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Sparked by the development of genome sequencing technology, the quantity and quality
of data handled in immunological research have been changing dramatically. Various data
and database platforms are now driving the rapid progress of machine learning for
immunological data analysis. Of various topics in immunology, T cell receptor repertoire
analysis is one of the most important targets of machine learning for assessing the state
and abnormalities of immune systems. In this paper, we review recent repertoire analysis
methods based on machine learning and deep learning and discuss their prospects.
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INTRODUCTION

Our bodies are constantly exposed to threats from various pathogenic bacteria, viruses, and cancer
cells. The immune system is central to maintaining our body in a healthy state by detecting and
evicting those pathogens. Among the different types of immune cells, T cells play various roles in the
recognition, memory, and eviction of such threats (1). The peptides derived from those pathogens
provide information to T cells when they are presented on the major histocompatibility complex
(MHC) as antigens. T cells recognize an antigen if their T cell receptors (TCRs) can bind to the
antigen-MHC complex. As antigens are diverse and MHC genes are highly polymorphic, TCRs also
must be diverse to recognize a wide range of antigens. TCR diversity is generated by V(D)J
recombination (2), one of the somatic recombination processes in our body. This process can
potentially yield more than 1013 patterns of TCR (3). This diversity of TCRs ensures that, even if
unknown antigens enter the body, there will be T cells with TCRs that can recognize them with a
high probability. Furthermore, the recognition of such antigens by T cells, i.e., the binding of
antigens to their TCRs, activates the T cells, inducing their proliferation and/or phenotypic changes
(1). These dynamics alter the diversity of TCRs (TCR repertoire) in a T cell population and
modulate its collective recognition of antigens. Therefore, quantitative evaluation of the TCR
repertoire in individuals enables us to capture the individual’s past and present immunological
status. It may also be possible to predict its future. Specifically, quantitative measurement of TCR
repertoires may contribute to the quantification of abnormalities in the immune status of patients
with specific diseases, the identification of the causes, and prediction of the risk of developing
immune-related diseases in the future. For example, a diagnosis for a kind of leukemia is already
approved by FDA (U.S. Food and Drug Administration) and clinically used. Quantitative
measurement of TCR repertoire is performed by sequencing the recombinant genes encoding the
TCRs of T cells in blood or other specimens. Since the mainstream of DNA sequencing technology
org July 2022 | Volume 13 | Article 8580571
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has shifted from the low-throughput Sanger method to high-
throughput next-generation sequencers (NGSs), the cost and
time required for sequencing TCR repertoires have been
dramatically reduced, which makes it practical to exploit TCR
repertoires for practical applications. The recent advent of new
techniques such as single-cell sequencing further provides ways
to characterize different aspects of T cell repertoires (4).

In parallel with the development of TCR repertoire
sequencing technology, bioinformatic and machine learning
(ML) based data analysis, including deep learning (DL), is
pervading the field of immunology. As we will see in more
detail later, this is because a typical sample of repertoire data
from a single person consists of a set of several hundred
thousand sequences, and ML is an effective tool for extracting
information from such a large amount of data. ML is already
indispensable to repertoire sequencing analysis. It has also
allowed new applications based on the repertoire sequencing
such as the personal cancer vaccine (neoantigen vaccine) design
(5) and the new testing methods for infections such as COVID-
19 (6). Not only clinical applications, but also basic researches
are assisted by ML based analysis methods. The impact of ML in
repertoire sequencing is rapidly growing.

In this paper, we will outline the rapidly developing TCR
repertoire analysis methods based on ML with useful tools and
databases. We also discuss possible directions for further
development of TCR repertoire analysis.

Diversification of TCR
T cell progenitors are generated from hematopoietic stem cells in
the bone marrow and undergo differentiation for maturation in
the thymus before being exported to the periphery (1). A TCR is
a heterodimer of a- and b-chains (certain TCRs consist of the g-
and d-chain, but these are omitted here for simplicity). In the V
(D)J recombination, one gene is selected from each of the V, D,
and J gene groups of pre-recombinant genes of each chain (in a-
chain, the D gene group does not exist), and the selected genes
are combined with random insertions and deletions. Because of
the randomness in the gene selection, insertions, and deletions, a
variety of TCRs are generated. For example, in the case of the
human b-chain, there are 64-67 V genes, 2 J genes, and 14 D
genes according to IMGT database

1

. It should be noted that there
are two loci for each TCR chain as humans are diploid. 30% of T
cells (dual TCR) have two different productive TCR a-chain
mRNAs despite the allelic exclusion mechanisms (7).

A TCR recognizes antigens present on the MHC. Antigens are
digested into short peptides and presented on the MHC to form
peptide-loaded MHC (pMHC) complexes (8). The affinity of a
TCR to an pMHC complex is mainly determined by the
recombination-dependent highly variable regions called
the complementarity determining regions (CDRs) (9). In the
sequence of recombinant TCR genes, three CDRs exist, from
CDR1 to CDR3. CDR1 and CDR2 engage in binding to the MHC
complex presenting an antigen, whereas CDR3 contributes to the
binding affinity of the TCR to the antigen itself. Thus, the
1http://www.imgt.org/.
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sequence of CDR3 plays a particularly important role in
analyzing repertoires. Many studies to be introduced here also
work on CDR3. After recombination, T cells in the thymus
undergo positive and negative selection based on their
interactions with self-antigens presented by other cells such as
thymic epithelial cells (10). In positive selection, T cells with
TCRs that have a moderate affinity to some self-antigen-MHC
complexes are selected to survive. This process also selects T cells
such that they recognize the antigen only if it is presented on the
MHC (11). This phenomenon is called MHC restriction (12).
Note that TCRs are “personalized” in this process as the MHC
genes are highly polymorphic. The impact of genetic
background, including MHC polymorphisms, on repertoire
dynamics will be revisited in the next section. Cross-reactivity
ensures that the selected T cells may recognize some non-self-
antigen-MHC complexes too (13). In contrast, T cells with TCRs
that have a high affinity to any self-antigen-MHC complex are
eliminated in negative selection. This process decreases the
number of self-reactive T cells by 60-70% (14). The remaining
self-reactive T cells are suppressed by peripheral tolerance (14).
By combining these mechanisms, TCRs that can recognize non-
self-antigens but do not recognize self-antigens are selected and
exported to the periphery. Then, T cells are induced to
differentiate and proliferate depending on the antigens
encountered in the periphery. From such peripheral T cell
population dynamics, an appropriate repertoire is shaped and
maintained so that it attains the ability to remember and rapidly
respond to experienced antigens while retaining the diversity to
respond to unknown ones (15).

Influencing Factors of TCR Repertoire
Various factors affect the formation of a TCR repertoire. As we
described earlier, peripheral antigen exposure changes the TCR
repertoire. We review other potential factors in this section.

First, the genetic background can affect diverse aspects of
repertoire dynamics. As we mentioned in the positive selection in
the thymus, TCRs are selected to have MHC restriction.
Therefore, the MHC type can influence the formation of
repertoire. For example, associations between specific HLA
(human MHC) types and specific sequences are observed (16).
Furthermore, gene usage in V(D)J recombination might be
affected by MHC (17). In addition, some HLA variants are
associated with onset of autoimmune diseases (18). These
results contrast with those of immunoglobulin for which V(D)J
recombination process before selection is found to be highly
different even between monozygotic (MZ) twins (19). Moreover,
as HLA genes are highly variant (12), TCRs that bind to the same
peptide can differ between people. Therefore, we cannot easily
assume that T cells with the same TCR recognize the same
antigens in different individuals when genetic information such
as HLA is not the same.

