
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

© The Rockefeller University Press  $15.00
The Journal of Cell Biology, Vol. 176, No. 3, January 29, 2007 283–294
http://www.jcb.org/cgi/doi/10.1083/jcb.200604141

JCB 283

Introduction
During the postmeiotic maturation of male haploid germ cells, 

or spermiogenesis, the DNA is repackaged in a process involv-

ing a dramatic chromatin reorganization (Caron et al., 2005). 

At the onset of spermiogenesis, round spermatids inherit a 

 nucleosome-based chromatin organization, which is progres-

sively restructured while the genome undergoes condensation. 

A wave of global histone acetylation marks the initial steps of 

this process in elongating spermatids and precedes their replace-

ment in condensing spermatids, fi rst by transition proteins, TP1 

and TP2, and then by protamines. The latter ensure tight DNA 

packaging by the establishment of multiple intraprotein cross-

links (Oliva and Dixon, 1990; Lewis et al., 2003b).

This textbook vision of mammalian spermiogenesis is 

now challenged by fi ndings suggesting that the DNA is actually 

not homogeneously packed within the spermatozoa (Rousseaux 

et al., 2005). Approximately 10–15% of histones are retained in 

the human sperm nucleus, heterogeneously distributed within 

the genome, with an enrichment in specifi c loci such as im-

printed genes or genes expressed during early embryogenesis 

(Gardiner-Garden et al., 1998; Wykes and Krawetz, 2003). 

Moreover, a large diversity of somatic-type or testis-specifi c 

histone variants become associated with the DNA in germ 

cells (Lewis et al., 2003a; Govin et al., 2004; Kimmins and 

 Sassone-Corsi, 2005), some of them presenting a heterogeneous 

distribution within the spermatids or mature sperm nucleus 

(Zalensky et al., 2002; Martianov et al., 2005). In addition, hetero-

chromatin regions seem to maintain a distinct organization 

 during spermiogenesis, as telomeres were shown to be en-

riched in somatic-type core histones and H2B variants (Gineitis 

et al., 2000; Zalensky et al., 2002; Wykes and Krawetz, 2003; 

Churikov et al., 2004), and centromeres maintain some of their 

somatic-specifi c marks, such as an enrichment in the histone H3 

variant CENP-A in spermatozoa (Palmer et al., 1990).

These observations suggest that the genome undergoes a 

regional differentiation during mammalian spermiogenesis. 

The exact nature of this differential reorganization of the 

 genome and the molecular mechanisms driving it are unknown. 

One possibility is that this process could initially be built from 

differential marks inherited from early germ cells. In fact, peri-

centric heterochromatin is characterized by a specifi c histone 

code including a K9 trimethylation of histone H3 (H3K9me3) 
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uring male germ cell postmeiotic maturation, 

 dramatic chromatin reorganization occurs, which 

is driven by completely unknown mechanisms. 

For the fi rst time, we describe a specifi c reprogramming 

of mouse pericentric heterochromatin. Initiated when his-

tones undergo global acetylation in early elongating sper-

matids, this process leads to the establishment of new 

DNA packaging structures organizing the pericentric re-

gions in condensing spermatids. Five new histone variants 

were discovered, which are expressed in late spermio-

genic cells. Two of them, which we named H2AL1 and 

H2AL2, specifi cally mark the pericentric regions in con-

densing spermatids and participate in the formation of 

new nucleoprotein structures. Moreover, our investiga-

tions also suggest that TH2B, an already identifi ed testis-

specifi c H2B variant of unknown function, could provide 

a platform for the structural transitions accompanying 

the incorporation of these new histone variants.
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and its association with nonhistone proteins including the HP1 

family members (Maison and Almouzni, 2004). These large 

 regions surrounding the centromeres are mainly composed of 

satellite repeats, named the major satellites in the mouse, generally 

assembled in clusters known as “chromocenters” (Guenatri 

et al., 2004). After the completion of meiosis, the pericentric 

heterochromatin still harbors somatic features (O’Carroll 

et al., 2000; Peters et al., 2001). However, in mouse round sperm-

atids, it undergoes a very unique reorganization characterized 

by the assembly of all pericentric regions into a single large 

chromocenter. A very interesting and unanswered question 

is whether this distinct feature could be the fi rst step of a 

 specifi c reprogramming of pericentric heterochromatin in male 

haploid germ cells.

To investigate this issue, we undertook a step-by-step 

exploration of the chromocenter organization during mouse 

spermiogenesis. An increase in histone acetylation had previ-

ously been observed in early elongating spermatids (Hazzouri 

et al., 2000). A close inspection of histone modifi cations during 

spermatid elongation reveals that pericentric heterochromatin 

exhibits very unusual characteristics combining active and 

 repressive histone marks. Moreover, at later stages of spermiogen-

esis, nucleosomal structures containing acetylated histones are 

retained on the major satellites when most histones have been 

removed elsewhere. Finally, the investigation of nucleoprotein 

structures organizing the genome in condensing spermatids has 

led to the identifi cation of several new H2A and H2B histone 

variants. Two of them, named H2AL1 and H2AL2, were found 

in new DNA packaging structures, which specifi cally reorga-

nize the major satellite DNA in condensed spermatids. Alto-

gether, these data highlight specifi c processes activated after 

meiosis and establish a differential organization of pericentric 

heterochromatin during mouse spermiogenesis.

Results
Pericentric heterochromatin acetylation 
during postmeiotic reorganization 
of the male genome
During postmeiotic chromatin reorganization in male germ 

cells, a global hyperacetylation of histones occurs, which 

precedes their removal (Hazzouri et al., 2000). To better 

characterize these events, the kinetics of the core histones’ 

hyperacetylation and disappearance has been followed by 

immunofl uorescence (IF) on microdissected squash prepara-

tions of seminiferous tubules, using an antibody recognizing 

the tetra-acetylated H4 N-terminal tail (H4ac). Round sper-

matids (steps 2–6) are weakly stained by the antibody (Fig. 

1 A). In early elongating spermatids (step 8), H4 acetylation 

clearly increases and is homogeneously distributed throughout 

the whole nucleus. At later stages (steps 9–10), the signal for 

acetylated H4 globally decreases, except in a central domain, 

which is also intensely stained with DAPI (Fig. 1 A, arrows). 

Finally, in step 11 condensed spermatids, acetylated H4 has 

completely disappeared.

