E) Proposed signaling BMP MAPK pathway incorporating the inhibition of SMAC/Diablo by the NRAGE peptide resulting in the inhibition of
cleaved caspase-3 and apoptosis.
doi:10.1371/journal.pone.0020659.g008
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collected from a 636/1.2NA water immersion objective using a

488/568 nm double dichroic and either a 580 nm reflection short

pass filter and 525/50 nm band pass filter for EGFP or Alexa

Fluor 488, or a 650 nm reflection short pass filter and 590 nm

long pass filter for DsRed or Alexa Fluor 546.

For ECFP/EYFP 293T cells, cells were imaged using a TCS SP

confocal system (Leica). Excitation for ECFP was from a 440 nm

diode laser and for EYFP an Argon+ laser selected for 514 nm and

collected from a 636/1.32NA oil immersion objective using

acousto-optic tunable filters set for 465–495 nm emission for

ECFP and 535–565 nm emission for EYFP.

FRET experiments
Minimal laser power was used for donor (EGFP, Alexa Fluor

488, or ECFP) excitation to minimize photodamage in the donor

channel and decrease spectral bleedthrough into the acceptor

channel (DsRed, Alexa Fluor 546, or EYFP). Detector sensitivity

for the acceptor channel was reduced to the point where visual

detection was negligible using donor excitation. Donor dequench-

ing was used to measure energy transfer from the increase in donor

fluorescence after photobleaching of the acceptor fluorophore.

Photobleaching of acceptors DsRed and EYFP required approx-

imately 2–3 minutes and Alexa546 required approximately

10 minutes. Single-acquisition confocal images of cells using either

donor or acceptor excitation before and after acceptor photo-

bleaching were captured as ‘.tif’ documents and imported into

Matrix Laboratory (MATLAB) software release R2007b (Math-

works, Natick, MA). Backgrounds of donor and acceptor images

were determined by Adobe PhotoShop 7.0 software (Adobe

Systems, San Jose, CA). Donor images before and after acceptor

photobleaching were translated slightly along the X and Y axes for

alignment if necessary before comparing background-subtracted

fluorescence on a pixel-by-pixel basis. If there was focal plane drift

(Z axis) between the single-acquisition donor pre- and post-

bleaching images, then alignment was compensated for by either

choosing the donor post-bleaching image acquired from a Z-stack

that was most similar to the single-acquisition pre-bleach donor

image or choosing the donor pre-bleaching image acquired from a

Z-stack that was most similar to the single-acquisition post-bleach

donor image. After compensation for background in the donor

and acceptor channels, experimental energy transfer efficiency was

calculated as Eexp = (FD2FDA)/FD where FD is the donor

fluorescence without the acceptor and FDA is the donor

fluorescence with the acceptor. Intensity images were generated

by MATLAB pseudocolor mapping and intensity differences in

pixels were binned in 0.05 increments, plotted as a histogram, and

stored as a matrix. The matrix was imported into Microcal Origin

software (OriginLab, Northampton, MA) and fitted to the

following asymmetric double sigmoidal (Asym2Sig) distribution
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where y0 is the offset of the fit from the y-axis; xc is the center of

the fit on the x-axis; A is the amplitude of the fit; and w1, w2, and

w3 are widths for rising, falling, and combined sigmoid functions.

This distribution determined the statistical peak energy transfer

efficiency, Epeak, which was compared to the calculated energy

transfer Ecal = 1/[1+(r/R0)6]s where r and R0 are the actual and

Förster (when E = 50%) distances between the donor and acceptor

fluorophores.

Förster distances, R0, were calculated using the sixth root of

R6
0~

9000 ln 10ð Þk2:QD

128:p5:N:n4
J lð Þ ð2Þ

where QD is the donor quantum yield, N is Avagadro’s number, n

is the index of refraction of the medium, and J(l) is spectral

overlap between the donor emission spectrum and the acceptor

excitation spectrum as given by [48]

J lð Þ~

Ð?
0

FD lð Þ:eA lð Þ:l4:dl

Ð?
0

FD lð Þ:dl
ð3Þ

where FD(l) is the donor fluorescence emission as a function of

wavelength, eA(l) is the acceptor molar extinction coefficient as a

function of wavelength, and l is the wavelength.