Not only MHC, but also V(D)J genes themselves have
polymorphisms (20, 21). Some of those variants are shown to
affect the affinity of TCR-pMHC complex (22), which may result
in different repertoire dynamics. We do not fully understand the
effect of these variants on repertoire, as many variants remain to
be discovered (23). Furthermore, genetic background is not the
July 2022 | Volume 13 | Article 858057
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only dominant factor in the final peripheral repertoire dynamics.
For example, a study in MZ twins revealed that peripheral
repertoires of MZ twins are almost as different as those of
unrelated individuals in terms of shared TCRs (24). On the
other hand, those of the same person are very similar even after
years (24). This might be caused by the fact that the probability of
generation of the same TCR in different individuals is very low
even if the MHC alleles are the same.

Second, aging also affect repertoire dynamics greatly. Age-
related changes in the immune system are collectively called
“immunosenescence” (25, 26). In the context of TCR repertoire
analysis, immunosenescence often refers to the decrease in the
proportion of naïve T cells and the increase in that of memory
T cells undergoing persistent selection, for example, memory
T cells recognizing antigens behind chronic viral infections such
as cytomegalovirus (CMV) (27). This phenomenon impairs the
diversity of the TCR repertoire. One of the main causes of this
change is the decrease in the thymic output of naïve T cells due to
the age-related thymic involution (28).
Frontiers in Immunology | www.frontiersin.org 3
Repertoire Sequencing and Batch Effects
We can quantify TCR repertoires through repertoire sequencing
(AIRR-seq) using NGSs. A typical repertoire sequencing
procedure is summarized in Figure 1A. Samples such as
peripheral blood mononuclear cells (PBMC) are collected, and
their CDR regions are amplified by polymerase chain reaction
(PCR). Then NGSs are used to read the amplified sequences. As
CDR3 is the most diversified region in the TCR gene, many
protocols are developed for CDR3 sequencing (29, 30).

Repertoire sequencing is one of the most actively developed
sequencing technologies. In addition to the conventional
procedure described above, single-cell repertoire sequencing
has also been developed in recent years (4, 31). Using such
protocols, for example, the pairing of the TCRa and TCRb
chains can be measured (4, 31). Furthermore, dual TCRs can be
investigated (32–36). As this review is primarily dedicated to
repertoire analysis methods, we focus mainly on the potential
biases in the conventional sequencing methods, which may skew
the results of the ML methods.
A B

FIGURE 1 | (A) Schematic illustration of the pipeline in TCR repertoire analysis. 1) First, T cells in samples, typically being collected from peripheral blood, are processed
to extract its DNA or RNA of TCRs. 2,3) PCR is conducted to amplify the signal. 4,5) Then, the amplified DNA or cDNA is sequenced by NGS to obtain TCR sequences.
6,7) Finally, these sequences are mapped to the reference genes by the software pipeline introduced in the main text and analyzed further. (B) A typical experimental flow
for applying ML methods on repertoire datasets. 1-3) Samples are collected from multiple groups of donors who have different immunological and physiological
conditions. 4,5) By the pipeline illustrated in (A), the dataset is obtained for each sample typically in the format of a table or matrix. 6) Datasets are encoded to ML friendly
formats (feature vectors) using feature extraction methods. In bioinformatics, it is common to analyze gene expression matrices, which summarize the expression level of
each gene for each sample. In repertoire analysis, for each sample, we have a matrix, each raw of which represents the sequence of one TCR, its observation count, its
gene usage, and other properties of the TCR. Note that typically 104 to 105 different sequences are observed per sample and that only a limited number of overlapping
sequences are usually detected among samples. Therefore, a relatively large sparse matrix must be handled for repertoire analysis. 7) ML algorithms are performed on
the encoded datasets.
July 2022 | Volume 13 | Article 858057
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First, PCR introduces various biases originating from the
amplification. The sequence composition influences the
amplification ratio of PCR. Multiple primers are also a source
of biases. Multiple primers are commonly used in repertoire
sequencing (37) because the edges of the CDR3 region are
diverse depending on the choice of V (and J) genes. These
primers are designed for known V (and J) genes. As a result,
CDR3 sequences composed of unknown V (and J) alleles may
not be amplified (30). In addition, multiplex PCR is also
influenced by the amplification bias (30). Such quantitative
bias affects a variety of ML methods introduced later. For
example, diversity-based methods in observation frequency-
based methods can be directly skewed. Various proliferated
clonotype discovery methods are also affected.

Second, PCR and NGS introduce errors in the TCR sequences
(29, 38, 39). It is estimated that about 2% of the PCR amplicons
contain some sequencing errors in TCR sequencing (40), and 1-
6% of sequences yielded by NGSs (Illumina) are erroneous.
Erroneous sequences lead to false-positive clusters and skew the
diversity in observation frequency-based methods. In contrast,
dissimilarity-based methods aggregate similar sequences into a
cluster. Therefore, they can be less affected by such errors.

Third, the starting material matters. We can employ either
DNA or RNA of TCRs. In general, DNA-based methods are
supposed to be more quantitative than RNA-based ones, as the
number of RNA copies fluctuates among cells (30). However, a
recent systematic review (41) suggests that the starting material
may not always be the determinant of correctness or sensitivity.
Moreover, RNA-based methods have some qualitative
advantages. For example, some RNA-based protocols can
capture the full-length TCR sequence, which contains CDR1,2
and 3 (30).

Many protocols have already been proposed to reduce such
biases and errors. Certainly, their magnitudes can differ by
protocol (29, 38). However, each method have both advantages
and disadvantages. To apply ML methods to any data, we need to
mind the protocol used to derive the data and be aware of the
introduced bias beforehand. The following reviews are referred
for details of each protocol (30, 31, 37).

Moreover, repertoire sequencing is affected by various batch
effects. As we reviewed in this section, the choice of experimental
protocol affects the result. Even if the protocol is the same,
various conditions, such as different batches and different
facilities where samples are collected, can be distinguished by
ML algorithms (42, 43). These batch effects can be problematic in
applying machine learning because of shortcut learning (44). We
here adopt a famous example from medical image processing to
intuitively explain the concept of shortcut learning. In the
pneumonia detection task from an X-ray image, the
performance of ML models is known to be dropped if tested
by the datasets from other hospitals. It was revealed that ML
models seemed to distinguish from which hospital an image was
taken (45). As every hospital has different pneumonia prevalence
rates, the model outputs positive if the sample seemed to be taken
in a hospital with a high prevalence rate and can achieve a decent
performance score. However, of course, if an image is not taken
at the known hospitals, the model cannot answer correctly. In
Frontiers in Immunology | www.frontiersin.org 4
this situation, the hospital classification task was easier and was
thereby used as a “shortcut” for the pneumonia detection task. As
ML can distinguish various experimental conditions because of
the batch effects, shortcut learning can also happen in ML-based
repertoire analysis. There are attempts to remove the batch
effects in repertoire sequencing. Some of errors and biases can
be corrected by bioinformatic post-processing (29, 38, 40, 46).
Such algorithms are implemented in popular software such as
MiXCR (47). They are successful in reducing errors and biases
(40). However, we have to be aware that the batch effects may not
always be corrected. Thus, we must be careful when applying
machine learning methods to repertoire datasets. For detailed
comparisons of software, refer to (40, 46).