In elongating step 9–10 spermatids, this restricted cen-

tral area of the nucleus, where acetylated H4 remains, could 

Figure 1. Pericentric chromatin becomes acetylated in elongating sper-
matids. (A) H4 acetylation pattern in germ cells was analyzed by IF on 
spermatids at the indicated stages of maturation, using an anti–tetra-
acetylated H4 antibody (H4ac). DNA was counterstained with DAPI. 
 Arrows indicate the redistribution of the acetylated signal in an intensely 
DAPI-stained region in elongating spermatids. (B) Immuno-FISH assays, 
 detecting H4 acetylation (H4ac) by IF and major satellites by FISH, were 
performed on round (1–4) and elongating (5–12) spermatids. Acquisition of 
the H4 acetylation staining has been enhanced to increase the signal inten-
sity, compared with A, to show the hypoacetylation state of pericentric 
 heterochromatin in round spermatids. (C) The acetylation of lysines 5, 8, or 
12 of histone H4 (H4K5ac, H4K8ac, and H4K12ac, respectively) were 
analyzed in elongating spermatids by IF as in A using the corresponding 
antibodies. Bars, 5 μm.
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 correspond to a region where the genome is differentially 

 reorganized. Because of its intense DAPI staining, we hypothesized 

that this domain could correspond to the A/T-rich pericentric 

constitutive heterochromatin, composed of the mouse major 

satellites repeats. To investigate this point, immuno-FISH as-

says were performed, where acetylated H4 was fi rst detected 

by IF and the major satellites were then localized by FISH on 

the same germ cells. As expected, the major satellites were 

detected in the identifi able chromocenter of round spermatids 

(Fig. 1 B, 2). The DAPI-dense regions of step 9–10 elongat-

ing spermatids were also completely stained by the major sat-

ellites probes (Fig. 1 B, 6 and 10), confi rming that they indeed 

correspond to pericentric heterochromatin. A close analysis of 

pericentric heterochromatin shows that it undergoes important 

changes during spermatid maturation. In round spermatids, it is 

underacetylated and colocalizes with the round chromocenter. 

In elongating spermatids, it becomes enriched in acetylated his-

tone H4 while undergoing decompaction and spreading within 

the nucleus (Fig. 1 B, compare 1 to 5 and 9; note that the acqui-

sition of the H4 acetylation signal in round spermatids was en-

hanced compared with that in Fig. 1 A to give better evidence of 

the unacetylated state of pericentric heterochromatin in round 

spermatids compared with the hypoacetylated state of the rest 

of the genome).

We further aimed to identify the H4 lysines targeted by 

acetylation within pericentric heterochromatin. We had previ-

ously observed that the global acetylation increase in elongating 

spermatids mainly affects K5, K8, and K12 residues of histone 

H4, but not K16 (unpublished data). Here, IF with specifi c 

 antibodies shows that all three acetylated lysines—acK5, acK8, 

and acK12—are associated with the major satellite region in 

elongating spermatids (Fig. 1 C).

A new combination of histone marks 
in pericentric heterochromatin 
of elongating spermatids
This unusual accumulation of acetylated histones in sperma-

tids’ pericentric heterochromatin led us to investigate the fate of 

known heterochromatin marks, such as HP1 binding and H3K9 

trimethylation in these cells. HP1β was present in the chromo-

center of round spermatids but disappeared at later stages, when 

H4 acetylation accumulated (Fig. 2 A), showing a tight relation-

ship between the presence of acetylated H4 in pericentric hetero-

chromatin and the removal of HP1β at the beginning of the 

elongation process.

In contrast, trimethylation of H3K9, easily detectable 

in the round spermatids’ chromocenter, does not disappear in 

elongating spermatids when H4 acetylation takes place (Fig. 

2 B). Interestingly, during a short period of their developmental 

stage, corresponding to step 9 spermatids, both marks were 

 localized in pericentric heterochromatin of all cells. A detailed 

analysis of both modifi cations in these cells was performed by 

confocal microscopy. The intensity of H4Ac and H3K9me3 

signals, revealed by Alexa 546 and Alexa 488 fl uorochromes, 

respectively, were quantifi ed: for each detection, a region con-

taining values >50% of maximal fl uorescence was delimited 

(Fig. 2 C, red and green borders, panels 4–8), and a quantifi ca-

tion of fl uorescence was shown along an axis and reported 

Figure 2. A restricted domain of pericentric 
chromatin harbors both euchromatic and hetero-
chromatic marks in elongating spermatids. 
(A) HP1β (red) and tetra-acetylated H4 (H4ac; 
green) were analyzed by IF in round (1–4), 
elongating (5–8), and condensing (9–12) 
spermatids. Merge corresponds to HP1β and 
H4ac codetection. Bars, 5 μm. (B) Acetylation 
of histones (Ac; red) and trimethylation of 
H3K9 (H3K9me3; green) were analyzed by IF 
in round (1–4), elongating (5–8), and con-
densing (9–12) spermatids. Merge corre-
sponds to H4ac and H3K9me3 codetection. 
Bars, 5 μm. (C and D) Intensity of histone Ac 
(red; Alexa 546) and H3K9me3 (green; Alexa 
488) fl uorescence signals were quantifi ed on 
step 9 spermatids using an analysis software 
(MetaMorph). For each detection, a region 
containing values >50% of maximal fl uores-
cence was delimited (C, 4–8; red and green 
borders for Ac and H3K9me3 signals, respec-
tively), and quantifi cation performed along 
the gray axis (D, 1–3) was reported along a 
diagram. A representative picture of the analysis 
of fi ve different cells shows that the acetylated 
domain and the H3K9me3 do not perfectly 
overlap. Bar, 2.5 μm.
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on a diagram (Fig. 2 D). Similar experiments were performed 

by reversing the fl uorochromes (H4Ac signal in green and 

H3K9me3 signal in red), so that artifacts due to differential 

bleaching or sensitivity could be ruled out (Fig. S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200604141/DC1). It 

shows that the signals for H4 acetylation and H3K9 trimethyl-

ation actually do not strictly colocalize (Fig. 2 D and Fig. S1 B, 

diagrams). This observation suggests the existence within the 

analyzed domain of subregions where nucleosomes harbor 

 either one or the other modifi cation, but probably not both 

 simultaneously. This partial colocalization of the two histone 

marks might refl ect a dynamic process reorganizing pericen-

tric heterochromatin at this specifi c stage of maturation (step 9 

spermatids), with a progressive invasion of the major satellite 

region by H4 acetylation.

Altogether, these data show that during early spermiogen-

esis, pericentric heterochromatin undergoes a transition from 

a somatic-like epigenetic state (which includes histone hypo-

acetylation, H3K9 trimethylation, and HP1 binding) into a com-

pletely new state, with persistent H3K9me3 but an absence 

of HP1 and an unusual accumulation of H4 acetylation. These 

observations clearly indicate a distinct behavior of pericentric 

heterochromatin during postmeiotic chromatin reorganization 

in male germ cells.

Nucleosomes and new DNA packaging 
structures organize pericentric 
heterochromatin during late 
spermiogenesis
We further aimed to determine whether pericentric regions 

would also harbor specifi c chromatin features at later stages 

of spermiogenesis, after disappearance of acetylated H4 and 

trimethylated H3K9 in condensing spermatids (Fig. 2, A and 

B, 10). Indeed, at this stage, either the modifi cations could be 

removed, leaving the histones in place, or the modifi ed histones 

themselves could be displaced and degraded. To investigate the 

possibility of a nucleosomal structure remaining in the peri-

centric heterochromatin of condensing spermatids, we chose 

a biochemical approach. Step 12–16 condensing spermatids 

were purifi ed from mouse testes. Their extreme compaction 

renders their nuclei completely resistant to MNase digestion 

by the classical assays developed for somatic cells. Therefore, 

we fi rst had to partially decondense them in a detergent-

 containing buffer, to obtain a soluble nuclear extract, and a 

chromatin-containing pellet, which was then submitted to 

MNase fractionation (Fig. S2 A, protocol 1, available at 

http://www.jcb.org/cgi/content/full/jcb.200604141/DC1). The 

MNase-solubilized fraction was then separated by centrifugation 

from an insoluble pellet.