k2 is the donor emission transition dipole-acceptor absorption

transition dipole orientation factor with respect to the angle

between the dipoles, and the angles between these dipoles and the

vector joining them. Here, k2 was assumed to be 2/3 as expected

for freely rotating dipoles [48]. When the sixth root is used to

calculate the actual distance between donor and acceptor pairs,

variation from k2 = 2/3 to 4 (for head-to-tail parallel transition

dipoles) can be in error by no more than 35%. In order for our

FRET experiments to be more in line with k2 = 2/3, BMP ligand

was not added to cells so that the binding between NRAGE-XIAP

and corresponding dipole-dipole orientations of the donor and

acceptor fluorophores would be more representative of freely

rotating dipoles without influences from other BMP non-canonical

members nor the plasma membrane. Therefore at worst case, 35%

error would not change our results in assessing for FRET.

Western blotting
For detection of phosphorylated IKK, HEK293 cells were

seeded in 6-well plates and transfected at about 80% confluency

with GeneJuice (EMD/Biosciences) per manufacturer’s instruc-

tions. For detection of NRAGE repeat domain mutations F10R3

to F13R3, P19 cells were seeded in 6-well plates and transfected at

about 80% confluency with Lipofectamine 2000 (Invitrogen) per

manufacturer’s instructions. 48 hours post-transfection, all cells

were placed on ice and rinsed 3 times with ice cold PBS followed

by lysing with RIPA buffer (150 mM NaCl, 10 mM Tris pH 7.2,

0.1% SDS, 1% Triton X-100, 1% deoxycholate, and 5 mM

EDTA) containing protease (Calbiochem/EMD) and phosphatase

inhibitors (Sigma). Cell lysates were centrifuged at 10,000 g for

10 minutes at 4uC and the supernatants were collected as total cell

lyses. Protein concentrations were obtained by BCA assay (Pierce)

per manufacturer’s instructions. Lysates were loaded evenly by

western blot for 8% or 10% SDS-PAGE electrophoresis. Protein

was transferred to Hybond nitrocellulose membranes (Amersham),

and blocked in either 5% non-fat dried milk or 5% BSA in

washing buffer (16TBS with 0.1% Tween-20). Membranes were

probed with anti-phospho-IKK-a/b (Cell Signaling) or anti-EGFP

antibody (Santa Cruz) followed by HRP conjugation with IgG

(Bio-Rad). SuperSignal chemiluminescent substrate (Pierce) was

used to detect HRP on HyBlot CL (Denville Scientific) or

HyperFilm (Amersham) autoradiography film.

For western blotting and immunoprecipitation after NRAGE

peptide treatment, HEK293 or P19 cells were seeded in 6-well
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plates on Day 0. On Day 1, 10 nM NRAGE peptide was delivered

to cells using 6 mM EndoPorter reagent (Gene Tools). On Day 2,

cells were serum starved for 4 hours before being treated with

10 ng/ml of BMP-4 (R & D Systems) for 1 hour and then lysed

with either RIPA buffer for IKK or NP-40 lysis buffer (150 mM

NaCl, 20 mM Tris pH 7.5, 1% NP-40, and 5 mM EDTA) for

immunoprecitation containing protease and phosphatase inhibi-

tors. Lysates were normalized by BCA protein assay (Pierce).

HEK293 total cell lysates (TCL) were used for IKK and P19 cell

immunoprecipitates were done with a-NRAGE antibody (Santa

Cruz sc-14398) (IPs) detection of endogenous members. TCLs and

IPs were loaded evenly for 10% SDS-PAGE electrophoresis,

transferred to nitrocellulose membranes (Amersham), and blocked

in either 5% nonfat dried milk or 5% BSA and washing buffer (16
TBS with 0.1% Tween-20). Membranes were probed with anti-

XIAP (Cell Signaling), anti-TAK1 (Upstate), and anti-NRAGE

(Santa Cruz sc-14400), and anti-phospho-IKK-a/b (Cell Signal-

ing). SuperSignal chemiluminescent substrate (Pierce) was used to

detect HRP on HyBlot CL (Denville Scientific ) autoradiography

film.