Current Pipeline and Datasets for TCR
Repertoire Analysis
Currently, a variety of TCR repertoire datasets are available to
the public. There are two main types of platform hosting
repertoire datasets. The first one is a public database, Sequence
Read Archive (SRA)

2

, to which we can register raw sequences
(e.g., FASTQ files). To download data, users need to find the
accession number of International Nucleotide Sequence
Databases (INSD)

3

and use software such as sra-toolkit
4

. Each
read sequence in a FASTQ file generated by NGSs is mapped to
the reference sequences to annotate CDRs and selected V(D)J
genes. Several pipeline tools for the analysis of FASTQ files have
been proposed and developed, among which IMGT/HighV-
QUEST (48), igBLAST (49), and MiXCR (47) are popularly
used in previous studies. For performance comparisons of the
major tools, we refer the reader to these review articles (50, 51).
This workflow is summarized in Figure 1A.

The other is the platforms dedicated to immunosequencing
datasets. For example, VDJServer5 (52) and immuneAccess

6

have
been widely used in recent years. Once FASTQ files are uploaded
to these services, they will automatically process the files, and
various analyses can be performed on the web. Such services
seem to be highly appreciated by emancipating users from setting
up a local environment or being bothered by complex software
options. Still, there is no de facto standard for such repositories,
and this has led to the development of curated databases such as
iReceptor

7

(53) and TCRdb
8

(54) for scattered datasets.
To efficiently collect information on TCR repertoire analysis,

it is also recommended to use other major repositories and
communities as follows; VDJdb (55), a database that combines
information on TCRs, antigens, and MHCs; Immune Epitope
Database (IEDB) (56), a database of immune epitopes; McPAS-
TCR (57), a database that organizes and collects TCR sequences
related to various pathogens; and Adaptive Immune Receptor
Repertoire (AIRR) community (58), a community for sharing
antigen and repertoire datasets.
July 2022 | Volume 13 | Article 858057
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Challenges in TCR Repertoire Analysis
In general, the basic approach for extracting useful information by
comparing samples with others of different conditions is to
contrast the information shared or not shared between samples
in the same condition or those across different conditions like
Figure 1B. In TCR repertoire analysis, the TCR sequences
commonly observed among different individuals (called public
TCR sequences) are considered important (59). However, due to
the diversity of TCR repertoires, the number of public TCR
sequences is very small compared to the total number of
sequences observed in each sample. Therefore, they may not be
sufficient to characterize the differences among the sample groups.

In addition, for sequences observed uniquely in each sample,
it is not easy to distinguish whether they are attributed to the
differences of individuals or to those of sample conditions such as
abnormalities or diseases. The difficulty of associating observed
sequences with sample conditions is one of the major problems
in repertoire analysis due to the diversity of TCRs. Moreover, the
TCR repertoire may change over time due to the donor’s health
history such as injury, infection, and aging (1). Thus, the
individual difference in TCR repertoire is large. Therefore, we
should perform the analysis by taking into account not only the
current but also the past health condition of the donors.

Furthermore, T cells isolated from peripheral blood samples
are commonly used to measure human TCR repertoire. From
each sample, we typically measure TCRs of about 104 to 106 T
cells, which is a tiny fraction of the donor’s approximately 1011

Tcells (60, 61). Thus, quantitative analysis of TCR repertoire has
its own difficulties due to the diversity and chronological
variation of TCR repertoire and also to the high population
size of T cells compared with the measurable size.

Moreover, we still cannot directly know what antigens a
specific TCR sequence recognizes. Therefore, only from
sequence information, we cannot compare or measure the
similarity of TCRs by their antigen recognition profile.
Experimental analyses of antigen-specific TCRs are widely
performed (62–64), but they cannot be exhaustive, and we
cannot conduct such analysis on every TCR. Although we have
TCR-pMHC binding prediction methods, some of which we
review later, the performance is still limited. In addition, the
diversity of TCRs, MHCs, and antigens makes it impractical to
calculate the complete recognition profile. This is problematic
because we may need to utilize similar but different sequences to
compare or characterize repertoires, as the number of shared
identical TCRs is very small because of the high variety of TCRs
and the limited sample size we mentioned earlier. Although a lot
of experimental evidence such as (64, 65) implies that similar
TCR sequences may recognize similar antigens, there is no a
priori similarity measure. We need to devise a new way to
calculate the similarity of TCRs.

These challenges are not the only obstacles in TCR repertoire
analysis for understanding the dynamics of TCR repertoire. As
we saw earlier, experimental procedures for repertoire
sequencing using PCR or NGS inevitably introduce batch
effects and errors. Some of the software tools introduced in the
previous section correct and debias the sequencing data to some
Frontiers in Immunology | www.frontiersin.org 5
extent. However, not all the errors and batch effects can
be removed.

These problems summarized in Figure 2 are related to the
development of bioinformatic and ML methods to be introduced
in the next section. Each method approaches to these challenges
in a unique way, which can be categorized as in Figure 3. In the
following sections, we review each category one by one.
OBSERVATION FREQUENCY
BASED METHODS

In the conventional analysis of TCR repertoires, statistical
indices from ecology have been employed. In ecology, the
complexity of ecosystems has been measured by diversity (66).
Typically, diversity is calculated by the rarity weighted count of
the species. If a species has a dominant population, the diversity
of the ecosystem is small. In contrast, if there are many rare
species, the diversity increases.

By treating each TCR clonotype as a species, diversity can be
measured for a TCR repertoire in a sample. In immunology, the
diversity of TCR repertoire is closely related to the clonal
expansion (an increase in the proportion of T cells with the
same TCR clonotype caused by a proliferation of T cells, which
decreases the diversity of TCR repertoire) against specific
antigens (1). By applying the species diversity analysis methods
in ecology, the degree of clonal expansion has been associated
with various sample conditions. A typical example is an
approach to quantify the diversity of amino acid sequences in
CDR3 using indices such as Hill’s number (67). Around 2010,
the quantification of the diversity of TCR repertoires using
probability models were proposed (68), which enabled us to
characterize differences between samples. Both Guindani et al.
(69) and Rempala et al. (70) employed the Poisson abundance
model (68), to not only fitting the abundance distribution shapes,
but also to classify the samples using the estimated parameters of
each sample. This approach is still being investigated: PowerTCR
(71) proposed a probabilistic model not based on Poisson
abundance model in 2018.

However, these approaches employ only frequency
information and do not directly utilize the sequence
information. As a result, important information can be
obscured or lost. For example, even if the samples have very
similar frequency distributions, the sequences observed at high
frequencies might be completely different. In particular, it is
difficult to examine or identify particular sequences that caused
the differences between samples only from the frequency
information, which is important for practical applications.
Moreover, utilizing ML methods enabled the processing of
sequence information without compressing it down to the
frequency information. Therefore, the recent advances in TCR
repertoire analysis have occurred primarily in sequence-
information-based methods using ML methods. We
categorized them by their approaches, as summarized in
Figure 3, and will review each of them in the following
sections. Nevertheless, frequency-based methods are still
July 2022 | Volume 13 | Article 858057
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practically effective for small datasets as the frequency
distribution can be obtained relatively stably even from a
sample containing a small number of TCRs.
UTILIZATION OF SEQUENCE
INFORMATION

As we saw in the previous section, frequency distribution based
methods can only provide the degree of difference between
different samples. In particular , specific sequences
characterizing the sample differences are of particular
importance. Since we are interested in specific sequences
characterizing the sample differences, we need another
approach that can directly utilize sequence information to
identify those specific sequences. One of the most illustrative
Frontiers in Immunology | www.frontiersin.org 6
and important applications of sequence information is
monitoring minimum residual disease (MRD), a kind of T(B)-
cell leukemia (72). As dominant T(B) cell clones themselves are
the direct cause of MRD, unusually proliferated TCRs (BCRs)
can be utilized as biomarkers to monitor the progression of the
disease. In monoclonal leukemia, the identification of such
dominant sequences is fairly easy because the dominant clone
sometimes occupies more than 75% of the T cells (73).

