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Background: Epileptic seizures are caused by abnormal brain wave

hypersynchronization leading to a range of signs and symptoms. Tools for detecting

seizures in everyday life typically focus on cardiac rhythm, electrodermal activity, or

movement (EMG, accelerometry); however, these modalities are not very effective

for non-motor seizures. Ultra long-term subcutaneous EEG-devices can detect the

electrographic changes that do not depend on clinical changes. Nonetheless, this also

means that it is not possible to assess whether a seizure is clinical or subclinical based

on an EEG signal alone. Therefore, we combine EEG and movement-related modalities

in this work. We focus on whether it is possible to define an individual “multimodal ictal

fingerprint” which can be exploited in different epilepsy management purposes.

Methods: This study used ultra long-term data from an outpatient monitoring trial

of persons with temporal lobe epilepsy obtained with a subcutaneous EEG recording

system. Subcutaneous EEG, an EMG estimate and chest-mounted accelerometry were

extracted from four persons showing more than 10 well-defined electrographic seizures

each. Numerous features were computed from all three modalities. Based on these,

the Gini impurity measure of a Random Forest classifier was used to select the most

discriminative features for the ictal fingerprint. A total of 74 electrographic seizures

were analyzed.

Results: The optimal individual ictal fingerprints included features extracted from all three

tested modalities: an acceleration component; the power of the estimated EMG activity;

and the relative power in the delta (0.5–4Hz), low theta (4–6Hz), and high theta (6–8Hz)

bands of the subcutaneous EEG. Multimodal ictal fingerprints were established for all

persons, clustering seizures within persons, while separating seizures across persons.

Conclusion: The existence of multimodal ictal fingerprints illustrates the benefits of

combining multiple modalities such as EEG, EMG, and accelerometry in future epilepsy

management. Multimodal ictal fingerprints could be used by doctors to get a better

understanding of the individual seizure semiology of people with epilepsy. Furthermore,

the multimodal ictal fingerprint gives a better understanding of how seizures manifest

simultaneously in different modalities. A knowledge that could be used to improve seizure

acknowledgment when reviewing EEG without video.
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INTRODUCTION

People with epilepsy (PWE) experience repetitive,
unexpected seizure episodes, caused by abnormal brain
wave hypersynchronization leading to a range of signs
and symptoms—the so-called semiology. Quantitative and
qualitative characterization of semiology is the cornerstone in
every case of epilepsy management. While seizure types tend to
be similar from time to time within an individual PWE, many
different seizure types exist in different PWE (1). Therefore, an
objective description of the most common individual seizure
characteristics for each PWE—the multimodal ictal fingerprint—
could have multiple potential uses within epilepsy treatment
(e.g., clinical management or seizure detection).

In epilepsy management, automatic device-based seizure
detection may be useful for qualitative description of the seizure
semiology in daily life. In the clinic, a concise and objective
qualitative description of the seizure semiology can add value in
the epilepsy diagnostic process for the healthcare professionals.
With an ictal fingerprint available, the clinical management and
treatment optimization might be less cumbersome. Including
movement measures in the ictal fingerprint can potentially
add clinical symptoms, which is an important part of the
seizure semiology—both during the diagnostic process and
treatment optimization.

In the outpatient setting, accurate seizure documentation
remains an ongoing challenge. Seizure diaries, the current
standard assessment of seizure counts at home, has been shown
to be unreliable, potentially leading to over- or under-reporting
(2). Both of which might lead to incorrect seizure treatment and
complications for PWE (3). Furthermore, unobserved seizures
have been associated with increased risk of morbidity and
mortality through seizure related accidents, SUDEP etc. Hence,
a seizure alarm making another person aware of the seizure may
help reduce the risk (4). There exist several seizure alarms, of
which most are based on movement (pressure, accelerometry,
and EMG). However, focus on other modalities like ECG and
EEG seems promising especially in seizures with a limited motor
component (5). Many of the current alarm systems have a limited
use due to low sensitivity, high false alarm rate, not being body
worn or being obtrusive, hence not used (6).

For objective seizure counting and alarms, the need for
improved combinations of devices and algorithms that work in
everyday life settings is substantial. Novel subcutaneous EEG
(sqEEG) devices present an intriguing hardware development
whichmakes EEG recordings possible around the clock (3, 7–10).
However, the use of these devices requires automatic algorithms
to process the recordings due to the vast amount of data. Two
possible approaches for improving these algorithms could be
multimodal sensing and detection based on the individual ictal
seizure semiology. Multimodal sensing is performed as standard
in the epilepsy monitoring unit, but also examples of multimodal
home monitoring are published (11). Combining sqEEG sensing
with movement sensing is a simple way to capture both the
electrographic and clinical motor parts of the seizure semiology
during home monitoring. This approach is novel and exactly
what is investigated in this study. Hereby the gap between home

monitoring and the golden standard video-EEG in the epilepsy
monitoring unit is narrowed.