Figure 3. Two MNase-resistant structures are present in 
 condensing spermatids and mainly correspond to pericentric 
heterochromatin. (A) Schematic representation of germ cells 
at different stages of spermatogenesis (Sc, spermatocytes; 
R, round spermatids; E, elongating spematids; C, condensing 
and condensed spermatids [steps 12–16]) used in MNase-
 digestion assays. (B) Chromatin of purifi ed step 12–16 sperm-
atids (top) or somatic cells (bottom) were submitted to MNase 
digestion during the indicated times. The DNA fragments 
present in MNase-resistant nucleoprotein structures were puri-
fi ed and analyzed by electrophoresis on a 2% agarose gel. 
Lane 1 corresponds to the size markers. (C) MNase-resistant 
DNA fragments obtained as in B, after 15 min of MNase 
 digestion, were analyzed on a 4% agarose gel, with small size 
markers. (D) The small DNA fragment (Sm) and the nucleo-
somal DNA fragment (Nuc) obtained after 8 and 30 min, 
 respectively, of MNase digestion of condensing spermatids 
chromatin were purifi ed to be used as probes for FISH. The 
control probe (Ctl) corresponds to the genome of whole testis 
cells entirely digested into mononucleosomes by a prolonged 
action of MNase. (E and F) FISH using probes described in C 
(green) were performed on mouse metaphase chromosomes 
(E) and on male germ cells in codetection with a major satel-
lite probe (F, red). DNA was counterstained with DAPI. 
Arrows in E indicate centric and pericentric chromatin domains. 
Bars, 5 μm.
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The analysis of the DNA present in the MNase-solubilized 

fraction shows that a prolonged digestion by MNase produces 

a single MNase-resistant DNA fragment of the expected 

 nucleosomal size, �150 bp, indicating that at least part of the 

nucleosomal chromatin of condensing spermatids was indeed 

obtained with this procedure (Fig. 3 B). Accordingly, core his-

tones were abundantly released by MNase digestion (Fig. S2 B, 

H2A, H2B, and H4).

Surprisingly, this procedure also generated an additional 

DNA band that migrated faster than the nucleosomal DNA frag-

ment and that was more sensitive to MNase digestion (Fig. 3 B). 

An electrophoretic analysis on a concentrated agarose gel with 

small size DNA markers confi rmed that this band essentially 

corresponds to a discrete DNA fragment of �60 bp (Fig. 3 C). 

It is of note that this smaller DNA fragment was not produced 

from somatic cells (Fig. 3 B, bottom) or from germ cells at ear-

lier stages of spermiogenesis (not depicted), after MNase treat-

ment in the same conditions. We concluded, therefore, that this 

fragment could correspond to a condensing spermatid-specifi c 

DNA packaging structure.

We then further investigated the nature of the DNA as-

sociated with the nucleosomal and the new spermatid-specifi c 

DNA packaging structures. For this purpose, the two types of 

MNase-resistant DNA fragments were purifi ed and used as 

probes in FISH assays, on mouse metaphase chromosomes, and 

on mouse spermatogenic cells. Interestingly, both fragments de-

tected the pericentric regions and perfectly colocalized with the 

major satellite regions both on metaphase chromosomes and in 

spermatogenic cells (Fig. 3, E and F; and Fig. S4 A, available 

at http://www.jcb.org/cgi/content/full/ jcb.200604141/DC1). 

Figure 4. Identifi cation of three new testis-
specifi c histone variants specifi cally expressed 
during late spermiogenesis. (A) Acidosoluble 
extracts were prepared from male germ cells 
purifi ed according to their maturation stages 
(Sc, spermatocytes; R, or round; E, elongating 
and condensing; C, condensing and con-
densed spermatids) and separated on 15% 
SDS-PAGE stained with Coomassie blue. 
 Proteins present in step 12–16 spermatid extracts 
(lane 4) have been excised from the gel and 
identifi ed by MS. (B) PCR using specifi c prim-
ers of the newly identifi ed H2AL1, H2AL2, 
H2AL3, H2BL1, and H2BL2, as well as H3t 
and GAPDH as controls, were performed on 
reverse-transcription products (+) obtained 
from total RNA of the indicated mouse tissues, 
in comparison to negative controls without (−) 
the reverse transcriptase (RT). (C) Reverse 
 transcription was performed on total RNA 
extracted from either whole testis or fractions 
enriched in germ cells at different maturation 
stages. Enrichment of the indicated cDNA in 
each fraction compared with the spermato-
cytes was evaluated by qPCR using the appro-
priate primers. The mean value of at least two 
independent assays is presented. Error bars 
 indicate mean ± SD. (D, E, and F) Western 
blots using the indicated antibodies were per-
formed on various testis or germ cell extracts. 
Coomassie staining of the extracts is also shown 
(Stain panels). (D) Whole testis extract (WTE) 
and step 12–16 spermatid nuclei. CS, con-
densing/condensed spermatids. Note that after 
a longer exposure, the anti-H2AL1/L2, -H2BL1, 
-Prm2, -TP1, and -TP2 blots all showed a weak 
signal in the whole testis extract (not depicted). 
(E) Germ cells fractionated according to their 
maturation stages by sedimentation on BSA 
gradient. (F) Step 12–16 spermatid nuclei (CS) 
and mature epididymal sperm heads (Spz).
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As controls, probes obtained either by sonication of spermatid 

total DNA or after MNase digestion of chromatin of mouse 

somatic cells using the stringent conditions of protocol 1 or of 

a whole testis cell suspension did not label any specifi c domain 

(Fig. 3, E and F; and Fig. S4 A). The quantifi cation of the fl uores-

cence signals given by each probe show that �72% of the 

nucleosomal fragment and 51% of the small fragment correspond 

to major satellite sequences (Fig. S4 B). These results indicate 

that in condensing spermatids, nucleosomes remain in peri-

centric heterochromatin regions, where they coexist with another 

MNase-resistant structure of an unknown nature. We there-

fore hypothesized that these new DNA packaging structures 

may contain condensing spermatid-specifi c proteins, which 

 remained to be identifi ed.

Identifi cation of three new histone variants 
accumulating during late spermiogenesis
To fi nd new proteins involved in the organization of the genome 

in late spermatids, a proteomic approach was undertaken. Basic 

proteins were extracted with acid from nuclei of purifi ed step 

12–16 spermatids and compared with basic proteins of germ 

cells at earlier maturation stages on SDS-PAGE. Coomassie 

staining revealed global changes in the basic protein constitu-

tion of condensing spermatids compared with that of germ cells 

at earlier stages, with a decrease in histone content, and the ap-

pearance of two bands �8 and 18 kD, corresponding to TP1 and 

TP2, respectively (Fig. 4 A). The proteins present in this partic-

ular cell fraction were identifi ed by mass spectrometry (MS). 

As expected, transition proteins TP1 and TP2 and four  canonical 

core histones were found, as well as known somatic and  testis-

specifi c histone variants. This proteomic analysis also revealed 

for the fi rst time the presence of the mouse testis histone variant 

H3t (available from GenBank/EMBL/DDBJ under accession no. 

XP_356549). The mRNA encoding the human orthologue 

was previously shown to be expressed in spermatocytes and 

spermatids (Govin et al., 2005).