However, we may not be able to find such obvious sequences
for other diseases or conditions. Unlike leukemia, the most
abundant clone in a sample may not be related to diseases or
conditions. We must find a portion of the sequences shared
between the samples of the same condition, but this is not
straightforward. Due to the diversity and individual differences
of TCR repertoires, the number of shared sequences is typically
very small. Even if we find shared TCRs, we must statistically
discriminate whether such shared TCRs are yielded by a
A B

D

C

FIGURE 2 | Challenges in TCR repertoire analysis. (A) Only limited observations are possible compared with the massive diversity of TCRs in a body or that of
possible TCR sequences. (B) Various factors alter the repertoire, which results in large individual differences. (C) As we cannot observe all the antigens that a TCR
recognizes, we cannot directly evaluate the similarity between TCRs with different sequences. (D) Experimental procedures including PCR and NGS inevitably
introduce errors and batch effects.
July 2022 | Volume 13 | Article 858057
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FIGURE 3 | Graphical summary of the development in TCR analysis methods. Early analysis was based on the TCR clonotype abundance (frequency) distribution
(left panel). Recently, sequence information has started to be utilized in various ways (right panel) by employing statistical, ML, and DL methods.
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condition or by chance. It should be noted that we need to devise
a way to evaluate “similar” sequences because we cannot directly
observe the similarity of TCRs. To overcome these problems, ML
has been utilized. In this section, we review three major
categories of methods, which are based on hypothesis tests,
dissimilarity, and motifs, respectively.

Hypothesis Test Based Methods
One of the straightforward ways to extract relationships of
specific TCRs and sample conditions is to use hypothesis tests
to judge whether the number of observed TCRs is significantly
large or small for a specific sample condition. For example,
Emerson et al. (16) collected peripheral blood samples from a
total of 641 donors, 289 affected and 352 unaffected by CMV, and
identified the TCRb sequences specific to the CMV-affected
donors using Fisher’s exact test. In addition, by utilizing the
identified 164 CMV-specific TCRb sequences as features of a
repertoire, they designed a discriminative model of beta-
binomial distribution for predicting CMV infection. De Neuter
et al. (74) replicated the results on another dataset and showed
that a random forest classifier using the observation counts of
these TCRs in a sample also works well to predict the infection.
Emerson’s method, however, ignores sequence similarity
completely and only utilizes the information of “Public TCRs.”

In contrast, Ritvo et al. (75) proposed a method called
TCRNET, which utilizes sequence similarity to estimate
clusters of similar TCRs that are significantly proliferated in
specific samples. Here, similar TCRs are defined as those derived
from the same V and J genes and differ at most by one amino
acid sequence. Then, the number of TCRs in the target cluster is
contrasted with the number of TCRs with the same V, J genes
Frontiers in Immunology | www.frontiersin.org 7
and CDR3 sequence length as the target cluster. If the proportion
is found to be significantly larger in a specific sample by the
binomial test, the target cluster is judged as a proliferated cluster.

These methods require counting the same or similar TCRs.
This process is very slow because, in a naive implementation,
every possible pair of sequences must be compared. CompAIRR
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is developed for a faster exact or approximate search for
shared TCRs.

Dissimilarity Based Methods
The methods introduced above compare only a specific TCR or a
cluster of TCRs with the others. Therefore, they abandon the
sequence information of the others, even though they constitute
most of the sequences in samples. Some methods have been
proposed to exploit such information. In particular, we review
the methods based on the dissimilarity between TCRs. Network
analysis based on sequence similarity has been used for a long
time. For example, classification of healthy and leukemic samples
is performed on the BCR sequence network of each sample in
which all sequences differ at most one residue are connected (76).
In TCR, a similar network analysis revealed the public TCRs
conserved between mice and humans (77).

More complex dissimilarity indices tailored for TCR analysis
have been proposed. Dash et al. (78) quantified the differences
between two TCR sequences by weighted Hamming distances
and visualized epitope-specific TCR clusters by dimensionality
reduction and clustering of their dissimilarity matrices. Their
method, called TCRdist (78), has become a popular method to
search for epitope-specific TCR sequences. TCRdist focuses
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mostly on evaluating the differences of TCRs. By contrast,
RECOLD (79), which was proposed by our group, is designed
to measure the differences between samples. RECOLD calculates
the distance between all the observed sequences in all samples to
create a dissimilarity matrix. Then, dimensionality reduction is
performed on the matrix, and every observed sequence is
embedded in a shared low-dimensional space as a point. In
this space, each sample is represented as a probability
distribution, and the difference between samples is quantified
as the difference of distributions by Jensen-Shannon Divergence.
In addition, RECOLD can identify the sequences specifically
contributing to the differences of samples using the
bootstrap method.

New methods based on TCR-level dissimilarity are still
actively and continuously explored. A method called GLIPH
(63) integrates sequence information and observed frequency
information with CDR3 length and HLA to estimate epitope-
specific sequences. iSMART (80) and GLIPH2 (81) have been
released recently to improve the performance and the applicable
data size. In TCRdist3 (82), TCRdist-based distance can be
combined with motifs (introduced in the next section) to
characterize TCR clusters.

On the other hand, some methods are devised for calculating
the distances between repertoires directly. Repertoire
Dissimilarity Index (RDI) (83) compares the usage of V(D)J
gene segment. ImmuneREF
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utilizes various interpretable
indices such as diversity indices and positional amino
acid frequencies.

As in the case of the hypothesis-based methods, the
computation cost is important for dissimilarity-based methods,
which also perform a lot of sequence comparison. ClusTCR (84)
achieves faster clustering by focusing CDR3 and compromising
flexibility in the sequence alignment. GIANA (85) used a
different approach. In GIANA, a lightweight linear
transformation equivalent to sequence alignment on
BLOSUM62 is constructed. Then, every sequence can be
encoded into a coordinate in the euclidian space, where
clustering is fast.

Motif Based Methods
The dissimilarity based methods characterize TCRs (or samples)
by the relative distances between them. Alternatively, we can
directly encode TCRs (or samples) into feature vectors and apply
ML methods to the vectors. A conventional but effective method
to create such feature vectors is the k-mer method. It
characterizes a TCR (or a sample) by the observed frequency
of all possible k consecutive substrings (motifs) in the sequence
(or sequences in the sample). Therefore, in a typical 3-mer
method, its feature vector has approximately 213 dimensions
(21 = 20 human amino acids + a symbol representing the edges
of the amino-acid sequences). The k-mer features have been
combined with various ML methods: LP-boost (86); Bayesian
discriminators (87); and SVMs (87). They were applied to TCR
b-chain CDR3 datasets to discriminate whether a sample had
10https://github.com/GreiffLab/immuneREF.
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been treated with ovalbumin or not, which was used to stimulate
immune responses. We also proposed MotifBoost (43), which
merges the k-mer encoding and Gradient Boosting Decision Tree
(GBDT) (88) for repertoire classification. Along with proposing a
new method, we also investigated the nature of the k-mer
encoding and revealed that CMV infected and healthy samples
are well separated in the k-mer feature space derived by a PCA-
like unsupervised learning method called Gaussian Process
Latent Variable Model (GPLVM) (89). This result indicates
that the k-mer encoding can naturally capture the intrinsic
characteristics of repertoires. Moreover, k-mer based methods
work effectively even on smaller samples compared to the
other methods.

