
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences          (2022) 79:550  
https://doi.org/10.1007/s00018-022-04569-8

ORIGINAL ARTICLE

Rewiring of the protein–protein–metabolite interactome 
during the diauxic shift in yeast

Dennis Schlossarek1 · Marcin Luzarowski1,2 · Ewelina M. Sokołowska1 · Venkatesh P. Thirumalaikumar3 · 
Lisa Dengler4 · Lothar Willmitzer1 · Jennifer C. Ewald4 · Aleksandra Skirycz1,3 

Received: 29 March 2022 / Revised: 2 September 2022 / Accepted: 21 September 2022 
© The Author(s) 2022

Abstract
In budding yeast Saccharomyces cerevisiae, the switch from aerobic fermentation to respiratory growth is separated by a 
period of growth arrest, known as the diauxic shift, accompanied by a significant metabolic rewiring, including the derepres-
sion of gluconeogenesis and the establishment of mitochondrial respiration. Previous studies reported hundreds of proteins 
and tens of metabolites accumulating differentially across the diauxic shift transition. To assess the differences in the pro-
tein–protein (PPIs) and protein–metabolite interactions (PMIs) yeast samples harvested in the glucose-utilizing, fermentative 
phase, ethanol-utilizing and early stationary respiratory phases were analysed using isothermal shift assay (iTSA) and a 
co-fractionation mass spectrometry approach, PROMIS. Whereas iTSA monitors changes in protein stability and is informa-
tive towards protein interaction status, PROMIS uses co-elution to delineate putative PPIs and PMIs. The resulting dataset 
comprises 1627 proteins and 247 metabolites, hundreds of proteins and tens of metabolites characterized by differential 
thermal stability and/or fractionation profile, constituting a novel resource to be mined for the regulatory PPIs and PMIs. The 
examples discussed here include (i) dissociation of the core and regulatory particle of the proteasome in the early stationary 
phase, (ii) the differential binding of a co-factor pyridoxal phosphate to the enzymes of amino acid metabolism and (iii) 
the putative, phase-specific interactions between proline-containing dipeptides and enzymes of central carbon metabolism.

Keywords Yeast · Diauxic-shift · Co-fractionantion mass spectrometry · Protein-metabolite interactions · Dipeptides · 
Proteasome

Introduction

Budding yeast Saccharomyces cerevisiae grown on glu-
cose undergoes two growth phases: glucose-utilizing and 
ethanol-utilizing phases, separated by a period of growth 
arrest, referred to as diauxic shift [75]. The depletion of both 
glucose and ethanol is associated with the cell cycle arrest 
and the onset of the stationary phase [70]. During the glu-
cose-utilizing phase, yeast uses glucose to produce ATP and 
pyruvate through glycolysis. Pyruvate is further converted 
to ethanol, which accumulates in the medium until glucose 
is depleted. The presence of glucose suppresses oxidative 
phosphorylation (OXPHOS), gluconeogenesis and the use 
of alternative carbon sources. The repression of respira-
tion in the presence of oxygen is referred to as the Crabtree 
effect and is reminiscent of the Warburg effect described 
for cancer cells [27]. Decreasing glucose concentration 
triggers first gradual and, once glucose is depleted, abrupt 
changes to the metabolism characterized by de-repression 
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of gluconeogenesis and establishment of mitochondrial res-
piration [75].

The transition from glucose to ethanol-based growth 
is orchestrated by the central energy signalling pathways, 
including the PKA (cAMP-dependent protein kinase), 
TORC1 (target of rapamycin) and Snf1 (sucrose non-fer-
menting) kinases [10, 22]. Downstream targets of PKA, 
TORC1 and Snf1 comprise multiple transcriptional regu-
lators, which drive the massive transcriptional reprogram-
ming reported for the diauxic shift [20]. Changes in gene 
expression are reflected at the protein and metabolite levels, 
hundreds of proteins and tens of metabolites displaying dif-
ferential accumulation across glucose to ethanol transition 
[44]. For instance, abundance of glycolytic enzymes and 
metabolic intermediates decreases, whereas enzymes and 
metabolites of the glyoxylate cycle accumulate during the 
diauxic shift [75].

Biological entities, such as proteins and metabolites, 
rarely act independently but rather as a part of a larger com-
plex. Resulting protein–protein (PP) and protein–metabo-
lite (PM) interactions have diverse functional consequences 
from structural to regulatory with implications to all known 
cellular processes. The dramatic changes in the protein and 
metabolite abundance reported for the diauxic shift [44, 75] 
likely translate into a significant rewiring of the PP and PM 
interactome. New interactions can be driven by the changes 
in the protein and metabolite concentrations and an altera-
tion in the interactor status, such as, for instance, by a post-
translational modification (PTM) of the protein partner. 
However, although the importance of protein interactions is 
undisputed, many interactions are still poorly characterized. 
This is especially true for protein–metabolite interactions.

While there are many approaches to study PPIs and PMIs, 
only a few allow a bird-eye view into the entirety of the 
interactomes across cellular transitions, such as the diauxic 
shift. One such method is thermal proteome profiling (TPP) 
[54]. Here, the interaction status of a protein is gauged from 
the difference in the temperature stability expressed as melt-
ing temperature—the temperature at which 50% of a protein 
is unfolded, compared between the different conditions [42]. 
Initially developed to look for protein partners of small-
molecule ligands [54], TPP has been successfully applied 
to assess global changes in the protein interactomes [5, 19]. 
The change in the temperature stability measured between 
two cellular states, whether it is a genetic, environmental 
or developmental perturbation [5, 19, 39] is indicative of a 
change in the protein interaction status, where the interact-
ing partner can be, e.g. a protein, metabolite or nucleic acid. 
Protein thermal stability can be also affected by the change 
in the PTMs status [30, 49, 59]. TPP experiments are ideal to 
assess the global change to a protein interactome. Moreover, 
as proteins in a complex show coordinated changes in their 
melting behaviour when done across a large number of cell 

states, TPP experiments can be used to predict the composi-
tion of protein complexes [39].

A complementary approach that can be used to capture 
differential interactomes is co-fractionation mass spectrom-
etry (CF-MS) (reviewed, e.g. by Salas et al. [52]. CF-MS 
combines separation of complexes utilizing different bio-
chemical techniques, such as size exclusion chromatography 
(SEC) [2, 29, 68], ion exchange (IEX) chromatography [14, 
29], blue native gels [26] or density gradient centrifugation 
[24] with mass spectrometry (MS) analysis of the obtained 
fractions and uses co-elution to delineate interactors. First 
established for PPIs [14, 24, 26, 29, 40, 68], CF-MS methods 
can also be used to resolve protein–metabolite [14, 34, 36, 
65] and protein–RNA interactions [37].

In the past we used a CF-MS approach, that we dubbed 
PROMIS for PRotein Metabolite Interactions using Size 
Separation to build a protein–metabolite interaction map of 
a budding yeast Saccharomyces cerevisiae during the glu-
cose-utilizing, logarithmic growth stage [36]. In doing so we 
reported hundreds of known and unknown small molecules 
separating together with proteins, attesting to the previously 
postulated [33, 35] complexity of the protein–metabolite 
interactome, and the notion that many more small molecules 
than are known today interact with, and modulate the func-
tion of, their protein partners.