More important, three new proteins containing substan-

tial sequence similarity with the H2A or H2B histone folds 

were also identifi ed. These new histone variants were named 

H2Alike1 (H2AL1; available from GenBank/EMBL/DDBJ 

 under accession no. AAH87913), H2Alike2 (H2AL2; accession 

no. NP_080903), and H2Blike1 (H2BL1; accession no. XP_

127485), respectively. H2AL1 and H2AL2 are related proteins 

and show a better homology to each other than to H2A (Table I). 

H2BL1 is very similar to the bovine testis–specifi c H2B variant, 

known as SubH2Bv (Aul and Oko, 2001). In addition to the MS 

analysis, an in silico search in testis ESTs was performed and 

led to the identifi cation of two supplementary H2A and H2B 

variants named H2AL3 (accession no. NP_080372) and H2BL2 

(accession no. BAB24353), respectively (Table I).

The expression pattern of the genes encoding the fi ve new 

histone variants was analyzed by RT-PCR on RNAs from vari-

ous mice tissues. Fig. 4 B shows that, like the H3t variant, all the 

new histone variants are mainly expressed in the testis. To test 

whether all these new variants could be postmeiotically ex-

pressed, RT-qPCR (quantitative PCR) was performed on male 

germ cells fractionated according to their maturation stages on 

a BSA gradient. Fig. 4 C shows that H2AL1, H2AL2, H2AL3, 

and H2BL1 mRNA were strongly enriched in round and elon-

gating spermatids (compare to pachytene spermatocytes, used 

as a reference), in contrast to TH2B used as a control, when 

mRNA was most abundant in meiotic cells. H2BL2 mRNA was 

detected at a very low level in meiotic, as well as postmeiotic, 

germ cells.

To study the accumulation of the encoded proteins during 

spermatogenesis, antibodies against each of the new histone 

variants were generated, and their specifi city was checked on 

cells transfected with the corresponding expression vectors (un-

published data). All were highly specifi c in Western blots, ex-

cept H2AL1 and H2AL2, which could not be distinguished 

from one another by their respective antibodies. They will, 

therefore, be referred as H2AL1/L2 hereafter.

H2BL2, although present in whole testis extracts, was not 

detected in germ cells (Fig. 4 D and not depicted), and H2AL3 

was not detected either in whole testis extracts or in germ cells 

(not depicted). These data suggest that these in silico identifi ed 

histones probably do not play a role in the postmeiotic chromatin 

reorganization of male germ cells. In contrast, H2AL1/L2 and 

H2BL1 are strongly enriched in step 12–16 spermatids com-

pared with the whole testis (Fig. 4 D) and accumulate during late 

Table I. The new identifi ed histone variants

Name Accession no. Length (aa) % Similarities (% Identities) Sequence

H2AL1 AAH87913 105 65 (30) with H2A; 83 (75) with H2AL2 M A K K M Q R R R R Q K R T R S Q R G E L P F S L V D R F L R E E F H S S R L S S S A L S F L T S V L E Y L T S N I L

  E L A G E V A Q T T G R K R I A P E D V R L V V Q N N E Q L R Q L F K P G G T S V N E D D N 

H2AL2 NP_080903 111 75 (41) with H2A; 83 (75) with H2AL1 M A R K R Q R R R R R K V T R S Q R A E L Q F P V S R V D R F L R E G N Y S R R L S S S A P V F L A G V L E Y L T

  S N I L E L A G E V A H T T G R K R I A P E H V C R V V Q N N E Q L H Q L F K Q G G T S V F E P P E P D D N 

H2AL3 NP_080372 117 60 (24) with H2A M S E K K S Q E K P C S D N N Q I E D P S S R P E V Q V P V N Y V Y R I L Q E E Q Y T P C I G S T T S D F L L 

 A M L D Y L T D Y I L E V V G S E A N I N N Q Q N I S Q D R E R Q R D N D R E P S R G F K N A P F S L F D 

 E M P G P R R N G 

H2BL1 XP_127485 123 72 (38) with H2B; 82 (58) with SubH2Bv M A K P T F K R Q C Y I K R H L R P L Y R K H S R C S S I N L G H G N Y S L Y I N R V L K E V V P N R G I S 

 S Y S V D I M N I L I N D I F E R I A T E A C Q Q M F L R K R C T L T P G D I Q Q A V H L L L P K K L A T L

  A V T F G S K A V H R F I H S 

H2BL2 BAB24353 224 64 (31) with H2B M A S T T A M D V L E E L S S D S S E K Q V Q P R K P E K A K R E K D K P K K G G P E K K A K K E K Q E K

  A K P E K K P K K K P E K E K P E G E K L E K K P K K D K R E K A K P K K K P E Q E N R E Q E T P E Q E K P E

  V Q R R R S L H Q S I R E D E R R A R L I R R R K N S F A I Y F P K V L K N I H V G L S L S Q R S V N I L D S F V K
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MS peptides are indicated by underlining.
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spermiogenesis, in condensing spermatids (Fig. 4 E). Their expres-

sion pattern is therefore different from that of TH2B, detected in 

meiotic cells and afterward, but similar to that of TP1, TP2, Prot-

amine2, and H1t2, suggesting that H2AL1/L2 and H2BL1 could, 

like these proteins, be involved in chromatin organization during 

spermatid condensation. Finally, and very interestingly, H2AL1/

L2 and H2BL1 remain present in mature spermatozoa isolated 

from epididymis, whereas all of the other known spermatid pro-

teins, such as TP1, TP2, and TH2B, disappear (Fig. 4 F).

H2AL1/L2 and H2BL1 therefore behave differently from 

the other histones and histone variants present in germ cells, 

most of which are expressed earlier during spermatogenesis and 

removed in condensing spermatids, just as these new variants 

are produced. This pattern of expression pointed to H2AL1/L2 

and H2BL1 as good candidates for specifi c genome reorga-

nizers in condensing spermatids.

H2AL1/L2 are present in the new 
nucleoprotein structures specifi cally 
organizing pericentric heterochromatin
The subnuclear distribution of H2AL1/L2 in germ cells was 

further analyzed by IF on testis imprints (Fig. 5). These proteins 

fi rst appear in step 9 elongating spermatids and strongly accu-

mulate in early condensing spermatids (step 11) after the 

 disappearance of the acetylation signal and before and during 

protamine incorporation (Fig. 5 A). These observations are in 

good agreement with the Western blot data (Fig. 4 E) and with 

immunohistochemistry (IH) data showing H2AL1/L2 accumu-

lation in step 9–11 spermatids (Fig. 5 B).

Interestingly, H2AL1/L2, in contrast to TP1 and TP2, show 

a heterogeneous distribution in early condensing spermatids, 

with a preferential localization in the intensely DAPI-stained 

region, previously identifi ed as pericentric heterochromatin 

(Fig. 5, A and C). These data highly suggest that during late 

spermiogenesis, H2AL1/L2 could differentially organize peri-

centric heterochromatin after the disappearance of acetylated 

nucleosomes. However, although clearly detectable in Western 

blots, H2AL1/L2 could not be observed by IF or IH in both step 

12–16 spermatids and mature spermatozoa, probably because of 

the high genome compaction of these cells. Moreover, H2BL1 

could not be detected in germ cells by these in situ approaches, 

probably also because of limited antibody accessibility.