This article presents a multimodal ictal fingerprint based
on movement measures and ultra long-term sqEEG recorded
in the everyday life of PWE. The aim is to explore if the
concept of an ictal fingerprint can be used to describe and
better understand the homogeneity of seizures within each PWE
and the heterogeneity of seizures across PWEs. If that is the
case, multimodal recordings could be used to supply doctors
with an improved, subject-specific epilepsy semiology during
outpatient monitoring. Furthermore, it could be used to improve
seizure detection methods by increasing the knowledge of the
heterogeneity of individual seizures.

MATERIALS AND METHODS

Data from an outpatient trial using ultra long-term minimally
invasive sqEEG to monitor epileptic seizures constituted the
basis for this work. For a detailed account on the study design,
data collection procedures and demographics of the participating
persons please refer to the initial report of the clinical trial (3).

Study Population
To ensure a representative distribution of seizure data a
minimum of 10 well-defined electrographic seizures were
required for each participant. This meant that four out of
nine participants were included in the present publication. All
included persons suffered frommedically refractory left temporal
lobe epilepsy. Table 1 depicts person characteristics.

In total, 78 electrographic seizures from the four persons
(range: 12–25 seizures/person) were identified from the sqEEG
data. All focal to bilateral tonic-clonic seizures (FBTCS) were
excluded from the analysis (a total of four seizures from two
different persons) to focus on defining the ictal fingerprint
of seizures with a smaller motor component. These are the
challenging ones to separate as opposed to FBTCS which can
be detected using wearable devices (12), and in addition, they
constitute most seizures. Thus, 74 electrographic non-FBTCS’s
constituted the basis for this work.

Data Collection and Characteristics
The sqEEG recorder system (24/7 EEGTM SubQ, UNEEG
medical, Lynge, Denmark), referred to as the SubQ solution,
consists of an implant and an external device. The implant
consists of a 3-contact lead wire (yielding 2-channel bipolar
EEG) and a small housing, implanted unilaterally under local
anesthesia over the temporal region of interest (see Figure 1). The
external device connects to the implant housing via an inductive
link, powering the implant and recording/storing data (sampling
rate: 207Hz). The external device holds a 3-axis accelerometer
(applied sampling rate of 10 or 20Hz). As the external device is
typically carried on the shirt as depicted in Figure 1, derivative
accelerometer measures carry information on the orientation,
posture, and movement of the body trunk.

Each person used the SubQ solution for 2–3 months of their
everyday life. The total amount of outpatient sqEEG has been
reviewed and labeled with “electrographic seizure” by a thorough
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TABLE 1 | Epilepsy and data characteristics for each person.

Person ID Ictal onset zone Semiology EEG data (h) Number of electrographic seizures (N)*

B LT FAS 1,552 25

E LT FIAS 1,147 15

G LT Uncertain 1,516 12

I LT FIAS 1,605 22

FAS, focal aware seizure; FIAS, focal impaired awareness seizure; LT, left temporal.
*Number of seizures when the four FBTCS’s (focal to bilateral tonic-clonic seizures) were excluded.

FIGURE 1 | The SubQ solution and its placement in this study. Left: sagittal view of the head showing the placement of implant at the temporal region, recording

2-channel bipolar temporal sqEEG. Right: frontal view of the trunk demonstrating the placement of the external device, recording 3-axis accelerometry of the body

trunk.

review process of leading experts from three different institutions
(in preparation for publication).

Data Analysis
Of the large amounts of recorded data, ictal, pre-ictal and baseline
data was extracted and applied in this study. All electrographic
seizures were labeled with seizure onset and duration, defining
the ictal period. The baseline and pre-ictal periods were extracted
for comparison with the ictal periods to demonstrate that
the activity during the ictal periods were different from the
remaining signal. The baseline period was defined as a 1-
min period ending 5min before the seizure onset and the
pre-ictal period was defined as the minute period preceding
the seizure onset. A length of 1min was deemed sufficient to
minimize the influence of inherent signal variance. The first
two and the last 2 s of the ictal periods and the last 2 s of
the pre-ictal periods were excluded from the analysis to avoid
transition phenomena.

In addition to the sqEEG and 3-axis accelerometry, an EMG
signal estimate was extracted from the sqEEG, based on the
frequency content above 20Hz. The recording electrodes of the
implant span the temporalis muscle, thus, recorded activity above
20Hz is very likely temporalis activity (13).