In the current study, we extended our analysis to explore 
the dynamics of PPIs and PPMs during the diauxic shift 
transition to understand how the dramatic changes in the 
protein and metabolite abundance reported for the diauxic 
shift would translate into a rewiring of the PP and PM inter-
actome. To this end, yeast harvested in the glucose-utilizing, 
fermentative phase, ethanol-utilizing and early stationary 
respiratory phases were subjected to isothermal shift assay 
(iTSA, a variation on the TPP [4] and PROMIS analysis. We 
could demonstrate that the diauxic shift transition is asso-
ciated with major changes in the PP and PM complexes. 
Moreover, our work attests to the suitability of PROMIS to 
capture changes in PMIs, as shown before for PP complexes 
[28].

Results and discussion

Proteomics analysis of the diauxic shift

To examine changes in the PM and PP interactome before 
and after the diauxic shift transition, we used the YSBN2 
strain of Saccharomyces cerevisiae. YSBN2 is a strain 
closely related to the common model strain S288c and was 
constructed by Canelas et al. [13] for large-scale physiologi-
cal studies. In contrast to S288c, YSBN2 is prototrophic, 
making it well suited for metabolic studies. It also car-
ries a drug resistance marker to prevent contamination in 
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large-scale or long-term cultures and to facilitate genetic 
crosses. OD600 was used to monitor growth and samples 
were taken after 6, 24 and 72 h of cultivation. The 6 h time 
point corresponds to the logarithmic, glucose-utilizing 
phase, the 24 h time point to post-diauxic, ethanol-utilizing 
phase and the 72 h time point to the early stationary phase 
(Fig. 1A and Fig. S1).

To examine how well our study compares with other 
diauxic shift omics and multi-omics experiments, we first 
measured protein abundances across the three sampled 
growth phases. Of the 1627 proteins present in our dataset, 
697 proteins showed a significant (FDR < 0.01) fold change 

(FC) greater than 2 between the glucose-utilizing phase and 
early stationary phase, 300 between glucose-utilizing and 
ethanol-utilizing phase and 288 between ethanol-utilizing 
and early stationary phases, respectively (Fig. 1B, Tables 
S1–S2). The differential abundance of hundreds of pro-
teins across yeast growth was reported before. For instance, 
authors of a comprehensive time-course proteomics study 
of the diauxic shift covering ten time points representing 
the switch from glucose to ethanol-based growth reported 
a differential abundance of approximately 50% of all meas-
ured proteins [44]. We next performed a KEGG enrichment 
analysis on the 697 proteins differing between glucose and 

Fig. 1  Changes in relative protein abundance between glucose- and 
ethanol-utilizing growth in Saccharomyces cerevisiae. A S. cer-
evisiae strain YSBN2 growth curve in glucose containing complete 
medium. Samples were collected after 6, 24 and 72 h corresponding 
to the glucose ethanol, and early stationary phases, respectively. B 
Volcano plot visualization of changes in relative protein abundances 
between growth phases tested using a two-sided t-test. The horizon-

tal, dashed line indicates FDR = 0.01; vertical, dashed lines indicate 
a fold change greater than 2. Proteins with significant (FDR < 0.01) 
fold changes of more than 2 are highlighted in green, and proteins 
involved in central carbon metabolism are labelled. C KEGG enrich-
ment analysis of proteins which significantly increase (activated) 
or decrease (suppressed) in abundance in the early stationary phase 
compared to the glucose-utilizing phase
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early stationary phases (Fig. 1C). Among the 116 proteins 
we found accumulating in the early stationary in comparison 
to glucose-utilizing phase, proteins associated with the TCA 
cycle and glyoxylate and dicarboxylate metabolism were 
significantly enriched. The list included the rate-limiting 
enzymes of gluconeogenesis, fructose-1,6-bisphophatase 
(FBP1) and phosphoenolpyruvate carboxykinase (PCK1), 
TCA/glyoxylate cycle enzymes, such as citrate synthase 
(CIT1 and CIT2), and trehalose phosphate synthases (TPS1 
and TPS2). This is in line with previous proteomics studies 
showing that the major metabolic events associated with the 
diauxic shift are reflected by the changes in enzyme accu-
mulation and include the reversal of flux from glycolysis to 
gluconeogenesis, accumulation of trehalose and glycogen 
and activation of the TCA / glyoxylate cycle [44, 75]. Con-
versely, in accordance with what was reported by Murphy 
et al. [44], proteins associated with ribosome biogenesis and 
RNA polymerases were enriched among 581 downregulated 
proteins depleted in the early stationary versus glucose-uti-
lizing phase. The list included the cytoplasmic GTPase RIA1 
involved in the 60S ribosomal subunit biogenesis, ribosomal 
proteins (RPL29, RPS2), chaperones and RNA polymerase 
subunits, such as RPB3, RPB11 or TFG1.

In summary, proteomics analysis of the three sampled 
yeast growth phases revealed known signatures of diauxic 
shift transition.

Thermal proteome profiling reveals major changes 
between fermentative and respiratory phase

We next wanted to understand whether these major changes 
in protein abundance across the diauxic shift are accom-
panied by global changes in the protein interactome. We 
used a simplified thermal proteome profiling protocol called 
isothermal shift assay (iTSA) [4]. Instead of a temperature 
gradient, protein stability is measured in a single tempera-
ture selected based on the average melting temperature of 
the proteome [31] (Fig. 2A).

To better represent the “meltome” we used three different 
“melting temperatures”, 48, 52 and 56 °C. We additionally 
took samples at room temperature (RT) to normalize for the 
differences in the initial protein abundance. Statistical analy-
sis revealed hundreds of differential proteins, the differences 
being most pronounced at 56 °C (Fig. S2). Interestingly, 
and again similarly to what was already reported [5, 66], 
there was no correlation between protein abundance at room 
temperature and thermal stability at 56 °C (Pearson correla-
tion coefficient: − 0.026, p = 0.12) (Fig. 2C). Additionally, 
we could confirm a weak, but statistically significant nega-
tive correlation between a protein’s chain length and ther-
mal stability, as described before [31, 32, 38] varying from 
R = − 0.064 in the early ethanol-utilizing phase to R = − 0.24 
in the glucose-utilizing phase (Fig. S3).

We found that hundreds of proteins changed their sta-
bility across the three growth phases. Most differences 
(FDR < 0.05 and FC > 2 or < 0.5 at 48, 52 or 56 °C) were 
measured between the glucose and early stationary phases 
(Fig. 2B and D, Table S3), with fewer differences measured 
between consecutive growth phases. 637 proteins (53.5%) 
were significantly affected in their thermal stability between 
the glucose and early stationary, in comparison to 131 pro-
teins (11% of all measured proteins) between the glucose 
and ethanol, and only 17 (1.4%) between the ethanol and 
early stationary phases. As would be expected 97 of the 131 
proteins (74%) that differed between the glucose and etha-
nol also differed between the glucose and early stationary 
phases. A single protein, heat shock protein 26 (HSP26), 
was differential in all comparisons. Previously, using TPP 
Becher and colleagues reported that approximately 30% 
of all measured proteins displayed cell cycle-dependent 
changes in the melting stability [5]. While the two studies 
cannot be directly compared, they both demonstrate that cell 
state transitions are accompanied by significant changes in 
the thermal stability of hundreds of proteins.