Because H2AL1/L2 were localized to pericentric hetero-

chromatin, we checked for their presence in the major satellite-

organizing nucleoprotein structures previously isolated from 

step 12–16 spermatids. In preliminary analyses, we observed 

that H2AL1/L2, as well as somatic-type core histones and 

TH2B, were released in the MNase-digested fractions of con-

densing spermatids prepared according to protocol 1 (Fig. S2 B), 

suggesting an association of these histones with at least one 

of the two MNase-resistant nucleoprotein structures shown in 

Fig. 3 B. However, in contrast to the somatic core histones, a 

substantial amount of H2AL1/L2—and, to a lesser extent, 

TH2B—was also present in the soluble nuclear extract, sug-

gesting that the decompacting buffer (Fig. S2 A, protocol 1) had 

partially disrupted the corresponding nucleoprotein structures 

(Fig. S2 B). We therefore set up another procedure using a less 

stringent decondensing buffer (Fig. S2 A, protocol 2), which 

prevented the partial disruption of histone variants (Fig. S2 C) 

but gave the same MNase-digestion pattern (Fig. S3 B and not 

depicted). To investigate the association of H2AL1/L2 within 

the nucleosomal or the smaller structure, the two structures 

Figure 5. H2AL1/L2 are localized on peri-
centric heterochromatin in early condensing 
spermatids. (A) H2AL1/L2 were analyzed by 
IF on round (1–3), elongating (4–6), early con-
densing (7–12), and condensing and con-
densed (13–18) spermatids in codetection 
with acetylated histones (Ac; 1–9) or protamine 
(Prm; 10–18). The DNA panels correspond to 
the DAPI counterstaining. Arrows indicate the 
distribution of H2AL1/L2 on densely DAPI-
stained regions. Bars, 5 μm. (B) H2AL1/L2 
were analyzed by IH on testis sections. The 
 tubule sections were staged according to the 
association of the corresponding germinal 
cells (Russell et al., 1990). The stage of each 
section is indicated with Roman numbers. The 
antibodies stained the spermatids found in 
stages IX, X, and XI tubules, respectively (corre-
sponding to step 9, 10, and 11 spermatids). 
Bars, 20 μm. (C) TP1 or TP2 were detected 
by IF on early condensing spermatids. DNA 
panels correspond to the DAPI counterstaining. 
Bars, 5 μm.
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 (obtained using the less stringent protocol 2) were separated on 

a sucrose gradient, and the associated histones or histone variants 

were analyzed by Western blot (Fig. 6). As expected, the somatic-

type histones H2A, H2B, H3, and H4 cofractionated with 

the larger fragment, confi rming its nucleosomal nature (Fig. 

6 A, lanes 4–7; and Fig. 6 B, stain [lane 2] and H3 and H4 [lane 3]). 

In contrast, the H2AL1/L2 variants specifi cally cofractionated 

with the small MNase-resistant DNA fragment, indicating that 

they could be major constituents of the new DNA packaging 

structure identifi ed in condensing spermatids (Fig. 6 A, H2AL1/

L2 [lanes 1–4]; and Fig. 6 B, V [lane 2]). Remarkably, neither 

H3 nor H4 could be detected in this structure, even when higher 

concentrations of proteins from these fractions were analyzed 

(Fig. 6 B, stain [lane 1] and H3 and H4 [lanes 2 and 4]). Interest-

ingly, TH2B cofractionated with both DNA fragments, suggesting 

that, unlike H2B, it associates not only with nucleosomes but 

also with the new structures.

To confi rm the association between the DNA fragments 

and histones, further purifi cations of the nucleoprotein struc-

tures were performed using hydroxyapatite. This ion-exchange 

medium presents a high affi nity for DNA, which allows the cap-

ture and purifi cation by phosphate elution of nucleosomes or 

other nucleoprotein structures (Rickwood and MacGillivray, 

1975). In these experiments, H2AL1/L2 not only were pulled 

down on hydroxyapatite but also perfectly coeluted with the 

small DNA fragment (Fig. S3, B and C), showing that the small 

DNA fragment and H2AL1/L2 are part of the same structure. 

Moreover, it was confi rmed that TH2B, present within the 

 nucleosomes, also associates with the new structure.

H2AL1/L2 specifi cally dimerize with 
TH2B and can form regular but unstable 
nucleosomes when expressed 
in somatic cells
The association of TH2B and the novel histone variants within an 

unknown DNA packaging structure prompted us to investigate 

their ability to reorganize the genome when ectopically expressed 

in somatic cells. We fi rst monitored the ability of H2AL1 and 

H2AL2 to dimerize with either H2B or TH2B. HA-tagged H2B 

and TH2B were coexpressed with H2A, H2AL1, and H2AL2 

fused to GFP. H2B and TH2B were then immunoprecipitated 

 using an anti-HA antibody, and the presence of H2A, H2AL1, and 

H2AL2 was detected by Western blot (Fig. 7). The data show that 

H2A is able to form dimers with TH2B but less effi ciently than 

with H2B. In contrast, H2AL2 displayed a strong preference for 

dimerization with TH2B compared with H2B (Fig. 7 A). H2AL1 

also dimerized more effi ciently with TH2B than with H2B, albeit 

with a lower affi nity. These fi ndings nicely correlate with the 

 results obtained after the analysis of the chromatin of condensing 

spermatids (Fig. 6), showing the presence of TH2B and the 

 absence of H2B in the histone H2AL1/L2–containing structures.

An important question is whether the H2AL1/L2–TH2B 

dimers are capable of forming regular nucleosomes and/or 

could induce the formation of a different type of structure in 

 somatic cells. To investigate this issue, the chromatin from cells 

expressing H2AL2/TH2B was digested by MNase, and the re-

sulting oligonucleosomes were fractionated on a sucrose gradient. 

Fig. 7 B shows that all the H2AL2 and TH2B were effi ciently in-

corporated into regular nucleosomes, and no smaller DNA pack-

aging structure was found. We then analyzed the stability of the 

H2AL2–TH2B–containing nucleosomes compared with nucleo-

somes containing only somatic histones. Oligonucleosomes from 

cells expressing tagged H2A–H2B or tagged H2AL2–TH2B 

were immobilized on hydroxyapatite and eluted with increasing 

concentrations of salt. The results show that H2AL2–TH2B 

 dimers are released at lower salt concentrations than H2A–H2B 

dimers, suggesting that H2AL2–TH2B– containing nucleosomes 

are less stable than nucleosomes containing somatic histones 

(Fig. 7 C). Altogether, these data show that TH2B and H2AL2 

preferentially associate with each other, are able to form nucleo-

somes when expressed in somatic cells, and are found in new 

nucleoprotein structures specifi cally organizing pericentric 

 heterochromatin in condensing spermatids.