To assess a multimodal ictal fingerprint across persons, ∼70
features spanning all three modalities were calculated for the ictal
and pre-ictal periods. To find a compact ictal fingerprint, it was
decided to remove the redundant features. For this purpose, a

Random Forest classifier was trained in a 5-fold cross-validation
scheme with nine different hyperparameter settings (14). The
hyperparameter settings were a grid search over the number of
trees (25, 50, 100) and the minimum number of samples to split
a node (2, 4, 6). The remaining hyperparameters were the default
parameters used by the Random Forest Classifier function of
the python package sklearn (v. 0.24.1). The classification task
consisted of separating ictal periods between persons. From the
best performing model, a feature importance parameter was
extracted based on the internal gini impurity measure, which
determines the node splits in each of the decision trees. The five
most discriminative features were selected for further analysis
(hereafter referred to as the reduced feature space).

A principal component analysis was performed in the
reduced feature space to visualize the person-specific,
feature-based clusters of seizures. A seizure centroid
was computed for each person in the space spanned
by the principal components by averaging over all
seizures. Then each seizure was assigned to the person
with the centroid which was closest measured using
Euclidean distance. The accuracy of this simple clustering
was calculated.

To illustrate the uniqueness of the multivariate ictal
fingerprint, radar charts of the ictal feature medians and
interquartile ranges were displayed for each person. All
features were Z-score normalized for optimized visualization
and comparison.
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FIGURE 2 | The multimodal ictal fingerprint. Each color represents a separate participant (blue, orange, green, and red are person B, E, G, and I, respectively). Left:

Radar charts of the ictal feature medians and interquartile ranges for each person. F1: X-axis acceleration component; F2: EMG power proximal; F3: EEG relative delta

power; F4: EEG relative low theta power; F5: EEG relative high theta power. The heterogeneity across persons is shown. The ictal fingerprint of person B (blue) is

dominated by EEG theta power elevation. The fingerprint of person E (orange) has a partial overlap with elevated theta activity. However, the movement component

(F1) is a major contributor for this fingerprint. The movement component is also substantial for person I (red), but with no remarkable theta elevation. The ictal

fingerprint of person G (green) is not dominated by either of the mentioned features; instead, elevated EMG activity is the main contributor. Right: Pair plot of the first

three principal components of the reduced feature space of the ictal periods, where each dot represents a seizure. Scatterplots are shown for each pairing of the

principal components, and marginal distributions are plotted along the diagonal (layered kernel density estimates). Within-person clustering and separation across

persons are shown. The seizures of each individual could be separated from the rest with an 84.5% accuracy.

To demonstrate that the ictal periods differ from the baseline
and pre-ictal periods within persons, a distance-to-ictal-cluster-
average vs. distance-to-preictal-cluster-average plot was made for
all ictal and pre-ictal periods. Distances were to person-specific
cluster averages, calculated as Euclidean norms in the reduced
feature space.

RESULTS

Feature Space Reduction
The reduced feature space included one accelerometer-based
feature: the x-axis accelerometer component; one estimated EMG
feature: the >20Hz power at the proximal electrode contact
point; and three EEG-based features: the relative power in
the delta (0.5–4Hz), low theta (4–6Hz), and high theta (6–
8Hz) band.

Ictal Clustering
The pair plot of the first three principal components of the
reduced feature vectors (right chart of Figure 2) shows that
the seizures group together in person-specific, feature-based
clusters. Using a simple clustering method, the accuracy of
separating the seizures of all subjects reached 84.5%. By visual
inspection of the figure, it can be observed that B, G, and I were
more distinguishable than E and separating only B, G, and I
could be done with an accuracy of 93.1%. To some extent, the

feature characteristics of person E seem to group with person
I. According to Table 1, their seizure semiologies are alike, both
experiencing focal impaired awareness seizures.

The Ictal Fingerprint
In the left graph of Figure 2, radar plots of the ictal feature
medians and interquartile ranges demonstrate the heterogeneity
across persons. E.g., the ictal period of person G is dominated
by high EMG activity, whereas it is not the case for any other
person. Likewise, the relative low theta power is elevated for the
ictal periods of person B, whereas this does not dominate the ictal
fingerprints of the remaining persons.

Baseline and Pre-ictal to Ictal Separation
Figure 3 includes the pre-ictal periods to show pre-ictal to ictal
separation and Table 2 present the statistics of the separation
task. The cluster center distances show a separation accuracy
of 83.8% for the pre-ictal to ictal separation and 88.1% for the
baseline to ictal separation. Thereby, it is indicated that the
created ictal fingerprints are truly ictal, and not general person-
specific multimodal fingerprints.

DISCUSSION

Seizures can be split up into separate seizure types and the
same seizure type can manifest differently for each patient
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FIGURE 3 | Distance-to-ictal-cluster-average vs. distance-to-preictal-

cluster-average for all ictal and pre-ictal periods to illustrate the separation

capability. Distances are to person-specific cluster averages, calculated as

Euclidean norms in the reduced feature space. The solid black line represents

the class separation. The separation accuracy was 83.8%. Period is shown

with different colors (blue are pre-ictal periods and orange are ictal periods)

and the subject ID is shown with different marker types (circles, crosses,

squares and plusses are persons B, E, G, and I, respectively).