A KEGG enrichment analysis on the 637 proteins 
changed between the glucose and early stationary phases 
(Fig. 2E) identified pathways involved in the biosynthe-
sis of secondary metabolites (sce01110) and amino acids 
(sce01230), specifically valine, leucine and isoleucine 
biosynthesis (sce00290) and glycine, serine and threonine 
metabolism (sce00260), proteasome (sce03050), ribosome 
(sce03010) and carbon metabolism (sce01200). Further 
functional analysis using STRING database identified the 
presence of multiple subunits of seven macromolecular 
complexes: ribosome, proteasome, RNA polymerase com-
plex, aminoacyl-tRNA synthetase complex, cytochrome c 
reductase complex, coatomer, CTT chaperone complex and 
V-ATPase (Fig. S3).

The reported differences in the thermal stability likely 
reflect changes either in a protein interaction or its PTM 
status [5, 30, 49, 56], or both, since PTMs are known to 
affect formation of PP and PM complexes [21]. Moreover, 
thermal stability can also serve as a proxy for enzyme activ-
ity, reflecting a change in the substrate occupancy [5]. In 
summary, proteome-wide analysis of changes in thermal 
stability across the transition from fermentative to respira-
tory metabolism reveals hundreds of proteins changing in 
stability, attesting to the significant changes in the protein 
interaction and/or PTMs status.

The diauxic shift is associated with major changes 
in the metabolite–protein interactome

Building on the results from iTSA, to further examine 
growth phase-dependent changes in the protein–protein (PP) 
and protein–metabolite (PM) complexes, we used PROMIS 
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[36, 57, 64, 65]. PROMIS relies on the size-based separa-
tion of molecular complexes present in native cell lysate: 
metabolites bound to protein complexes separate into earlier-
eluting high molecular weight fractions, whereas unbound 
small molecules separate in late-eluting low molecular 
weight fractions [64, 65].

The yeast cultures harvested at the different growth 
phases were used to prepare native cell lysates. PP and 
PM complexes were separated using size exclusion chro-
matography (SEC), yielding 60 fractions. Forty of the 
collected fractions are protein containing and span a size 

range between 5 mDa and 20 kDa, as examined using 
commercial reference proteins of known size. Fractions 
were extracted and relative abundances of proteins and 
metabolites were measured using mass spectrometry-
based untargeted proteomics and metabolomics (Fig. 3A). 
We obtained a dataset containing 2812 proteins and 275 
metabolites, which we annotated using an in-house library 
of authentic reference compounds (Tables S4 and S8, Figs. 
S4–S5). Elution profiles were normalized, deconvoluted 
and correlated using PROMISed, a novel web-based tool 

Fig. 2  Growth phase-dependent changes in protein thermal stability. 
A Schematic differential thermal gradient curves of a protein sampled 
in three different growth phases. Protein thermal stability was meas-
ured after treatment with three elevated temperatures—48 °C, 52 °C 
and 56 °C—as described in materials and methods. B Volcano plots 
showing the differences in protein thermal stability at 56 °C between 
glucose- and ethanol-utilizing phase (upper panel), glucose- and 
early stationary phase (middle panel) and ethanol and early station-
ary phase (lower panel), respectively, tested using a two-sided t-test. 
The horizontal, dashed line indicates FDR = 0.01, vertical, dashed 

lines indicate a fold change greater than 2. Proteins with significant 
(FDR < 0.01) fold changes greater than 2 are highlighted in green, 
and proteins involved in central carbon metabolism are labelled. C 
Relative protein abundance and protein thermal stability at 56 °C are 
not correlated (PCC = -0.26). D Venn diagram showing the overlap 
of proteins with significant changes (FDR < 0.01, FC > 2) in thermal 
stability between the growth phases in all temperature treatments. 
E KEGG enrichment of the 97 proteins with significant changes in 
thermal stability between glucose-utilizing and early stationary phase. 
Only the ten most significant enrichments are shown
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to facilitate analysis and visualization of the molecular 
interaction networks from (CF-MS) experiments [55].

First, to understand the relation between changes in 
metabolite abundance and PMIs, we calculated the total 
amount of each metabolite by summing the relative intensity 
across the 60 chromatographic fractions, whereas the 40 pro-
tein-containing fractions represent the protein-bound pool 
and the 20 protein-free fractions represent the free, unbound 
pool. Comparison of the total amounts revealed major dif-
ferences between the growth phases, specifically, compari-
son of the early stationary and glucose phases revealed 72 
increased and 12 decreased metabolites (FDR < 0.05 and 

FC > 2 or < 0.5) (Fig. 3C, Fig. S6, Table S5). The majority 
of accumulating metabolites were proteogenic dipeptides, 
in line with our previous study where we reported that pro-
teinogenic dipeptides start to accumulate prior to the diauxic 
shift transition and remain high in ethanol grown yeast [36]. 
An interesting exception is a subgroup of proline-contain-
ing dipeptides such as Pro-Glu, which does not change 
or even decreases upon glucose depletion (Fig. S7). Also 
decreasing in abundance are nucleotides 2’-AMP, 5’-AMP, 
5’-GMP, 5’-GDP, 5’-UMP and 5’-UDP. The exception 
being, 5’-ADP, which significantly increased in abundance 
in the ethanol-utilizing phase by 2.7-fold (in comparison 

Fig. 3  Growth phase-dependent differential fractionation of pro-
tein–metabolite complexes. A Schematic workflow of PROMIS: 
Endogenous protein—small-molecule complexes were extracted and 
fractionated using size exclusion chromatography. Proteins and small 
molecules were extracted from SEC fractions using an organic sol-
vent-based method, which denatures proteins (resulting in formation 
of protein pellets) and releases small molecules from binding pock-
ets. Proteins and small molecules were separately analysed using 
LC–MS. Metabolites were analysed in biological triplicates; proteins 
were measured in one replicate. B Number of differentially fractionat-
ing small molecules (upper panel) and proteins (lower panel) between 
the growth phases. Differentially fractionating small molecules 
were identified using the dis-elution score (light grey, [55] and dif-
ferences in presence/absence (dark grey). For proteins, a simplified 

approach was used comparing the Manhattan distance of a protein to 
the median Manhattan distance of all proteins between two growth 
phases (see Materials and Methods). Early St.—early stationary. C 
Volcano plot showing the differences in total metabolite abundance 
between glucose-utilizing and early stationary phases. Total abun-
dances were estimated as the sum of the metabolite fractionation 
profile. D Changes in metabolite interaction status between glucose-
utilizing and early stationary phases as measured as the ratio between 
metabolite abundances in protein-bound and protein-free fractions. E 
Boxplot comparing the  log2-transformed bound/free ratio of metabo-
lites in each of the three growth phases. In the early stationary phase, 
metabolites show a higher fraction of bound metabolites (14.7%) 
compared to the glucose-utilizing phase (1.9%) and ethanol-utilizing 
phase (2.6%, p < 0.001)
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to glucose-utilizing phase), and then drastically decreased 
again in the early stationary phase by 13.8-fold (in compari-
son to ethanol-utilizing phase).

Changes in metabolite concentrations can drive non-
covalent protein–metabolite interactions; the concentration 
at which half of the protein is occupied is defined as binding 
affinity. Binding affinity also depends on a protein's status, 
such as presence or absence of PTMs or oligomerization 
state. To understand whether metabolite binding affinities 
globally change during the diauxic shift, we calculated the 
ratio between the bound and free pool of each metabolite 
across the three growth phases (Fig. 3E, Fig. S5, Table S5). 
Whereas the median ratio for glucose and ethanol phases is 
approximately 0.019 and 0.026, respectively, it significantly 
increases in the early stationary phase to 0.147 (p < 0.001). 
Among the 48 metabolites, which have a significantly 
higher bound to free ratio (FDR < 0.05 and FC > 2 or < 0.5, 
Fig. 3D) in the early stationary versus glucose phase are 
mainly dipeptides and nucleotides. Additionally, we find 
the niacin precursor kynurenine and the amino acid leucine. 
This increase in retention of the identified metabolites in the 
protein-containing fractions is highly intriguing in terms of 
both mechanism and function. Metabolite binding is known 
to enhance protein stability and in that way has protein pro-
tective properties [63], which may be especially important 
under conditions associated with the accumulation of dam-
aged proteins and protein aggregates as encountered, e.g. 
during ageing [53].