Discussion
This study shows for the fi rst time that pericentric hetero-

chromatin exhibits very specifi c features at all stages of mouse 

Figure 6. In condensing spermatids, H2AL1/L2 are associ-
ated with the new nucleoprotein structure identifi ed by MNase 
digestion. Nucleoprotein structures released from step 12–16 
spermatids after MNase digestion were fractionated by ultra-
centrifugation on a sucrose gradient. DNA fragments and 
proteins of each collected fraction were analyzed, respec-
tively, by electrophoresis on an agarose gel (DNA) and by 
Western blot using the appropriate antibodies. A and B cor-
respond to two independent experiments. In B, fractions 3–5 
(containing the small fragment [Sm]) and fractions 8–10 (con-
taining the nucleosomal fragment [Nuc]) of the gradient were 
pooled for Western blots (bottom, lanes 2 and 3) and Coomassie 
staining (top, lanes 1 and 2) analyses, respectively. To 
confi rm the absence of H3 and H4, the proteins from the 
small fragment fraction were also loaded in tenfold excess 
(Western blot [WB], lane 4).
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spermiogenesis. Upon completion of meiosis, round spermatid 

chromatin retains somatic-type epigenetic marks, which then 

undergo reprogramming at the beginning of the elongation 

phase. A wave of histone acetylation affecting the whole ge-

nome marks the initiation of the chromocenter decompaction 

and spreading. In elongating spermatids, pericentric hetero-

chromatin acquires a novel and unique organization where it 

is both marked by H4ac and H3K9me3 and loss of HP1. The 

observed general histone hyperacetylation and the removal of 

HP1 from pericentric regions are reminiscent of the reported 

disappearance of HP1 from chromocenter after prolonged 

trichostatin A treatment in somatic cells (Taddei et al., 2001). 

It is therefore very probable that at the beginning of spermatid 

elongation, the global histone acetylation triggers the disruption 

of HP1 binding as well as the induction of pericentric hetero-

chromatin reprogramming.

Interestingly, although HP1 is lost, the H3K9me3 mark 

remains when H4 acetylation invades the pericentric regions 

and could be involved in delaying the completion of histone 

acetylation within the major satellite region. Indeed, although 

both marks colocalize in pericentric heterochromatin, a more 

detailed analysis suggests that they are not present on the same 

subregions and, consequently, on the same nucleosomes. This 

implies the occurrence of an active removal of the H3K9me3 

mark before or simultaneously with H4 acetylation. It could be 

either demethylated or widely exchanged with unmethylated 

histone H3 or H3 variants. Interestingly, the proteomic iden-

tifi cation of the surviving histones isolated from condensing 

spermatids (steps 12–16) presented here showed the pres-

ence of the H3 variants H3.3 and H3t. Hence, the exchange 

of trimethylated H3K9 with H3.3 and H3t in the pericentric 

 regions could also account for the progressive removal of the 

H3K9me3 mark.

Later in spermiogenesis, the surviving nucleosomal orga-

nization of the pericentric regions could provide a basis for the 

preferential recruitment of new H2A variants identifi ed here in 

condensing spermatids. Interestingly, our data point to TH2B as 

a key player in the incorporation of H2AL1/L2. First, TH2B is 

expressed much earlier than H2AL1/L2 during spermatogenesis 

but is still present at late spermiogenesis stages, when H2AL1/L2 

accumulate. Second, using an ectopic expression approach, we 

show that H2AL1 and H2AL2 largely prefer TH2B to H2B, 

as a dimerization partner. Moreover, unlike H2B, TH2B was 

found with H2AL1/L2 associated to the small MNase-resistant 

DNA fragments, strongly suggesting that H2AL1 or H2AL2 

also dimerize with TH2B in spermatogenic cells. Third, TH2B 

possesses the ability to induce nucleosome instability when 

 incorporated in vitro into nucleosomes containing somatic-type 

histones (Li et al., 2005), and H2AL2–TH2B–containing nucleo-

somes were found here less stable than those containing H2A–

H2B. Altogether, these observations support the hypothesis that 

TH2B-containing nucleosomes would be preferential sites for 

H2AL1/L2 incorporation through direct dimerization. These 

unstable nucleosomes would then become targets for important 

structural reorganization in condensing spermatids, leading to 

the formation of the new structures evidenced here by MNase 

digestion. Several testis-specifi c factors could potentially play a 

role in such a process. For example, the bromodomain-containing 

factor, TIF1-∂, is expressed in elongating spermatids (steps 9–11) 

concomitantly with the apparition of H2AL1/L2 and preferen-

tially localizes on pericentric heterochromatin  (Khetchoumian 

et al., 2004).

Although H2AL1/L2–TH2B dimers were incorporated 

into the nucleosomes in somatic cells, neither H3 nor H4 could 

be found in the H2AL1/L2–TH2B–containing structure in con-

densed spermatids. These observations are reminiscent of previ-

ous studies showing that a MNase digestion of chromatin from 

somatic cells could also produce subnucleosomal particles, 

some of which are composed of H2A–H2B dimers associated to 

a DNA fragment of �50 bp (Nelson et al., 1977; Rill and Nelson, 

1978; Nelson et al., 1982). Whether the H2AL1/L2–TH2B are 

the testis-specifi c counterparts of these somatic subnucleosomal 

particles or whether they associate with other sperm basic 

 proteins to form completely new DNA packaging structures is 

to be addressed in the future.

In contrast to H2AL1/L2, the presence of TH2B is strongly 

reduced in epididymal spermatozoa (Fig. 4 F). However, longer 

Western blot exposures and MS analyses reveal that a small 

amount of TH2B remains (unpublished data), and an IF approach 

Figure 7. H2AL2–TH2B dimers can be assembled into nucleosomes when 
ectopically expressed in somatic cells. (A) Cos7 cells were cotransfected 
with vectors expressing GFP-fused H2A, H2AL1, H2AL2, or GFP alone as a 
control, and HA-tagged H2B or TH2B, or an empty vector (−). After immuno-
precipitation (IP) performed on whole cell extracts using an anti-HA antibody, 
the immunoprecipitated proteins were denatured in Laemmli loading buffer 
and analyzed by Western blot (WB). A Western blot probed with an 
 anti-HA antibody showed the effi ciency of the immunoprecipitations (top). 
The coimmunoprecipitation of histones H2A, H2AL1, or H2AL2 was 
 detected by Western blot with an anti-GFP antibody and compared with 
the input. (B) Oligonucleosomes were prepared by MNase digestion from 
Cos7 cells expressing HA-H2AL2 and Flag-TH2B and fractionated by ultra-
centrifugation on a sucrose gradient. DNA fragments and proteins of each 
collected fraction were analyzed, respectively, by electrophoresis on an 
agarose gel (DNA) and by Western blots using the indicated antibodies. 
(C) Oligonucleosomes prepared from Cos7 cells expressing HA-H2A/Flag-
H2B or HA-H2AL2/Flag-TH2B were captured by hydroxyapatite. After 
 elution by increasing NaCl concentrations, endogenous somatic histones 
were detected on SDS-PAGE by Coomassie staining (top) and the ectopically 
expressed H2A/H2B or H2AL2/TH2B by Western blots. 
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also suggested that hTSH2B (the human homologue of TH2B) 

could be detected in a subset of spermatozoa (Zalensky et al., 

2002). The exact nature of the H2AL1/L2-containing structures 

in sperm thus remains to be established. The possibility that 

H2BL1, which is synthesized later, partly replaces TH2B in the 

very late stages of spermiogenesis is an attractive hypothesis 

 requiring further investigation.