For western blots of NRAGE peptide-YFP, P19 cells were

seeded in 6 cm dishes and transfected with NRAGE peptide-YFP

or YFP control with Lipofectamine 2000 per manufacturer’s

instructions (Day 0). On Day 1, NRAGE peptide-YFP, YFP

control, or untransfected cells were seeded in 6-well plates in two

sets at 250,000 cells per well. On Day 2, all medium was refreshed

with one set receiving 1 mM retinoic acid and 10 ng/ml BMP-4 in

the medium. On Day 3, all wells were lysed with NP-40 buffer

containing protease and phosphatase inhibitors and total cell lyses

were collected. TCLs were loaded evenly for western blotting as

described above. Blots were probed with anti-caspase-3 (full length

and cleaved; Cell Signaling), cytochrome c (Cell Signaling), and b-

actin (Sigma) for loading control. Band intensity for cytochrome c

was determined by ImageJ software revision 1.42n (National

Institutes of Health) on an unadjusted ‘tif’ image with background

subtracted, normalized to untreated wild-type P19 cells, and

plotted by Microcal Origin (Microcal Software).

NRAGE peptide design and manufacture
The NRAGE repeat domain was examined by hexameric

amino acids in their inherent order and four similar hexapeptide

repeat sequences – PPARQT, PPGWQS, PPDWPL, and

PVAWQN – were determined. From this, a final consensus

sequence of PPAWQT was reached (Fig. 6A). A 24-mer peptide

with four repeats of the final consensus sequence (n-PPAWQTP-

PAWQTPPAWQTPPAWQT-c) was synthesized, cleaved, and

lyophilized by Anaspec, Inc. (Fremont, CA). This sequence has a

net neutral charge, a hydropathy index of 226.0, and four regions

of polarity located at the QT dipeptides. All in vitro and explant

experiments with the NRAGE peptide were conducted using

unpurified peptide.

NRAGE peptide DNA cloning
Nucleotide selection for the four amino acid consensus sequence

repeats of the NRAGE peptide was intentionally selected for

unique coding from end to end, includes a Xho I restriction

enzyme site upstream to the transcription start site, and a Kozak

sequence (Figure 6B). Both the sense and antisense strands were

synthesized from Ultramer Oligo primers (Integrated DNA

Technologies). See Table 2 for primer sequences. PCR cycles

were 1 minute incubation at 94uC; 30 cycles of 30 seconds

denature at 94uC, 30 seconds anneal at 62uC, 30 seconds

extension at 65uC; 5 minutes final extension at 65uC, hold at

4uC using HotMaster Mix (Eppendorf). The PCR product was

cloned into pGEM-T Easy vector (Promega) and excised using

Xho I and EcoRI restriction enzymes (New England Biolabs).

NRAGE peptide DNA was then cloned into pECFP-N1 and

pEYFP-N1 (Clontech) vectors so that the 39 end of the NRAGE

peptide DNA was fused to the 59 end of the tags with respect to the

sense strand. NRAGE peptide DNA-CFP and -YFP were verified

by sequencing and by exhibiting respective CFP and YFP

fluorescence in transfected P19 cells using the Axiovert 200

micrscope (Carl Zeiss) and the CFP and YFP filter sets.

Apoptosis Array
NRAGE peptide-YFP and YFP control stably-integrated P19

cell lines were established using G418 selection. Cells were grown

to confluency, lysed with NP-40 lysis buffer containing protease

and phosphatase inhibitors, and concentrations determined by

BCA assay (Pierce). 400 mg each of NRAGE peptide-YFP and

YFP P19 cells were incubated on human apoptosis antibody

nitrocellulose arrays (R & D Systems) per manufacturer’s protocol

and developed by HRP (Pierce) on HyperFilm (Amersham)

autoradiography film. Antibodies were dotted in duplicate. Arrays

were stripped with 0.2 M glycine pH 2.5, reincubated with

NRAGE peptide-YFP and YFP control semi-stable P19 cell

lysates after the cells were incubated with 1 mM retinoic acid and

10 ng/ml BMP-4 for 24 hours and developed by HRP on

Hyperfilm.

Apoptosis Assay
Cells were trypsinized and spun at 1200 rpm for 3 minutes to

pellet. Cells were counted and diluted to 1 million per ml in

antibody binding buffer included in the apoptosis detection kit (BD

Biosciences). For controls, 100 ml of cells were placed in 5 ml

culture tubes with 5 ml of either Annexin V-PE or 7AAD or both

and incubated in the dark for at least 20 minutes. 250 ml of sample

cells were incubated with 15 ml of each apoptosis marker for at

least 20 minutes in the dark. Upon completion of the incubation

period, cells were diluted in 400 ml (control) or 750 ml (sample) of

binding buffer and analyzed by flow cytometry using the Becton

Dickinson FASCCalibur flow cytometer and Cell Quest software

version 3.3. GFP+ cells were gated and the incorporation of

Annexin V-PE and 7AAD by the cells read. Gates were

determined through the use of untransfected and unstained cells

GFP and PE were excited by the Argon 488 nm laser and GFP

read on the FL1 channel and PE on the FL2 channel.