Next, we mined PROMIS datasets for proteins and metab-
olites that differ in their elution profiles across the three 
growth phases. Since the fractionation profile of a metabolite 
is dependent on its protein interaction partners, a change in 
PMIs between the growth phases would be reflected in the 
metabolite´s profile. We therefore used a statistical workflow 
for the pairwise comparison of fractionation profiles, dubbed 
dis-elution score [55] as well as the presence or absence of 
a metabolite in a given growth phase, to identify metabo-
lites whose fractionation profiles differ across the examined 
growth phases (Fig. 3B, Tables S7, S9). Our analysis iden-
tified 77 metabolites that differed in their elution profile 
in at least one comparison. The list comprised dipeptides, 
amino acids, nucleotides, co-factors and metabolic interme-
diates, such as kynurenine and methionine sulfoxide. This 
differential elution can be driven by multiple factors, such 
as a change in a metabolite and protein concentration, or a 
change in a protein oligomerization, interaction or PTMs 
status.

In summary, our analysis identified tens of metabolites 
and hundreds of proteins that differ in their elution profile 
across the diauxic shift transition attesting to the significant 
changes to the PP and PM interactomes.

The diauxic shift is accompanied by changes 
in protein interaction status

To identify differentially fractionating proteins, we applied 
a simplified approach, in which, for each protein, we calcu-
lated the Manhattan distances between the growth phases 
and compared it to the median of all Manhattan distances 
obtained this way. A protein with a distance of at least 1.5 
times the median distance was considered differential. The 
cut-off was based on the manual inspection of the differential 
elution profiles. We found that, with 755, the highest number 
of differential fractionating proteins were found between the 
glucose-utilizing and the early stationary phase, compared 
to the 557 between glucose and ethanol and 669 between the 
ethanol and early stationary phases. Since the numbers of 
differential proteins identified with the simplified dis-elution 
score (see “Materials and methods”) were similar (421, 427, 
445, respectively), we attribute the large differences to the 
lower number of identified proteins in the early stationary 
phase. Taken together, this indicates that the protein oli-
gomerization states change dramatically in the course of the 
diauxic shift, hinting towards global changes in the protein 
interaction landscape.

Comparison of thermal stability and differential 
fractionation

We next compared the proteins showing differential ther-
mal stability and fractionation, focusing on the comparison 
between the glucose and early stationary phase. 229 proteins 
were characterized by the differential fractionation pattern 
and altered thermal stability; 408 proteins were only affected 
in their thermal stability and 526 proteins in their elution 
profile (Fig. 4A, Table S13). The 229 proteins found in the 
overlap were interpreted as part of dynamic protein com-
plexes, as exemplified by the varying assembly of the protea-
some (see below). The 408 proteins with differential thermal 
stability only were interpreted as undergoing changes in their 
PTM status or interactions with metabolites, or both, that do 
not change their oligomeric status. These were significantly 
enriched for proteins associated with the ribosome, second-
ary metabolism and biosynthesis of amino acids (Fig. 4B), 
including glycine, serine and threonine metabolism, such as 
CYS3 (see below, Table S13).

Whereas the change in the melting stability but not the 
fractionation pattern can be explained by the change in a 
ligand concentration or a protein PTMs status (discussed 
above), the opposite is harder to interpret. Presented here 
includes 526 proteins which show differential fractionation, 
despite being not affected in their thermal stability (Fig. 4A). 
This group is significantly enriched for proteins involved 
in ribosome biogenesis, RNA degradation, nucleocytoplas-
mic transport and endocytosis (Fig. 4B), and enzymes of 
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the central carbon metabolism. There are many factors that 
affect thermal stability, and therefore susceptibility to ther-
mal proteome profiling [31]. As discussed in the previous 
section protein length and thermal stability show a generally 
weak, but statistically highly significant negative correlation 
[31, 32, 38]. We therefore hypothesized that proteins with 
differential fractionation, but similar thermal stability, are, 
on average, smaller than other proteins identified in both 
experiments. However, the opposite is the case: We found 

that, with a median length of 468.5 aa, proteins with dif-
ferential fractionation are significantly larger than proteins 
which are only affected in their thermal stability (median 
length = 332.5 aa, p = 1.4e12) or the median of all proteins 
shared between both experiments (median length = 423 
aa, p = 0.0016, Fig. S8), and also larger than the reported 
median length of yeast proteins of 379 aa [11]. A much sim-
pler explanation is that PROMIS is better suited to select 
even a relatively minor change of a protein oligomeric state. 

Fig. 4  Migration pattern of core and regulatory particles of the 26S 
proteasome. A Venn diagram showing the overlap of proteins with 
significant changes in thermal stability and differential fractionation. 
B Top five most significant enriched KEGG pathways of the three 
Venn diagram sections. KEGG identifiers: sce03010: Ribosome, 
sce01110: Biosynthesis of secondary metabolites, sce01230: Bio-
synthesis of amino acids, sce01200: Carbon metabolism, sce00020: 
Citrate cycle (TCA cycle), sce03008: Ribosome biogenesis in eukary-
otes, sce03018: RNA degradation, sce03013: Nucleoplasmic trans-
port, sce04144: Endocytosis, sce00480: Glutathione metabolism, 
sce03050: Proteasome, sce00290: Valine, leucine and isoleucine bio-
synthesis. C Normalized fractionation profiles of pyridoxal phosphate 
(top row) and proteins involved in various amino acid metabolic path-
ways obtained for the glucose-utilizing, ethanol-utilizing and early 

stationary phases. Theoretical molecular weight was calculated using 
reference proteins of known mass. Proteins involved in more than one 
pathway are included multiple times. D Disassembly of the protea-
some in the early stationary phase: Heatmap showing fractionation 
profiles of 13 proteasomal core particle (CP) proteins and 19 regula-
tory particle (RP) proteins, as well as 44 co-fractionating metabolites 
across the growth phases. Relative protein intensities were normal-
ized to the maximum intensity of the fractionation profile. Theoreti-
cal molecular weight, ranging from 20 kDa to 5 mDa, was calculated 
using reference proteins of known mass. Correlation networks of 
subunits of the proteasomal core particle (yellow), regulatory particle 
(green) and co-fractionating metabolites (blue). Only correlations of 
0.7 or higher are displayed



Rewiring of the protein–protein–metabolite interactome during the diauxic shift in yeast  

1 3

Page 9 of 17   550 

A single protein can exist in multiple oligomeric states, 
reflected by multiple maxima in the PROMIS elution profile. 
The distribution of a protein between the different maxima 
will vary and in our analysis, we accept all the maxima 
above the 10% of the main maxima. In contrast, because 
TPP/iTSA gives average stability of all the oligomeric states 
by default, it will mainly reflect the stability of a dominant 
oligomeric state and hence may miss interactions. Therefore, 
TPP and CF-MS are complementary approaches and can be 
used in combination to unravel dynamics in protein–protein 
interactions that would be missed using one approach alone.