(15). Here we have demonstrated that the concept of an ictal
fingerprint is meaningful when based on data from three different
modalities: EEG, EMG, and accelerometry all recorded with the
SubQ solution in four different PWE. We have not managed
to find previous efforts showing this phenomenon even though
previous studies have tried to use multiple modalities in seizure
detection algorithms (16). For that reason, the purpose was not to
achieve the highest possible separation of seizures in the person-
specific, feature-based clusters. Instead, it was to demonstrate
that an ictal fingerprint exists defined by easily interpretable
features and discuss the advantages of using multiple modalities.
Collecting data on individual seizures from multiple modalities
has the potential to improve clinical treatment management.
The proposed ictal fingerprint supplies information that could
give healthcare professionals in the clinic a more detailed
description of any specific individual’s seizure semiology. Part of
this information would allow to distinguish between clinical and
subclinical seizures. A task that is not possible with unimodal
data because EEG is needed to discover the subclinical seizures
and other modalities, such as EMG or accelerometry, are needed
to determine whether a seizure is clinical.

PWE need a solution for seizure detection that works in
their everyday life, and multiple unimodal setups have been
proposed. The performance of EEG based alarms has so far
been problematic, potentially challenging clinical utility and user
tolerance (17, 18). Most of the studies regarding EEG-based
alarms show only moderate sensitivity, tolerable false detection
rates and are performed on data obtained under standardized
circumstances, e.g., in the hospital and instead of during everyday
activities (19). Most commercially available alarms are triggered
by movement (accelerometry, EMG), or sympathetic activity

TABLE 2 | Accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value of separating ictal from pre-ictal periods.

Statistic Value (%) Confidence interval (%)

Accuracy 83.8 ±6.1

Sensitivity 80.3 ±6.5

Specificity 87.3 ±5.5

Positive predictive value 86.4 ±5.6

Negative predictive value 81.6 ±6.4

(ECG, electrodermal response), requiring either a significant
motor component or autonomic component of the seizures to
work (20). Often movements, exercise or change in autonomic
load cause false detections.

The crucial challenge when designing devices and algorithms
for seizure detection is to detect all true seizures while avoiding
false alarms, i.e., obtaining high sensitivity and specificity.
Achieving this goal requires data in which seizures are separable
from background activity. Our findings in four persons with
temporal lobe epilepsy show that the modalities which describe
the seizures best are different from person to person. Visual
inspection makes it clear that the seizures can be grouped
into person-specific, feature-based clusters, meaning they are
generally more similar within PWEs and more different between
PWEs (Figure 2).

EEG signals differ from person to person to a degree where
EEG has even been proposed as a modality that could be used
for biometric recognition (21–23). It was therefore expected that
the persons could be distinguished based on multiple modalities
incl. EEG. Figure 3 illustrates that there is not only a multimodal
overall fingerprint but also a separate ictal fingerprint as the
pre-ictal periods could be separated from the ictal periods.

This study only presents the ictal fingerprint of four PWEs.
It is therefore unknown to what degree the proposed ictal
fingerprint will overlap between many individuals. While the
reduced feature space represents commonly used features from
the selected modalities, the proposed ictal fingerprint contains
more features than there are PWEs. Separability of the person-
specific, feature-based clusters presented in Figure 2 would
be expected to decrease with increasing number of persons.
This could lead to a need for a revised model of the ictal
fingerprint incorporating other and possibly more features.
The approach described in this paper is novel in the way
it combines movement and EEG in an everyday life setting.
What is also special, is that the accelerometer used in this
study is placed on the chest revealing movement of the trunk
rather than extremities, which is usually the case for seizure
detectors. Finding that body trunk movements can contribute
to the ictal fingerprint might be surprising. However, it is
advantageous that measurement devices placed on extremities
are not required in order to limit the number of devices to be
worn by the PWEs.

Introducing the concept of an ictal fingerprint has the
potential to improve the PWE’s knowledge of their own seizures
which might increase their device compliance. The readiness
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of PWEs to use wearables in everyday life requires that
individual needs are addressed, and expectations are met to
better understand their life situation. A device can be perceived
by the PWEs as a lifeline to health and access to healthcare
professionals (24).

In summary, our findings in four persons with temporal lope
epilepsy show that it is possible to create unique individual
ictal fingerprints, where the multimodal characteristics
describing the ictal periods best, differ from person to person
while staying consistent within each person. Individual ictal
fingerprints may enhance clinical management, improve seizure
acknowledgment and detection algorithms, and lead to better
personal healthcare experiences.
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