In the human genome, no H2A and H2B variants were 

found with substantial sequence similarity to the mouse H2AL1, 

H2AL2, and H2BL1. However, other testis-specifi c variants could 

act as functional homologues in human germ cells. For example, 

H2BFWT, a human testis–specifi c H2B variant present in mature 

sperm, is found uniquely in primates and, like H2BL1, shows a 

relatively low similarity with H2B and TH2B (Churikov et al., 

2004). Interestingly, several human sperm H2B variants preferen-

tially accumulate on telomeres (Gineitis et al., 2000; Zalensky 

et al., 2002; Churikov et al., 2004). Thus, although not conserved, 

specifi c histone variants could organize particular regions of the 

genome, like telomeres, centromeres, or pericentric heterochro-

matin, within the globally protamine-packaged genome.

This sperm-specifi c packaging of pericentric heterochro-

matin could be important for postfertilization chromatin reorga-

nization events. Indeed, after fertilization, a genome-wide 

epigenetic reprogramming occurs and establishes the  totipotency 

of the zygote from the differentially organized paternal and 

 maternal genomes, inherited from the highly specialized male 

and female gametes. Interestingly, recent data report important 

differences between the onset of paternal and maternal peri-

centric heterochromatin epigenetic marks in the fi rst steps of 

preimplantation embryogenesis in the mouse (Santos et al., 2005; 

Martin et al., 2006). Therefore, it is tempting to speculate that 

the presence of H2AL1/L2 in a novel organizational unit of 

 major satellites in sperm would, after fertilization, act as a guide 

for epigenetic reprogramming of paternal pericentric hetero-

chromatin. It is also likely that histone variants play a role in the 

establishment of other epigenetically inherited structures in the 

male genome. Indeed, in addition to a clear enrichment in peri-

centric heterochromatin, H2AL1/L2-containing structures are also 

dispersed elsewhere in the genome (Fig. S4 B).  Characterization 

of these regions will constitute an additional, exciting challenge 

for the future, which should shed further light on both the nature 

and transmission of paternal epigenetic information.

Materials and methods
Antibodies
Antibodies against H2AL1, H2AL2, H3AL3, H2BL1, and H2BL2 were gen-
erated in rabbits by three injections of 200 μg of purifi ed His-tagged 
 recombinant proteins. Sera were diluted at 1:1,000 for Western blot and 
1:250 for IF. Anti-H1t2 is described by Martianov et al. (2005). Anti-H3 
was provided by Abcam. Anti-TP1 and anti-TP2, anti-protamine, and anti-
acetylated antibodies were provided by S. Kistler (University of South 
 Carolina, Columbia, SC), R. Balhorn (Lawrence Livermore National Labora-
tory, Livermore, CA), and M. Yoshida (RIKEN, Wako, Japan), respectively. 
Other anti-histones antibodies were provided by Upstate Biotechnology 
and used as advised by the supplier.

Purifi cation of germ cells
Three different protocols were used, depending on the required quantity, 
purity degree, and maturation stage of male germ cells. Fractions enriched 
in spermatogenic cells at different stages of maturation were obtained by 

sedimentation on a BSA gradient as previously described (Pivot-Pajot et al., 
2003). Pure fractions of nuclei from step 12–16 spermatids were obtained 
by sonication of mice testis as described by Marushige and Marushige 
(1983). Pure fractions of epididymal sperm heads were obtained as follows. 
Epididymes were opened with a razor blade to free spermatozoa in a 
DME drop. The spermatozoa were then pelleted by centrifugation (4°C, 
1,300 g, 10 min), resuspended in 1.5 ml DME containing 1 mg/ml salmon 
sperm DNA, sonicated at 250 J to break fl agella, and centrifuged (1,300 g, 
10 min, 4°C) on a discontinuous Percoll gradient (100%/70%/40%). The 
pellet, containing pure sperm heads, was washed once in DME/1 M NaCl 
and then in DME. The quality of each fraction or preparation was con-
trolled by observation under a phase-contrast microscope.

IF and IH on germ cells
Microdissected tubules were prepared as described by Kotaja et al. 
(2004). Testis imprint preparations were performed by gently pressing the 
testis (previously cut in two and frozen in liquid nitrogen) onto glass slides, 
air-drying, incubating in 90% ethanol for 3 min, and air-drying again. 
 Permeabilization of cells was allowed in 0.5% saponine, 0.25% Triton 
X-100, and 1× PBS for 15 min at room temperature. Nonspecifi c binding 
was blocked with 5% dried milk, 0.2% Tween 20, and 1× PBS for 30 min 
at room temperature. Primary antibodies were diluted in 1% dried milk, 
0.2% Tween 20, and 1× PBS (dilutions are indicated in Antibodies section). 
Incubations were performed overnight at 4°C in a humidifi ed chamber. 
Slides were then washed three times for 5 min in the antibodies dilution 
buffer. Secondary antibodies (anti–rabbit cross-linked to Alexa 488 and/
or anti–mouse cross-linked to Alexa 546 [Invitrogen]) were diluted at 
1:500 in the same buffer as the primary antibodies and incubated for 30 
min at 37°C. Washes were performed as for primary antibodies. DNA 
was counterstained by DAPI, and slides were mounted in MOWIOL. The 
protocol of IH experiments is described in detail by Faure et al. (2003).

FISH on germ cells
Slide preparation. The germinal cells from one mouse testis were obtained 
by dilacerating the seminiferous tubules in �500 μl DME/HamF12 medium 
(1:1), washed by centrifugation at 1,000 rpm for 10 min, resuspended, 
 incubated for 10 min in 1% sodium citrate at room temperature, and cen-
trifuged again. The germinal cells of the pellet were carefully dissociated 
and fi xed twice in methanol/acetic acid (3:1) for 10 min at room tempera-
ture and then spread onto dry, clean slides. The slides were air-dried 
and kept at room temperature for up to 1 wk, until FISH was done. For the 
immuno-FISH experiments, IF was performed as usual, the positions of the 
acquired IF images were recorded, and the slides were washed in 2× SSC 
at 37°C for 30 min, dehydrated by immersing in a series of ethanol 
(70%/90%/100%), and air-dried.

FISH procedure. The slides were denatured in 70% formamide/2× 
SSC for 12 min at 82°C (germinal cell preparation) or 1 min at 70°C 
(metaphase), dehydrated by passage through a cold ethanol series and 
air-dried (20× SSC: 175.3 g/l NaCl and 88.2 g/l sodium citrate in water, 
pH adjusted to 7 with NaOH). The DNA probes were labeled with either 
Biotin 11 dUTP or Digoxigenin dUTP by Nick Translation kit (Roche). A 10-μl 
sample of hybridization mix (50% formamide, 20% dextran sulfate, 1× 
SSC, and 1× SSPE; 20× SSPE: 174 g/l NaCl, 27.6 g/l NaH2PO4H2O, 
and 7.2 g/l EDTA, pH adjusted to 7.4), containing 50–100 ng of each of 
the labeled probes, 10 μg sonicated salmon sperm DNA, and, when 
needed, 5–10 μg mouse cot DNA, was heated at 72°C for 10 min, pre-
incubated at 37°C for 30 min, and applied to each slide. The preparations 
were then placed in the dark, under sealed coverslips, for hybridization 
during 24–48 h in a moist chamber at 37°C. The coverslips were then 
carefully removed, and the slides were washed in 2× SSC for 2 min at 
70°C and preincubated for 15 min in phosphate-buffered detergent (PBD; 
Qbiogene) at room temperature. The digoxigenin-labeled and biotin-
 labeled probes were detected, respectively, by a 15-min incubation at 37°C 
with anti–digoxigenin-rhodamine (1:100; Boehringer) or streptavidin–
 Alexa 488 (1:200; Invitrogen), diluted in PBD, and washed three times for 
5 min in PBD at room temperature. The preparations were fi nally counter-
stained with 250 ng/ml DAPI in Vectashield (Vector Laboratories).