As we mentioned earlier, we still do not fully understand what
kind of factors determine the similarity between different TCRs.
However, the success of the dissimilarity-based methods, which
is based on the hypothesis that similar TCRs work similarly in
the body, implies that the hypothesis is true to some extent.
Moreover, the success of k-mer encoding support and strengthen
the view that some important motifs play a central role in
determining the similarity of TCRs. This is also supported by
the fact that shared motifs of antigen-specific TCRs are found in
various conditions (62–64).

While being conventional, k-mer encoding and combined ML
methods still have room for further improvement and
development. For example, Ostmeyer et al. (90) combined the
4-mer method with logistic regression to discriminate between
cancerous and healthy tissues. In this work, feature vectors are
created differently from the conventional way. Each 4-mer motif
is represented as a 20-dimensional vector consisting of four 5-
dimensional biophysicochemical feature vectors of each amino
acid. Therefore, a TCR is converted into a bag of 4-mer feature
vectors. To deal with this setup, they employed the multiple
instance learning framework. Specifically, they trained a logistic
regression model to assign a score, which is the probability that
the motif is related to cancer, for each motif. A sample’s score,
which is used for sample-level classification, is defined as the
maximum score of the motifs found in the sample.

As a good representation of data is decisive in ML, we expect
that more applications appear, which are built around k-mer
methods or other data representation methods.
APPLICATION OF GENERATIVE MODELS

Most of the methods mentioned above are used for
characterizing the differences between samples. Thus, they
usually compare samples obtained from different conditions by
assuming that the dataset to be analyzed is from a cross-sectional
or longitudinal study. However, careful effort is required for
obtaining datasets from multiple experiments. Recruiting a
sufficient number of donors for every sample condition is
difficult, especially if they are rare.

To solve this problem, methods based on generative models
have recently been explored. These methods employ
mathematical models for the generation of TCRs, which have
been intensively developed since 2012. For TCR generation in
July 2022 | Volume 13 | Article 858057
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the thymus, a probabilistic model implementing the biological
mechanism of V(D)J recombination was proposed (91). Various
extensions to this model, especially for inference methods, have
been proposed based on Monte Carlo simulation (92), improved
expectation maximization (EM) algorithm (93), and dynamic
programming (94). For TCR selection in the periphery, Elhanati
et al. (95) devised another probabilistic model. Their model
employs the actual peripheral repertoire dataset to estimate the
probability distribution of post-selected TCRs, and utilizes the
TCR generation model of (91) to infer that of unobserved pre-
selected TCRs. This model is trained to predict the difference
between the two distributions.

Based on the same idea of substituting the unobserved
datasets with a generative model, Pogorelyy et al. (96)
developed a method called Antigen-specific Lymphocyte
Identification by Clustering of Expanded sequences (ALICE),
which can characterize samples obtained from only one
condition by contrasting them with the sequences generated by
a generative model as reference repertoires. This strategy is also
applied to characterizing TCRs (92).

The generative model can pave the way to quantify the
abnormality of a sample and to infer its responsible sequences
only from a snapshot sampling of the patient’s repertoire,
without expensive effort to conduct cohort studies. However,
challenges remain for its practical and reliable employment. For
example, because the TCR generation model utilized in ALICE
does not take into account the individual difference that affects
the TCR repertoire [e.g., genetic background (97) and age (26)],
the parameters of the generative model may need to be adjusted
to the conditions of individual samples to further enhance
its reliability.

Simulation of Repertoire
The advance of generative models leads to the emergence of
some simulation software, which create pseudo repertoire
datasets. Simulated datasets have been used to assess the
performance of repertoire analysis methods. For example, a
simulated dataset was used to assess the performance of the V
(D)J genes identification for B cells (98).

IgSimulator (99) is one of the earliest repertoire dataset
simulators. AbSim (100) simulates the temporal development
of mutations in B cells. However, these simulators were made for
antibody sequences, not TCR sequences. ImmuneSIM (101) is
capable of simulating TCR repertoires. In addition, its
remarkable feature is the simulation of repertoires for
classification. It can implant k-mer like sequences into the
repertoire dataset. Classification methods can be tested
whether they can find the implanted TCR or repertoire or the
implanted motif itself. As motifs play an important role in
characterizing repertoires (see motif-based methods), k-mer
like signal implanting is recently adopted in some studies
(102, 103).

Using simulation, further evaluation of analysis methods can
be performed. For example, the classification performance was
evaluated in various conditions with different density of signal,
sample sizes and so on as done in (103). Evaluations like this
cannot be conducted using only real datasets.
Frontiers in Immunology | www.frontiersin.org 9
APPLICATION OF DEEP LEARNING

Deep learning (DL) is a class of ML algorithm, which achieves
good performance in various fields. DL has been pervading
various areas of biology such as genomics (104) and systems
biology (105), and it has also recently been applied to repertoire
analysis. Again, DL itself is just another ML algorithm. However,
representation learning, which is one of the notable features of
deep learning, allow DL models to achieve high performance by
learning appropriate representations from data without explicitly
providing the mechanism behind it (106). On the other hand,
most of the models we introduced earlier used hand-crafted
features or were based on the human knowledge. We call such
models “hand-crafted model” hereafter. While the generative
model of TCRs introduced above is a hand-crafted model that
explicitly implements biological mechanisms such as V(D)J
recombination, Davidsen et al. (107) proposed a Variational
Auto Encoder (VAE) (108) based generative model that treats
the TCR generation like a string generation task. Another feature
of DL is that representations learned in one task can be easily
transferred to other tasks [called transfer learning (109)].
DeepTCR (110) solves classification problems using features
obtained from a VAE-based generative model.

Not only generative models like VAE but also discriminative
models are utilized for repertoire analysis. For example, DeepRC
(102) utilized a popular class of DL model architecture called
attention mechanism for the repertoire classification problem.
Simply put, the attention mechanism is a kind of learnable
weighted average (111). DeepRC encodes each amino acid
sequence in the repertoire to a vector and analyzes its
importance through the attention mechanism. Classification is
made on the weighted average of the encoded vectors.

DL is also being intensively applied to the prediction of
affinity between pairs of T cells and antigens (112, 113), as well
as triplets including MHCs (114). TCR-pMHC binding
prediction task is one of the most actively studied topics in
immunoinformatics (115). The task is to predict whether or not
the target antigen will be recognized by a TCR using the sequence
information of the TCR and the antigen protein. As Alphafold2
(116) has made an innovation in predicting the structure of
proteins from their amino acid sequences, DL is expected to
make a breakthrough in this area.

At this stage, DL-based methods have not yet demonstrated
the performance to dominate hand-crafted models, in which
human crafts the feature or the model structure, in this field. For
example, a comparison between a hand-crafted generative model
(95) and Davidsen’s VAE-based generative model (107) was
conducted (117). This paper concluded that the hand-crafted
model outperforms DL-based models with lower computational
cost and higher interpretability. For peptide-MHC binding
prediction, according to a systematic performance comparison
review conducted in 2020, ML-based models still scored better
than DL-based models on average (118). In addition, our group
compared a DL model and ML models by changing the available
data size for learning on a repertoire classification task and found
that the performance of the DL-based model deteriorates on the
small datasets (43).
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According to the current trend, the application of DL in this
field will be investigated even more intensively in the future. For
example, some more recent DL-based peptide-MHC methods
reviewed in the next section are showing better performance
than the traditional methods on some specific datasets. However,
DL may not wipe out the need for traditional biological hand-
crafted models because of its expensive computation cost, lack of
interpretability, and data-intensive nature. Instead, the
integration of hand-crafted and DL-based models is being
explored. In a recently proposed model for T cell selection
called soNNia (119), a hand-crafted generative model for TCR
generation probability (95), which was used for comparison in
(117), is combined with a DL model of the TCR selection. For
TCR-pMHC interaction prediction, a combination of DL and
traditional ML methods is also being pursued (120).