Regulation of amino acid metabolism by dynamic 
PMIs

Among the 408 proteins affected by thermal stability only, 
we found the enzyme cystathionine gamma-lyase 3 (CYS3), 
which catalyses the formation of cysteine from cystathio-
nine [17, 47, 48]. We queried our dataset for metabolites 
interacting with CYS3 and found pyridoxal phosphate 
(PLP), the known co-factor of CYS3 [41]. Figure 4C dis-
plays a heatmap of fractionation profiles of PLP and proteins 
involved in amino acid biosynthesis that require PLP as a 
co-factor. PLP shows a statistically significant differential 
fractionation pattern between the glucose-utilizing phase and 
ethanol-utilizing phase (dis-elution score (DES): 9.2e–04) 
and between the ethanol and early stationary phases (DES: 
5.29e–07), which is not the case for CYS3 and other proteins 
involved in amino acid metabolism (Fig. 4C). In the glucose-
utilizing phase, CYS3 and PLP co-fractionate (Pearson cor-
relation = 0.922) with a peak at around 172 kDa, the size 
of enzymatically active CYS3 tetramer [41]. In the early 
stationary phase, CYS3 shows an additional, smaller peak, 
corresponding to the size of the dimer at ~ 85 kDa. The PLP 
elution maxima shifts to even smaller sized fractions, show-
ing no co-fractionation with CYS3 (Pearson = 0.52 for the 
larger peak, 0.11 for the smaller peak). This loss of inter-
action is accompanied by an observed decrease in thermal 
stability of CYS3 in the early stationary phase.

An important driver of protein–metabolite interactions 
is the concentration of a protein and its ligand. However, 
both PLP and CYS3 show no significant differences in 
abundance across the course of the diauxic shift. Another 
factor regulating PMIs are PTMs, and it has been shown 
that protein thermal stability can be affected by PTMs [30], 
especially of the phosphosites that affect protein structure 
[49, 56]. In human, the cystathionine gamma-lyase, CTH, 
is phosphorylated by PKG1-β. Yeast CYS3 and human CTH 
share a 51% protein sequence identity [41], and the region 
around CTH Ser377 and CYS3 Ser372 shows a conserved 
sequence. Moreover, NetPhos 3.1 [7, 8] predicts a phospho-
site at Ser372 of CYS3. Therefore, we hypothesized that the 
interaction between CYS3 and PLP might be regulated by 

a dynamic phosphorylation of CYS3. However, in a recent 
study tracking the phosphorylation states of yeast proteins 
during the diauxic shift, CYS3 did not show phosphoryla-
tion at Ser372, but at Ser40. Contrary to our hypothesis, 
the phosphorylation state at Ser40 showed no changes in 
the course of the diauxic shift [23]. Therefore, the observed 
“loss of interaction” with PLP cannot be explained by a 
dynamic phosphorylation status. However, phosphoryla-
tion is not the only PTM, and the dynamic regulation of 
CYS3-PLP interaction could be mediated by, e.g. acetylation 
or methylation, presumably at the PLP binding Lys203, or 
at distant sites, conferring a conformational change to the 
enzyme.

Reorganization of the proteasome 
across the diauxic shift

As mentioned above, the 229 proteins found in the over-
lap of iTSA and PROMIS contain multiple proteasomal 
proteins (Fig. 4B), specifically 13 of the 14 core particle 
(CP), and 18 of the 21 regulatory particle (RP) subunits. 
To learn about the re-arrangement of the proteasome across 
the diauxic shift transition we used PROMISed [55] to cre-
ate interaction networks restricted to proteasomal subunits 
and co-fractionating metabolites (PCC > 0.7) (Fig. 4D). We 
used the Louvain method [9] to detect communities within 
the networks and obtained seven, six and five clusters, for 
the glucose, ethanol and early stationary phase, respectively 
(Fig. 4D, Tables S14–S18). We interpret these clusters as 
stable or transient sub-assemblies of proteasomal subunits 
and co-eluting metabolites. The clusters can be divided into 
major clusters containing multiple subunits that correspond 
to large complexes and minor clusters composed of few or 
even single subunits that correspond to small complexes or 
monomeric proteins.

In the glucose-utilizing phase there are two major clus-
ters, one containing the 13 CP and 16 RP subunits and 23 
metabolites and the second consisting of 17 RP subunits and 
14 metabolites. The remaining five minor clusters contain up 
to 5 RP subunits and dozens of metabolites. In the ethanol-
utilizing phase, we again identified two major clusters, one 
containing the 13 CP and 3 RP subunits and 4 metabolites 
and the second consisting of 17 RP subunits and 11 metabo-
lites. The remaining four minor clusters contain between one 
and four RP subunits. Finally, in the early stationary phase, 
two major clusters were found, one is made up of 19 CP, a 
single RP subunit and five metabolites. The other cluster 
consists of 19 RP and 5 CP subunits and 10 metabolites. 
Three minor clusters contain a single RP subunit and several 
metabolites.

There are three observations that can be made from the 
network analysis. First, the number and size of the minor 
clusters decrease in the ethanol and early stationary phases. 
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Second, the interaction between the two sub-complexes, 
CP and RP, is changing. In the glucose-utilizing phase, the 
majority of CP and RP subunits are clustered together. In 
contrast, both sub-complexes form largely separate clusters 
in the early stationary phase. The ethanol-utilizing phase 
represents an intermediate behaviour, where RP and CP 
form distinctive clusters, which are tightly connected, based 
on their co-fractionation profiles. Third, minor clusters con-
tain more metabolites (up to 89) than major protein clusters 
(up to 23).

Our findings are in line with Bajorek and colleagues, who 
reported the disassembly of the yeast 26S proteasome (CP 
and RP) into the 19S (RP) and 20S (CP) sub-complexes in 
the stationary phase [3]. Moreover, in Arabidopsis, proteins 
involved in the RP and CP, respectively, possess different 
extremes of thermostability, in that the CP is highly stable, 
while the RP is a thermo-labile complex, hinting towards a 
higher degree of conformational flexibility of the RP [66]. 
In human cells under hypoxia, the CP can act as a stand-
alone 20S proteasome independently of the RP, and shows 
distinct features compared to the human holoenzyme, as it 
is able to rapidly degrade unstructured proteins, generates 
longer peptides resulting from a distinct cleavage pattern and 
degrades conjugated ubiquitin instead of releasing it from 
the substrate [51]. Against this background we speculate that 
in the early stationary phase CP functions as stand-alone 20S 
proteasome degrading unstructured, aggregated proteins that 
accumulate in the ageing yeast cells. An additional mecha-
nism to the discussed above global increase in the metabolite 
retention in the protein complexes.

Dipeptides and central carbon metabolism

Proteogenic dipeptides are a recently discovered class of 
metabolites with mostly unknown functions. In our previ-
ous work in yeast, we showed that the dipeptide Ser-Leu 
interacts with and activates the glycolytic enzyme phospho-
glycerate kinase (Pgk1) by increasing the enzyme's affinity 
to ATP [36]. A different dipeptide, Tyr-Asp, was previously 
shown to interact with the glycolytic enzyme glyceralde-
hyde 3-phosphate dehydrogenase (AthGAPC) in the model 
plant Arabidopsis [65]. This interaction promotes tolerance 
to oxidative stress by redirecting carbon flux into the pen-
tose phosphate (PPP) pathway and increasing NADPH levels 
[43]. Dipeptides originate from protein degradation, and, 
although they are always present in the cell, they accumulate 
in conditions associated with high rates of protein clearance, 
such as in response to stress [15, 36, 45, 58, 60, 71, 73]. We, 
for instance, found that in plants, dipeptide levels increase in 
response to heat and dark stresses in an autophagy-depend-
ent manner [60], and that specific dipeptides display diurnal 
oscillation in response to the change in a plant carbon status, 
downstream of TOR signalling [12]. In comparison, yeast 

accumulate dipeptides in response to glucose depletion prior 
to the diauxic shift transition [36].