Proliferation assay
P19 cells were transfected as described above then on the

morning of day 2 (24 hours post transfection) pulsed with 10 mg/

mL BrdU for 2 hours. Cells were detached from the plate using

10 mM EDTA for 2 minutes at room temperature. 1 mL of media

was added and the cells triturated off the plate into 15 mL conical

tubes. Cells were spun at 400 rpm for 10 minutes to pellet. Media

was removed and cells resuspended in 0.5% BSA in PBS (wash

Table 2. NRAGE Peptide DNA Primers.

Sense 59- CTCGAGCCCGCCACCATGGTGCCCCCAGCAT
GGCAAACACCCCCTGCCTGGCAGACCCCGCCA
GCGTGGCAAACGCCGCCTGCTTGGCAGACT -39

Antisense 59- GGCAGGGGGTGTTTGCCATGCTGGGGGCACC
ATGGTGGCGGGCTCGAGAGTCTGCCAAGCAG
GCGGCGTTTGCCACGCTGGCGGGGTCTGCCA -39

doi:10.1371/journal.pone.0020659.t002
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buffer) at a concentration of 1 million per 100 mL as recom-

mended by BD Biosciences. Cells were pelleted again and fixed in

ice cold 70% ethanol for 10 minutes. The fixation solution was

diluted with 500 mL wash buffer and cells pelleted. Cells were then

treated with 100 mL of 2 M HCl for 10 minutes to release the

DNA from histones. Centrifugation at 400 rpm was used to pellet

the cells and clear the acid; residual acid was neutralized with

0.2 M sodium borate for 3 minutes. Cells were washed again,

pelletted, and resuspended in wash buffer plus 0.5% goat serum. A

1:50 dilution of BrdU-Alexa647 and GFP-Alexa488 antibodies

(Molecular Probes) were added and incubated for 20 minutes at

room temperature in the dark. The cells were then washed twice to

remove residual antibody, and analyzed by flow cytometry.

Statistics
Sample size for FRET experiments was based on a one-sided t

test with a level of significance of 0.05, a power level of 0.99, and

one standard deviation [49]. P values were determined by single

factor ANOVA performed in Excel (Microsoft,). Averages for

Epeak and standard deviations were calculated on an Excel

(Microsoft) worksheet and graphed using Origin (Microcal)

software.

Supporting Information

Figure S1 An example of FRET analysisanalyses of
NRAGE F4R2-EGFP:XIAP-DsRed and NRAGE F6R2-
EGFP:XIAP-DsRed. (A) Confocal false-color and pseudo-

colorpseudocolor intensity images of NRAGE F4R2-EGFP show

enhanced EGFP fluorescence after photo bleachingphotobleach-

ing acceptor DsRed molecules identifying XIAP whereas NRAGE

F6R2-EGFP images have hardly any increased fluorescence after

DsRed photo bleachingphotobleaching (C). (B) Peak energy

transfer efficiency is considerably higher for NRAGE F4R2-EGFP

and XIAP-DsRed than for NRAGE F6R2-EGFP and XIAP-

DsRed (D).

(EPS)

Figure S2 ECFP:EYFP FRET recapitulates EGFP:DsRed
FRET in which there is likely a direct interaction
between NRAGE F4R2 and XIAP but not for NRAGE
F6R2 and XIAP. (A) Examples of confocal false-color and

pseudo-colorpseudocolor intensity images of ECFP-NRAGE

F4R2 show enhanced ECFP fluorescence after photo bleaching-

photobleaching acceptor EYFP molecules identifying XIAP

whereas ECFP-NRAGE F6R2 images have hardly any increased

fluorescence after EYFP photo bleachingphotobleaching (C). (B)

Corresponding peak energy transfer efficiency is considerably

higher for ECFP-NRAGE F4R2 and EYFP-XIAP than for ECFP-

NRAGE F6R2 and EYFP-XIAP (D).

(EPS)
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