Embedding Methods Based on
Representation Learning
In the recent advances in Natural Language Processing (NLP),
self-supervised representation learning draws attention, which
utilizes the nature of data as a target signal to learn good
representations. This is realized by the ability of DL to acquire
good representations mentioned in the previous section. One of
the earliest successful approaches is Word2Vec (121), which
encodes a word to a numeric vector (Word Embedding). In a
Word2Vec training method called CBOW (continuous bag of
words), a neural network (NN) that converts a word to a vector is
trained to predict a masked word in a sentence using encoded
vectors of its surrounding words (122). Word2Vec is utilized
widely to convert textual data to numerical representation in
NLP and also is applied to repertoire analysis. Immune2Vec
(123) is inspired by Word2Vec and treats a TCR/BCR as a
sentence and a k-mer as a word, respectively. Representation of a
TCR/BCR, which is composed of many k-mers, is derived by
averaging all k-mer vectors, which is a similar procedure to
FastText (124) in NLP.

After the success of Word2Vec, various NN architectures for
self-supervised representation learning in NLP are developed.
One of the noticeable approaches is neural language models. A
language model is a generative model to predict words from the
context. CBOW is a representative example which predicts a
word from context words. Thanks to the invention of a new NN
building block called Transformer (125), which utilized the
attention mechanism we mentioned in the previous section.
NNs can handle more distant dependencies in a text. New
neural language models like BERT (126) exploited the
Transformer’s ability and broke the former models’ records in
various tasks. These models are trained to predict a masked word
similarly to CBOW. However, in contrast to CBOW, they can
predict one or more meaningful sentences, not a word. One such
language model called GPT-3 can write natural texts, e.g., news
articles (127). We can also utilize a neural language model to
embed a sentence using the output of the hidden layer (Sentence
Embedding). Such sentence embedding is revealed to be a very
good representation and can be applied to multiple downstream
tasks in NLP, from question answering to translation, with little
additional training for each task (called fine-tuning) (128).
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Training of the language model itself (called pretraining)
requires a large corpus and enormous computation resources.
However, once the training is done, the same model can be
applied to various problems with fine-tuning using little data.

Language models have also been employed in repertoire
analysis. Before that, language models have been intensively
applied to general protein sequences (129–132). BERTMHC
(133) showed utilizing the pre-trained model of (129) actually
increases the performance in the peptide-MHC (Class II)
binding prediction task. ImmunoBERT (134) used the same
pre-trained model for the peptide-MHC (Class I) binding
prediction task. Hashemi et al. (135) employed the pre-trained
model of (131) and fine-tuned them for peptide-MHC (Class I)
binding prediction and achieved higher performance compared
to a previous software. Some papers perform pre-training on
their own on the repertoire sequencing dataset. In Leem et al.
(136), each amino acid in a TCR is treated as a word, and a TCR
is treated as a sentence to pre-train a BERT language model
(AntiBERTa). AntiBERTa achieved a higher ROC-AUC in a
paratope prediction task than other tools.

The utilization of language models is not limited to
embedding. In Shuai et al. (137), another language model
called GPT-2 (128) is utilized for pretraing on an antibody
generation model (IgLM). Because GPT-2 is designed for full
sentence generation, unlike BERT, IgLM can generate new
antibodies (CDRs). A new antibody design workflow is
proposed in the paper and outlined as follows: First, many
antibodies are created using IgLM. Then the3D structure for
each antibody is calculated. Finally, the properties of the
generated structures are computed to select better
antibody candidates.
MACHINE LEARNING FOR REPERTOIRE
ANALYSIS IN PRACTICE

In this review, we focused mainly on the technical aspects of ML
and DL methods and categorized them by their approach. As a
result, we cannot cover all topics, especially those being relevant
to practical applications. This may be compensated by a
thorough review of the repertoire analysis methods before 2019
in (138), and another review that introduce many methods
categorized by task (139). In addition, more ML applications
can be found on the pMHC-epitope analysis in (140–143), and
on longitudinal analysis in (144, 145).

To practice ML methods, we can refer to the author’s
implementation in most cases. We can find a comprehensive
list of such implementations and other software in (146). In
addition, there exist some libraries that implement multiple
popular methods to be used for general analysis. In particular,
VDJTools (42) and tcR (147) (Immunearch
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is its successor) are
equipped with a broad range of basic analysis methods and are
widely used in practice. Moreover, new libraries are being
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developed such as ImmuneML (148), which focuses more on
ML methods.

As for the topics that those sources cannot fully cover, we
discuss the following two topics in relation to the practice of ML
methods in TCR repertoire analysis: One is prospective practical
applications of repertoire analysis, such as blood testing and
cancer vaccination. The other is repertoire analysis of COVID-19

Applications of Repertoire Analysis
Recently, applications of repertoire analysis have been developed
rapidly. One of the most prominent applications is blood testing
(149). In this field, the diagnosis of MRD (see UTILIZATIONOF
SEQUENCE INFORMATION) and the COVID-19 testing (see
the next section) are already approved by FDA. There are
potentially more diseases that can be diagnosed by repertoire
sequencing. For example, autoimmune diseases such as lupus
erythematosus (150), rheumatoid arthritis (150), and lupus
nephritis (151) have been successfully classified with the V-J
gene usage distribution feature and a random forest classifier. In
the BCR repertoire, IGHV gene selection was analyzed for
multiple autoimmune diseases (152).

In relation to autoimmunity, repertoire analysis revealed the
features common to self-reactive T cells. Hydrophobic residues
(153, 154) or Cysteine (154) on CDR3 are related to their self-
reactivity. Hydrophobic CDRs enrichment in regulatory T cells is
replicated by a logistic regression model with 606 T cell features
to predict whether a cell becomes a regulatory T cell or not (155).
Prediction of self-reactive T cells may play an important role in
the diagnosis of autoimmune diseases in the future.

Another prominent application is neoantigen vaccines to
treat cancer. Neoantigen is a tumor-specific antigen that can be
used to target tumor cells. Thus, neoantigen vaccines stimulate T
cells to attack tumor cells. Neoantigen vaccines should be
personalized because tumors of different individuals tend to
acquire different mutations and express different neoantigens
(156, 157). Repertoire analysis is expected to reduce the labor
required for finding individual neoantigen (158). The finding of
neoantigens in silico is typically performed as follows: First,
tumor-specific mutations and their transcripted proteins are
identified by sequencing. Second, from those proteins, all
antigenic peptides that mark cancer cells are listed. Third, the
peptides that can bind to the patient’s MHC well are screened.
Finally, the obtained peptides are tested to determine whether
the pMHC complex can be recognized by T cells or not.
Repertoire analysis is used in the third step to predict the
affinity of peptide and personal MHC. A couple of software
was published for this task (118). On the other hand,
immunopeptidome is studied as a different approach to find
neoantigens (159). This approach is also interesting in relation to
repertoire analysis. In this approach, TCR-pMHC complexes in
tumor tissues are collected and analyzed to retrieve their peptide
sequences. As the peptides are already assured to bind to MHC,
we can skip some of the described screening process.
Immunopeptidome can be seen as a peptide repertoire, and its
analysis might provide insight into TCR repertoire in the future.