Given the major metabolic rewiring associated with the 
diauxic shift and the demonstrated role of dipeptides in 
regulating central carbon metabolism, we queried the cur-
rent datasets for changing dipeptide–enzyme interactions. 
Among the 274 annotated protein-bound metabolites 145 
(53%) are proteogenic dipeptides. To get a better under-
standing of the protein–dipeptide interaction network, 
we first grouped the 400 proteogenic dipeptides using the 
ChemmineR package [18], resulting in 14 dipeptide groups 
(Fig. 5A). Four groups are composed of aromatic dipep-
tides, and 10 of non-aromatic dipeptides. We also grouped 
the enzymes of the central carbon metabolism into three cat-
egories based on the KEGG annotations: glycolysis/glucone-
ogenesis (Gly/Glu), tricarboxylic acid cycle (TCA) and the 
pentose phosphate pathway (PPP). We then calculated the 
interaction rate between dipeptides and enzymes of the dif-
ferent pathways as the percentage of observed interactions in 
the total of possible interactions (Fig. 5A, Table S19 + S20).

The group of dipeptides that stood out was the N’-termi-
nal proline-containing dipeptides (P-X) (Fig. 5A, B). These 
were almost entirely absent in the protein-containing frac-
tions in the glucose-utilizing phase with only one putative 
interaction. This is in stark contrast to ethanol and early 
stationary phases. The number of co-fractionating proteins 
and resulting interactions increased to 17 and 69, in the eth-
anol-utilizing phase, and to 26 proteins and 48 interactions 
in the early stationary phase. This increase in interactions 
cannot be attributed to changes in P-X dipeptide concentra-
tion, since the levels of P-X dipeptides do not change or even 
decrease upon glucose depletion. Enzymes co-fractionating 
with P-X include glyceraldehyde-3-phosphate dehydroge-
nase (TDH1, TDH2 and TDH3), fructose 1,6-bisphosphate 
aldolase (FBA1), phosphoglycerate mutase (GPM1), 3-phos-
phoglycerate kinase (PGK1) and citrate synthases (CIT1 and 
CIT2) (Table S21 + S22). Interestingly, a similar list of puta-
tive interaction partners of proline-containing dipeptides has 
been reported in Arabidopsis thaliana [12], pointing to the 
putative conserved role of proline-containing dipeptides in 
the regulation of central carbon metabolism.

Conclusions

Here, we combined two approaches, iTSA and PROMIS, 
to investigate proteome- and metabolome-wide changes 
in the PPI and PMI landscape during the transition from 
fermentative to respiratory growth in Saccharomyces 
cerevisiae. On par with previous studies, e.g. Murphy 
et al. [44] we reported hundreds of proteins and tens of 
metabolites accumulating differentially across the diauxic 
shift transition. Most importantly, the reported changes 
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translate into a significant rewiring of the protein–metabo-
lite interactome,the most pronounced difference measured 
between glucose and early stationary phases. Intriguingly, 
global analysis of the protein-bound to free metabolite ratios 
revealed that small molecules are preferentially retained in 
the protein complexes during early stationary phase. We 
speculate it may be related to the metabolite-driven proteo-
protection  [63], particularly that entry into the stationary 
growth phase is associated with accumulation of aggregated 
proteins [46].

There is only a 20% overlap of the differential proteins 
characterized by the change in both the thermal stability 

and elution profile. Thus, combining both methods is better 
to obtain a comprehensive view of the differential interac-
tome. Whereas iTSA reveals a major change in a protein 
interaction or PTM status, PROMIS can capture the dif-
ferent protein oligomerization states and also provide a 
glimpse into the nature of the interacting partners, includ-
ing small molecules. We demonstrate that CF-MS, and spe-
cifically PROMIS, is suitable to study the dynamics of pro-
tein–metabolite complexes across multiple cell states. The 
biggest challenge for any CF-MS method is to distinguish 
between the true and coincidental co-elution, and hence 
to identify true interactors. We expect that analogously to 

Fig. 5  Changes in interaction rates between dipeptides and the central 
carbon metabolism before and after the diauxic shift. A Interaction 
rates were calculated as the percentage of observed interactions in 
all possible interactions between the groups and are shown as size-
scaled circle. Circle colour corresponds to the dipeptide group. Pro-
teins were grouped into Glycolysis/Gluconeogenesis (Gly/Glu), tri-
carboxylic acid cycle (TCA) and pentose phosphate pathway (PPP). 
Dipeptides were clustered based on their chemical structure similar-
ity, resulting in 14 groups: EQ: Glu- or Gln-containing, DN: Asp- or 
Asn-containing, M: Met-containing, P-X: N-terminal Pro-containing, 
L: Leu-containing, ITV: Ile-, Thr-, or Val-containing, ACGS: Ala-, 
Cys-, Gly- or Ser-containing, R: Arg-containing, K: Lys-containing, 
X-P: C-terminal Pro-containing, FY: Phe- or Tyr-containing, HFWY: 

N- and C-terminal His-, Phe-, Trp- or Tyr-containing, H: His-con-
taining, W: Trp-containing. Original data are given in Supplementary 
Table  S19. B Proline-containing dipeptides co-fractionate with pro-
teins of the central carbon metabolism in the ethanol-utilizing and 
early stationary phase. Top panel: Heatmap showing the normalized 
fractionation pattern of proline, N-terminal Pro-containing (Pro-X), 
C-terminal Pro-containing (X-Pro) dipeptides and proteins involved 
in Gly/Glu, TCA and PPP. Theoretical molecular weight, ranging 
from 20  kDa to 5 mDa, was calculated using reference proteins of 
known mass. Lower Panel: Correlation network of proline and pro-
line-containing dipeptides and proteins involved in central carbon 
metabolism. Only correlations of 0.7 or higher are displayed
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what was done for the PPIs, we will be able to significantly 
improve the identification of true protein–metabolite com-
plexes by combining multiple datasets and chromatographic 
methods, increasing the number of collected fractions and 
by introducing machine learning approaches building on the 
known interactions, reviewed by Wagner et al. [67].