The quantifi cation of the enrichment of each probe in major satellite 
sequences was performed on FISH slides as follows. The quantifi cation 
was performed on mouse metaphases hybridized with the small fragment, 
the nucleosomal fragment, or control probes in codetection with major sat-
ellites. For each probe, the fl uorescence signals on each whole chromo-
some and on its corresponding pericentric region (i.e., the area defi ned 
by major satellite hybridization) were quantifi ed using MetaMorph soft-
ware (Molecular Devices). The “pericentric/whole chromosome” signal 
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ratio for the major satellite probe was considered 100% enrichment. For 
each of the other probes, this ratio (pericentric/whole chromosome) 
was also determined and normalized to the value obtained for a major 
 satellite probe.

Microscope image acquisitions
A microscope (Axiophot; Carl Zeiss MicroImaging, Inc.) coupled to a 
−40°C chilled charge-coupled device camera (Hamamatsu) was used for 
2D image acquisitions. Images were acquired at room temperature with a 
63× objective (1.4 NA). Confocal images were taken using a confocal 
 laser scanning microscope (Carl Zeiss MicroImaging, Inc.) and quantifi ed 
using MetaMorph. The images presented in the fi gures were processed 
 using Photoshop (Adobe).

MNase digestion of chromatin from step 12–16 condensing spermatids
Step 12–16 spermatids obtained from 10 testes, or 107 NIH 3T3 cells used 
as control, were lysed (15 min, in ice) in 150 μl buffer 1 (50 mM Tris, pH 
7.4, 150 mM NaCl, 1% NP-40, 0.5% DOC, and 0.1% SDS) or buffer 2 
(50 mM Tris, pH 7.4, 300 mM NaCl, 0.1% NP-40, 0.1% DOC, 1 mM 
DTT, and antiprotease cocktail [Complete EDTA Free; Roche]). After centri-
fugation (20,000 g, 4°C, 10 min), the pellet was resuspended in 150 μl 
of the initial buffer. In the case of buffer 2, a short sonication (80 J) was 
performed to allow the suspension of chromatin fragments of �5,000 bp, 
and unlysed spermatids were eliminated by an additional centrifugation. 
MNase digestion was performed on the buffer 1 or 2 lysates by the addi-
tion of 150 μl MNase buffer (10 mM Tris, pH 7.5, 10 mM KCl, and 1 mM 
CaCl2) and 15 U of micrococcal nuclease S7 (Roche), and incubation at 
37°C for the indicated times. Reaction was stopped by 5 mM EDTA (fi nal 
concentration). MNase-digested fractions were separated by ultracentri-
fugation (80,000 g, 20°C, 7 h) on a 10–30% linear sucrose gradient (in 
1 mM phosphate buffer, pH 7.4, 80 mM NaCl, 0.2 mM EDTA, and anti-
protease cocktail). DNA analyses were performed on 10 μl of MNase-
 digested fractions by treatment with proteinase K followed by electrophoresis 
on a 2% agarose gel. Proteins of the collected fractions were analyzed 
Western blots.

MS and protein identifi cation
After separation by SDS-PAGE, discrete bands were excised from the Coo-
massie blue–stained gel. The in-gel digestion was performed as previously 
described (Ferro et al., 2000). Gel pieces were then sequentially extracted 
with 5% (vol/vol) formic acid solution, 50% acetonitrile, 5% (vol/vol) for-
mic acid, and acetonitrile. After drying, the tryptic peptides were resus-
pended in 0.5% aqueous trifl uoroacetic acid. The samples were injected 
into a CapLC nanoLC system (Waters) and fi rst preconcentrated on a 300 
μm × 5 mm precolumn (PepMap C18; Dionex). The peptides were then 
eluted onto a C18 column (75 μm × 150 mm; Dionex). The chromato-
graphic separation used a gradient from solution A (2% acetonitrile, 98% 
water, and 0.1% formic acid) to solution B (80% acetonitrile, 20% water, 
and 0.08% formic acid) for >35 or 60 min at a fl ow rate of 200 nl/min. 
The LC system was directly coupled to a mass spectrometer (QTOF Ultima; 
Waters). MS and MS/MS data were acquired and processed automati-
cally using MassLynx 4.0 software. Database searching was performed 
 using the MASCOT 2.1 program. Two databases were used: a homemade 
list of well-known contaminants (keratines and trypsin) and an updated 
compilation of SwissProt and Trembl databases with specifying Mus as 
the species. For searching the Mus database, the variable modifi cations 
 allowed were as follows: acetyl-lysine, N-ter acetylation, dimethyl-lysine, 
methyl-lysine, protein N-acetylation, methionine oxidation, serine and thre-
onine phosphorylation, methionine sulphone, and cysteic acid. Because of 
the potential high frequency of basic amino acid clusters (e.g., for histone 
proteins), four missed cleavages were also allowed. Proteins, which were 
identifi ed with at least two peptides, both showing a score >40, were vali-
dated without any manual validation. For proteins identifi ed by only one 
peptide having a score >40, the peptide sequence was checked manually. 
Peptides with scores >20 and <40 were systematically checked and/or 
interpreted manually to confi rm or cancel the MASCOT suggestion.

Reverse transcription, PCR, and qPCR
Reverse transcription reactions were performed with the StrataScript First- 
Strand Synthesis system (Stratagene) using random hexamer primers. qPCR 
reactions were performed using Brilliant SYBR Green qPCR MasterMix on 
an Mx3005p cycler (Stratagene). cDNA from total testis was used for the 
standard curve, and data were normalized using Brdt cDNA abundance, 
as Northern blot attests the constant level of this mRNA in meiotic and post-
meiotic cells (Pivot-Pajot et al., 2003).

Ex vivo studies of histone variants
The coding sequences of H2AL1, H2AL2, H2A, H2B, and TH2B were 
inserted into pCDNA3.1 (Invitrogen) modifi ed by insertion of HA or 
Flag tags or into peGFP-C (BD Biosciences). Plasmids were cotransfected 
in Cos7 cells by the Fugene transfection system (Roche), and cells were 
collected 24 h after transfection. Coimmunoprecipitations were performed 
as described by Caron et al. (2003). Preparation of oligonucleosomes 
and capture on hydroxyapatite were performed as described by Sun 
et al. (2003).

Online supplemental material
Fig. S1 shows codetection and quantifi cation of H4Ac and H3K9me3 
in elongating spermatids by immunofl uorescence. Fig. S2 shows pro-
tocols used for the MNase digestion of condensed spermatids and 
analysis of the resulting release of chromatin-associated proteins. Fig. 
S3 shows fractionation and capture on hydroxyapatite of the MNase-
resistant structures of condensed spermatids. Fig. S4 demonstrates 
quantifi cation of FISH experiments, showing an enrichment of the two 
MNase-resistant structures of condensed spermatids in major satellite 
 sequences. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200604141/DC1.
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