We reviewed some potential applications of repertoire
analysis in this section. To realize such applications, we need
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reproducible and robust results. For clinical applications,
standardized protocols must be established. For example, a
standard experimental protocol is proposed for MRD diagnosis
(160). Also, bioinformatic pipelines are not yet standardized. We
will expect more standardized workflows to appear in the future.
An example is a new standard format for repertoire dataset
proposed by AIRR Community (161).

Repertoire Analysis for COVID-19
Understanding COVID-19 has been one of the most important
research topics in recent years, and repertoire analysis has
revealed various characteristics of COVID-19 so far. In this
section, we will see how the ML-based repertoire analysis
introduced in this review is used in the COVID-19 study.

Repertoire analysis has been employed to investigate the
nature of COVID-19 infection. Most basic observation is the
change in diveristy. Many studies reported the low TCR
repertoire diversity in active COVID-19 patients (162–165).
Some studies further reported that the severity of the symptom
is related to the lower diversity (163, 166). However, it should be
noted that decrease in TCR diversity is not necessarily specific to
COVID-19 infection but common to various virus infections
(164). Cheng et al. (167) investigated V(D)J gene usage and
found that some Vb genes, which are estimated to have a high
affinity to SARS-Cov2 spike protein antigen, were enriched in
severe COVID-19 patients.

Further insights are also provided by using sequence
information based ML methods. In Simnica et al. (168),
COVID-19 public TCRs are investigated. GLIPH2 (81), one of
the dissimilarity-based methods we reviewed, was used to cluster
TCRs and select COVID-19 related TCRs by Student’s T-test
(similar to Emerson et al. (16) introduced as one of the
hypothesis test based methods). GLIPH2 was also employed in
Chang et al. (166) to characterize the TCRs related to the severity
of the symptoms. Minervina et al. (169) also examined the
dynamics of COVID-19 patients’ repertoires over time using
the hypothesis test previously proposed by the same group (170)
to distinguish proliferating clones. Quiros-Fernandez et al. (171)
revealed the cross-reactivity of CD8+ T cells in unexposed
donors to the COVID-19 epitope, which is derived using
NetCTLPan (172), an NN-based peptide-MHC binding
prediction software.

We cannot cover all the COVID-19 related literature here.
For further reading, see (173) for early researches and (174) for
recent updates. For repertoire diversity and COVID-19, see (175,
176). Note that, as COVID-19 is still not fully understood, these
results should be further validated in the future.

As a practical application, the repertoire analysis is utilized to
diagnose COVID-19. Adaptive Biotechnologies, a US-listed
company, applied the ML algorithm that they developed for
CMV [in Emerson et al. (16), introduced in Section 3.1] to the
COVID-19 dataset. It was demonstrated that the algorithm
successfully distinguished the sample’s COVID-19 infection
status (6). Adaptive Biotechnologies received EUA (Emergency
Use Authorization) for the COVID-19 test from the FDA.
Nevertheless, repertoire-based test may not be the first choice
for COVID-19 diagnosis. First, T(B)CR repertoire can not
July 2022 | Volume 13 | Article 858057
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provide direct evidence of SARS Cov-2 virus existence. Second,
repertoire-based test requires sequencing, which costs
substantially more than PCR or antibody tests. However,
repertoire analysis can potentially reveal far more information
than such tests (149), and the sequencing cost is decreasing.
Therefore, in the future, repertoire-based blood testing can be
utilized further (149).

Small Sample Problem of
Repertoire Datasets
The size of datasets is the major determinant of the performance
of methods and the reliability of their results (43, 103). Therefore,
the establishment and development of sufficiently large datasets
are important equally to or even more than the development of
analysis methods.

TCRdb (54), one of the major databases of TCR repertoire,
contains 131 projects with a total of 8,341 samples of public
datasets aggregated from various repositories as of November
2021. Since one project is usually associated with one paper, a
rough estimate indicates that one paper contains 64 samples on
average. In general, this number is considered small for applying
ML algorithms, and actually, the classification methods
mentioned above do not always work satisfactorily in some
different classification tasks, especially when the sample size is
less than 100 (43). A simulation also indicates that the number of
samples affects the classification performance (103).

This situation is gradually changing with the appearance of
large datasets containing several hundred samples, such as the
CMV dataset in Emerson et al. (16). In addition, Adaptive
Biotechnologies and Microsoft released a new COVID-19
dataset with 1,486 samples, one of the largest released ever as a
single dataset
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, which was used in (6). However, such a large
dataset is exceptional, especially as that of the human repertoire,
in light of the difficulty to collect a large number of patients with
the same condition, e.g., infection records. Even though the
number of publicly available datasets have been grown steadily
(177), and will continue to grow, the small data size problemmay
not be readily resolved. Note that we might employ other
animals’ datasets for some basic research (77). In VDJdb (177),
datasets of mice and macaques are recorded. However, the
number of the dataset is much fewer than that of humans.

Simulations are not only a powerful tool for repertoire
analysis, as we saw earlier, but also can contribute to
overcoming the situation, as generative models can create an
unlimited amount of pseudo datasets. However, the employment
of simulations in repertoire analysis may not always be assured,
depending on the tasks and situations. For example, simulated
datasets for repertoire classification tasks are created by
embedding specific k-mer like signals only in repertoires
belonging to specific classes (101–103). Though we know such
motifs are important to characterize the binding property of TCR
(63), other signals may be still missing. Also, each disease may
affect repertoire uniquely [e.g., the difference between CMV and
varicella zoster virus (VZV) (178)]. Therefore, until we have a
plenty of real datasets, we can not know how we can characterize
12https://clients.adaptivebiotech.com/pub/covid-2020.
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the changes in repertoire caused by a given condition. Therefore,
we will still need real datasets, especially to enable new
practical applications.

To alleviate the problem, we have to select appropriate
methods for a given size of datasets, understand more about
the limit of information that can be derived from a given data,
and develop new methods that can integrate multiple datasets or
work effectively even with small sizes of datasets.
DISCUSSION

In this paper, we have surveyed ML applications to TCR
repertoire analysis by following its development from simple
statistical indices to DL, as being summarized in Figure 3. For
reader’s convenience, we summarized a detailed comparison
between the methods in Table 1.

Finally, we discuss the remaining technological challenges
and outline the future directions in the development of TCR
repertoire analysis. In particular, we focus on two topics, the
small sample problem and the multimodal data integration.

The small sample problem of repertoire datasets we reviewed
in the previous section is one of the most important problems
that should be resolved in repertoire analysis. As mentioned
earlier, the cost of large datasets will likely remain high. Thus, we
need to address the problem by devising new analysis methods
that can work on smaller but practical datasets. We have at least
three representative approaches to achieve this goal. First, as we
reviewed in the previous section, simulations can be used to
create datasets. We expect more simulation software releases in
the future. In this section, we discuss the other two
approaches further.

Another possible direction is to utilize multiple datasets to
solve a task. Two DL-based techniques which we mentioned
earlier will play an important role to this end. Transfer learning
can be employed to implement such a method. In transfer
learning, we prepare a DL model that has already learned a
good feature representation after training on a large
unsupervised corpus, and then utilize it for feature extraction
in the target task (179). This technique improves the
performance of the target task, especially when the dataset for
the target task is small. Similarly, representation learning is
important. Good representations of repertoires may be learned
from large amounts of unlabeled repertoire datasets. If such good
representations are learned, classification of individual diseases,
for example, may become possible with high performance even if
only small amounts of data are available for the target diseases.
As we saw earlier, this direction was already investigated using
VAE (110). However, the size of the model is far smaller than
those used in NLP, and the universality of the representation has
not yet been discussed. Moreover, there is no standard task in
repertoire analysis in contrast to NLP. Therefore, the models are
not evaluated in terms of which downstream tasks can be applied
via transfer learning. Recently, attempts appear, which utilize
large language models in repertoire analysis (133–137, 180). In
AntiBERTa (137), fine-tuning for a downstream task is also
investigated. Currently, these methods are in development. To be
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TABLE 1 | Qualitative comparison of the methods reviewed in this article. In practice, both feature encoding methods and ML algorithms for specific tasks such as classification or regression are combined. As the

Notable Examples Relationship
with other
methods
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al (16) used a hypothesis-based
nd CMV-related TCRs and classify
n based on the existence of such
o et al (75) proposed a method to find
clusters using a hypothesis test.
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similarity,
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tests are
combined
with
dissimilarity-
based
methods (ex.
Glanville et al.,
63).