The present dataset attests to the dynamic rewiring of 
metabolite–protein–protein complexes accompanying the 
switch from fermentative to respiratory growth in yeast. It 
provides a valuable resource for unravelling the role of PPI 
and PMI in adjusting yeast metabolism to the changes in 
glucose availability. We present three examples of the dif-
ferential PP and PM interactions that we think constitute 
novel regulatory mechanisms governing the diauxic shift. (i) 
Pyridoxal phosphate (PLP) is a known co-factor of enzymes 
involved in transamination [61, 62]. Amino acid homeostasis 
relies on three principal processes: amino acid uptake, de 
novo synthesis and recycling. During starvation (stationary 
phase) yeast mostly recycles amino acids through proteolysis 
[1]. Here, we report a loss of co-elution and hence a change 
in binding, between amino acid biosynthetic enzymes, exem-
plified by CYS3, and PLP in the early stationary phase. We 
speculate that the “loss of PLP binding” may be due to a 
change in the PTMs status, other than phosphorylation, 
which would lead to the inhibition of the enzymatic activ-
ity, contributing to the downregulation of de novo amino 
acid synthesis in the early stationary phase. (ii) Next, we 
report a gradual disassembly of the 26S proteasome into the 
20S (CP) and 19S (RP) sub-complexes associated with the 
switch between fermentative and respiratory growth. Our 
observations are in line with previous literature findings that 
showed a disassembly of the proteasome into stable com-
plexes, accompanied by a reduction in proteolytic activity 
[3]. Nevertheless, the CP is able to degrade its substrates 
independently of the RP in various eukaryotic models [51]. 
Against this background we speculate that in the early sta-
tionary phase CP functions as stand-alone 20S proteasome 
degrading unstructured, aggregated proteins that accumulate 
in the ageing yeast cells. (iii) Lastly, and on par with our 
previous report from plants [12], we demonstrate a co-elu-
tion, and hence a putative interaction, between the proline-
containing, Pro-X, dipeptides, and various enzymes of the 
central carbon metabolism specifically in the early stationary 
phase. Intriguingly the appearance of Pro-X dipeptides in 
the protein complexes is independent of the cellular concen-
trations pointing to the binding being dependent on, e.g. a 
change in a protein(s) PTMs status. And, however, the iden-
tity of the Pro-X protein targets needs to be independently 
validated; it solidifies the shown before regulatory roles of 
dipeptides [36, 43, 45, 72], beyond simply intermediates of 
the protein degradation.

In summary, (i) the present dataset attests to the dynamic 
rewiring of metabolite–protein–protein complexes 

accompanying the switch from fermentative to respiratory 
growth in yeast. It provides a valuable resource for unravel-
ling the role of PPI and PMI in adjusting yeast metabolism 
to the changes in glucose availability. Notably, whereas the 
switch between fermentative to respiratory growth is also of 
interest to cancer metabolism research, the entry into the sta-
tionary phase shares molecular signatures with chronologi-
cal ageing in other organisms, including humans. (ii) Moreo-
ver, we demonstrate that CF-MS, and specifically PROMIS, 
is suitable to study the dynamics of protein–metabolite 
complexes across multiple cell states. Finally, as discussed 
before [36, 43] the reported small molecules represent just 
a small subset of all the metabolic features measured in the 
protein-containing fractions that we could annotate. In the 
future and by concentrating on the chemical identification 
of the “unknown” metabolic features showing differential 
elution, we aim to identify novel small-molecule regulators 
of the diauxic shift transition.

Methods

Yeast growth and cell lysis

Experiments were performed using the YSBN2 strain of 
Saccharomyces cerevisiae ordered from the EUROSCARF 
(strain number: Y40383) cultivated in YPD medium at 30 °C 
with moderate shaking (120–140 RPM) using Innova Shak-
ers. A single colony grown on a YPD plate was used to 
inoculate a pre-culture. Pre-culture was cultivated for 24 h. 
The following day, a pre-culture was used to inoculate a 
culture. The starting OD was 0.03. Cells were collected by 
centrifugation (4000 g, 4 °C, 20 min) after 6, 24 and 72 h of 
cultivation, corresponding to growth in the glucose-utiliz-
ing, early ethanol-utilizing and late ethanol-utilizing phase, 
respectively. Cell pellets were washed with AmBIC buffer 
(50 mM ammonium bicarbonate, 150 mM NaCl, 1.5 mM 
 MgCl2), transferred to 50 mL tubes and centrifuged again 
(4000 g, 4 °C, 20 min). The pellets were then snap frozen in 
liquid nitrogen and stored at − 80 °C until further use. Col-
lected cells were mixed with an ice-cold lysis buffer (50 mM 
AmBIC, 150 mM NaCl, 1.5 mM  MgCl2, 5 mM DTT, 1 mM 
PMSF, 1 × cOmplete EDTA-free Protease Inhibitor Cock-
tail (MERCK, 11873580001), 0.1 mM Na3VO4 and 1 mM 
NaF) and frozen (− 20 °C) silica-zirconia beads (Biospec, 
11079105z). Yeasts were homogenized by bead beating 
10 × 30 s at 20 Hz using a Retsch Mixer Mill MM 400 and 
cooled in an ice water bath for 1 min in-between bead beat-
ing. Cell debris and silica-zirconia beads were sedimented 
by a 10 min centrifugation at 4000 g and 4 °C. After centrif-
ugation, the supernatant was used for either the Isothermal 
Shift Assay or PROMIS.
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Isothermal shift assay

The protocol was adapted from Ball et al. [4]. The super-
natant (see above) was transferred to Eppendorf tube and 
centrifuged for 10 min at 21,000 g and 4 °C. The protein 
concentration of the supernatant was determined using the 
Bradford assay. Equivalent of 200 µg of proteins (5 repli-
cates for each of the 3 growth phases) was transferred to 
PCR tubes and heated to 48 °C, 52 °C or 56 °C for 3 min 
and then incubated for 3 min at room temperature. During 
this time samples were moved to 1.5 mL tubes and centri-
fuged for 20 min at 21,000 g and 4 °C. The supernatant was 
then transferred to fresh Eppendorf tubes and proteins were 
precipitated overnight at − 20 °C using 80% Acetone (MS-
grade). Next day, proteins were pelleted by centrifugation 
for 20 min at 21,000 g and 4 °C. Supernatant was removed 
and proteins were air-dried. Finally, proteins were digested 
and desalted as described in section LC–MS/MS of pro-
teins. Dried peptides were suspended in 60 µL MS loading 
buffer (2% ACN, 0.2% TFA), separated and quantified using 
LC–MS as described in section LC–MS/MS of proteins.

Separation of endogenous complexes using size 
exclusion chromatography

The protocol was adapted from Luzarowski et al. [36]. The 
supernatant (see above) was transferred to ultracentrifuge 
tubes and centrifuged for one hour at 35,000 RPM (max. 
148,862 g, avg. 116,140 g) at 4 °C to obtain the soluble frac-
tion containing endogenous complexes. The soluble fraction 
was loaded onto previously pre-rinsed (15 mL wash buffer: 
50 mM AmBIC, 150 mM NaCl, 1.5 mM  MgCl2, 20 min, 
4000  g, 4  °C) Amicon Ultra-15 centrifugal filter units 
(10 kDa MWCO) and centrifuged for 20 min at 4000 g, 4 °C.

Soluble fraction, corresponding to 40 mg of protein, was 
loaded on Sepax SRT SEC-300 21.2 × 300 mm column 
(Sepax Technologies, Inc., Delaware Technology Park, sepa-
ration range 1.2 mDa to 10 kDa) connected to an ÄKTA 
explorer 10 (GE Healthcare Life Science, Little Chalfont, 
UK) and separated at 7 mL/min flow rate, 4 °C. 50 mM 
AmBIC pH 7.5, 150 mM NaCl and 1.5 mM MgCl2 was 
used to equilibrate the column and separate molecular com-
plexes. Forty 1-mL fractions were collected from the 39 mL 
to 78 mL elution volume. The fractions were frozen by snap 
freezing in liquid nitrogen and subsequently lyophilized and 
stored at − 80 °C for metabolite and protein extractions.

Extraction of proteins and polar metabolites

The extraction protocol was adapted and modified from [57]. 
Proteins and metabolites were extracted from the lyophilized 
fractions using a methyl tert-butyl ether (MTBE)/methanol/
water solvent system. Equal volumes of the polar fraction 

and protein pellet were dried in a centrifugal evaporator and 
stored at − 80 °C until they were processed further.