8) used a dissimilarity matrix and
e epitope-specific clusters by manifold
kota et al (79) quantified the distance
s by creating the inter-sample
matrix. Glanville et al (63) integrate
mation into the dissimilarity calculation
f CDR3)
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) used a 3-mer feature vector of each
VM for a repertoire classification task.
al (90) used a 4-mer vector further
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choice of ML algorithms is usually arbitrary, this table is organized by the viewpoint of feature extraction.

Methods Core Idea TCR-level
encoding

Repertoire-
level

encoding

ML
methods
combined

with

Strength Weakness

Distribution
based
models

Statistics
(Diversity)

TCR diversity is related to
healthiness and abnormality
of immunological states.
Diversity indices such as a
rarity weighted count of
TCR clonotypes can be
used as basic parameters
of the immunological state.

NA A diversity
index (a
scalar value)

NA Applicable to data with
small sample size and/
or small number of
sequences.

Too simple
and ignoring
sequence
information.

Grieff et al (
create a rep

Distribution
Shape

The distribution of the
clonotype frequency is
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sample distribution by
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the distribution are
estimated.

NA Model
parameters
of
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Probablistic
Model
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sequences. Flexibility of
modeling.
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modeling and
ignoring
sequence
information.

Guidani et a
the number
distribution.

Sequence
Information
based
methods

Hypothesis
Test

The TCRs shared among
the samples in a condition
compared to others might
be correlated with the
condition. Such TCRs can
be identified by hypothesis
tests.

Significance of
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absence of
specific TCRs in
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A bool
vector of the
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related
TCRs found
by the
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tests
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Classifiers

Each TCR can be
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of the
sequences.

Emerson et
method to
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TCRs.s Ritv
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sequences.
Manifold learning
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absolute position
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latent space

Density
distribution
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Algorithms
and
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Learning
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Computational
cost of
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Dash et al (
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Motif Local patterns such as (k-
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TABLE 1 | Continued

ML
ethods
mbined
with

Strength Weakness Notable Examples Relationship
with other
methods

is directly characterized
as a feature vector.

Katayama et al (43) applied a 3-mer feature vector
to repertoire classification tasks on small datasets.

Blackwell et
al., 82).
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el and
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rning

Utilizing all sequences to
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Applicable to data with
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or small number of
sequences. Generation
of pseudo data (for
simulatiion, data
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Validity of
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models.

Murugan et al (91) modelled the biological V(D)J
recombination process and used unselected
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Murugan's model to estimate the parameter of the
selection process. Pogorelyy et al (96) proposed a
method to quantify the abnormality of repertoire
using the generation probability from a generative
model.
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performance if sufficient
amount of data is
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and data
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Davidsen et al (107) proposed a VAE-based
model to embed TCR sequences into the latent
space. Widrich et al (102) proposed a
Transformer-like model for a repertoire
classification problem. Sidhom et al (110) used
another VAE-based model to solve various
regression/classification tasks.

Embedding
Methods are
closely related
with DL.

ious
rithms
DL

High flexibility in
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data with small sample
size and/or small
number of sequences
(after pre-training).

Model is not
explainable.

Cheng et al (166) employed a pre-trained general
protein language model for the peptide-MHC
binding prediction task. Shuai et al (137)
performed pre-training using the repertoire
sequence dataset (BCR) and measured the
performance on a single downstream task.
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encoding
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level

encoding
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good representation of
TCRs.

Generative
Models

The mechanisms of
generation and selection of
TCRs are the determinants
of TCR repertoire. Their
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additional information to the
observed and not-observed
repertoires.

NA Model
parameters
of the
generative
models
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Mo
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Deep
Learning
(DL)

Good representations of
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obtained by Deep learning
and may improve the
performance of various
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(See embedding
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more widely used, we need to further investigate the
transferability of the learned models and representations
further. In particular, we believe that studies on language
models can be explored. Language models are still improved in
NLP, with larger models being pursued. The application of these
language models in repertoire analysis is also to be investigated.

The other approach is to combine multiple models to exploit
more information in repertoire datasets. The hypothesis test-
based methods tend to make predictions based on a tiny subset of
specific TCRs, especially public TCRs, and ignore most of the
other TCRs in the dataset. In other words, these methods are
based on the exact match. This is contrary to a certain class of
motif-based or deep-learning-based methods that exploit all the
sequences in a sample by encoding them with a fixed-length
feature vector. In other words, these methods are based on fuzzy
matches. Actually, our group compared these two types of
methods and revealed that they provide different prediction
profiles (43). Two fuzzy-match-based methods yielded similar
predictions. This is intriguing because the two methods are based
on completely different methods (k-mer encoding on repertoire
level + GBDT vs. deep learning-based feature encoding +
attention mechanism). On the other hand, a hypothesis-based
method yielded very different predictions. This result suggests
that these methods may utilize different information and that
ensembling these approaches may result in a better performance
on smaller datasets.

While the repertoire data may possess the remaining
information that can be further exploited, a T cell population
cannot be characterized solely by the sequence information of
the TCR repertoire. We cannot predict all the nature of TCRs
only from the sequence information. Moreover, important
information is missing. For example, T-cell subpopulations
cannot be determined by sequence data itself. Therefore, the
integration of multimodal information is a promising direction
for further repertoire analysis. Most of the methods we reviewed
in this paper do not employ information other than TCR
sequences except one that integrates the physicochemical
properties of amino acids to repertoire datasets (90). We may
accommodate a lot more sources to analyze the repertoire
dataset. Actually, multi-omics analysis is recently explored
(181, 182). The multi-omics approach is usually used with
single-cell sequencing to connect multiple data at the single-
cell level. Currently, such multi-omics data is not yet popularly
Frontiers in Immunology | www.frontiersin.org 15
employed. However, some interesting findings have been
reported. For example, single-cell analysis of RNA-seq and
CDR3 revealed the correlation between the gene expression
and the frequent CDR3 sequences (182). Another source may
come from the 3D structure estimation methods, as the nature of
a TCR sequence is determined by the binding affinity to antigens.
A recent paper (183) encodes a BCR sequence to a feature vector
using the estimated 3D structure of the B cell receptor. Another
paper (184) utilizes 3D structure information to predict peptides
that bind well with a pair of TCR and MHC. In the paper, a
binding score matrix between peptide residues and TCR residues
is learned from the existing TCR-pMHC structures. The matrix
is then used to calculate the possible alternative peptide of the
TCR and MHC.

Toward this direction, hand-crafted models, which exploit
specific information based on human understanding, can be
effectively utilized to complement the data-driven models by DL.
By considering the fact that Alphafold2 (116) was realized by the
combination of a feature extraction method and loss function
based on chemical insights, it would be promising to unite hand-
crafted models with data-driven ones and to integrate
multimodal data in repertoire analysis.
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