LC–MS/MS of proteins

Fractionated proteins were quantified using the Bradford 
assay. Protein pellets from 40 fractions corresponding to 
39–78 mL elution volume were suspended in 30 µL urea 
buffer (6 M urea, 2 M thiourea in 40 mM ammonium bicar-
bonate). 20 µg of proteins from each fraction was reduced, 
alkylated and enzymatically digested using LysC/Trypsin 
Mix (Promega Corp., Fitchburg, WI) according to the manu-
facturer’s instructions. Self-made C18  Empore® extraction 
disks (3 M, Maplewood, MN) STAGE tips were used for 
protein desalting [50]. Proteins were concentrated using the 
centrifugal evaporator to approximately 4 µL and stored at 
− 80 °C until measured. Dried peptides were suspended in 
60 µL MS loading buffer (2% ACN, 0.2% TFA), and 3 µL 
(equivalent to 0.8–1.0 µg of peptides) were separated using 
C18 reversed-phase column connected to an ACQUITY 
UPLC M-Class system in a 120 min gradient. The gradient 
started from 3.2% and increased to 7.2% ACN in 20 min, to 
24.8% ACN over 70 min and to 35.2% ACN over 30 min, 
followed by a 5 min washout with 76% ACN. The Thermo 
Q Exactive HF operated with a data-dependent method as 
follows: MS full scans were performed in FTMS with reso-
lution set to 120,000, from 300.0 to 1600.0 m/z, a maximum 
fill time of 50 ms and an AGC target value of 3e6 ions. A 
maximum of 12 data-dependent MS2 scans was performed 
in the ion trap set to an AGC target of 1e5 ions with a maxi-
mal injection time of 100 ms. Precursor ion fragmentation 
was achieved with collision-induced fragmentation with a 
normalized collision energy of 27 and isolation width of 
1.2 m/z. Charge states of 1 and ≥ 7 were excluded.

LC–MS metabolomics

After extraction, the dried aqueous phase was measured 
using ultra-performance liquid chromatography coupled to 
a Q-Exactive mass spectrometer (Thermo Fisher Scientific) 
in positive and negative ionization modes, as described ear-
lier [25].

Data pre‑processing: LC–MS metabolite data

Expressionist Refiner MS 12.0 (Genedata AG, Basel, Swit-
zerland) was used for processing the LC–MS data with the 
following settings. Repetition was used to reduce the volume 
of data and to speed up processing. All types of data except 
Primary MS Centroid Data were removed using Data Sweep. 
Chemical Noise Subtraction activity was used to remove 
artefacts caused by chemical contamination. Snapshot of 
chromatogram was saved for further processing. Further 
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processing of chromatogram snapshot were performed 
as follows: chromatogram alignment (RT search interval 
0.5 min), peak detection (minimum peak size 0.03 min, 
gap/peak ratio 50%, smoothing window 5 points, centre 
computation by intensity-weighted method with intensity 
threshold at 70%, boundary determination using inflection 
points), isotope clustering (RT tolerance at 0.02 min, m/z 
tolerance 5 ppm, allowed charges 1–4), filtering for a single 
peak not assigned to an isotope cluster, charge and adduct 
grouping (RT tolerance 0.02 min, m/z tolerance 5 ppm). A 
more detailed description of the software usage and pos-
sible settings was published before [57]. In-house library of 
authentic reference compounds was used to identify molecu-
lar features allowing 0.005 Da mass deviation and dynamic 
retention time deviation (maximum 0.2 min). Processing 
of fractionated samples resulted in annotation of 282 small 
molecules across three growth phases.

Data analysis

Protein data analysis was restricted to the 1627 proteins 
commonly identified across all experiments.

Analysis of protein abundance

Protein intensities were measured in three growth phases 
in five replicates. Protein intensities were normalized to the 
median intensity across all samples as  Intnorm =  Intprotein * 
 (Mediansample/Medianglobal). To identify differences in pro-
tein abundance between growth phases in a pairwise manner, 
we calculated the fold changes and performed a two-sided 
Student's t-test.

Analysis of thermal stability

After treatment with 3 temperatures (48 °C, 52 °C and 
56 °C) and subsequent removal of denatured proteins by cen-
trifugation, the abundance of soluble proteins was measured 
in five replicates. Protein intensities were normalized to the 
median intensity within each temperature group and scaled 
to the protein abundance at room temperature. Proteins 
with significant (FDR < 0.01) fold changes between growth 
phases in the same temperature group were considered as 
having a differential thermal stability. At 56 °C, 21 proteins 
showed a differential thermal stability between glucose-
utilizing phase and ethanol-utilizing phase, 531 between 
glucose-utilizing phase and early stationary phase and 8 
between ethanol and early stationary phases, respectively.

Analysis of differential protein elution profiles

For each protein, the Manhattan distance (MD) was calcu-
lated between processed elution profiles of all three growth 
phases in a pairwise manner. From this, the median MD was 
determined, and proteins with a MD greater than 1.5 of the 
median were considered as differentially eluting.

Protein data integration

To further narrow down the list of proteins of interest, we 
integrated the different datasets using the VennDiagram 
package [16]. We then performed KEGG enrichment analy-
sis for proteins present in the different sections of the Venn 
diagram using the clusterProfiler package [74].

Volcano plots

Volcano plots are generated using the EnhancendVolcano 
R package [6]. The x-axis shows the  log2 fold change (FC), 
the y-axis the −  log10 p value. The horizontal, dotted line 
indicates the p value threshold (0.01), the vertical, dotted 
lines the thresholds of fold changes (− 2 and 2). Points cor-
respond to proteins and are coloured as follows: Grey: FC 
between − 2 and 2, p > 0.01, Green: FC outside of thresh-
olds, p > 0.01, Blue: FC between thresholds, p < 0.01, and 
Red: FC outside of thresholds, p < 0.01. Dipeptide clustering 
was based on chemical structure similarity.

Dipeptide clustering

Smiles codes of dipeptides were obtained from https:// pubch 
em. ncbi. nlm. nih. gov/ on 12.10.2021. Pairwise distances 
between dipeptides were calculated on atom pair librar-
ies using cmp.cluster() of the ChemmineR package [18]. 
Clustering was performed using Ward´s minimum variance 
method [69]. The resulting dendrogram was cut at height 
1.6, resulting in 14 dipeptide groups named after the pre-
dominant amino acids.

Calculation of interaction rates

Fractionation profiles of dipeptides and proteins involved 
in central carbon metabolism were analysed with PROM-
ISed [55], using default settings, and correlation tables 
were obtained. PROMISed splits fractionation profiles into 
distinct, single peaks and calculates Pearson correlation 
between all obtained metabolite and protein peaks. We fil-
tered the obtained correlation table for co-fractionating pairs 
using a threshold of 0.7. We then grouped all proteins based 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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on their involvement in Glycolysis/Gluconeogenesis, tricar-
boxylic acid cycle (TCA cycle) and the pentose phosphate 
pathway (PPP). The interaction rate between dipeptides and 
these groups was calculated as the percentage of observed 
interactions in all possible interactions as

where nInteractions is the number of observed co-frac-
tionations (PCC > 0.7), nDipeptidePeaks the number of peaks 
originating from the dipeptide and nProteinPeaks the number 
of peaks of proteins in that group.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 022- 04569-8.
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