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Abstract

Degenerative cervical myelopathy (DCM) is a spinal cord condition that results in progres-

sive non-traumatic compression of the cervical spinal cord. Spine surgeons must consider a

large quantity of information relating to disease presentation, imaging features, and patient

characteristics to determine if a patient will benefit from surgery for DCM. We applied a

supervised machine learning approach to develop a classification model to predict individual

patient outcome after surgery for DCM. Patients undergoing surgery for DCM as a part of

the AOSpine CSM-NA or CSM-I prospective, multi-centre studies were included in the anal-

ysis. Out of 757 patients 605, 583, and 539 patients had complete follow-up information at 6,

12, and 24 months respectively and were included in the analysis. The primary outcome

was improvement in the SF-6D quality of life indicator score by the minimum clinically impor-

tant difference (MCID). The secondary outcome was improvement in the modified Japanese

Orthopedic Association (mJOA) score by the MCID. Predictor variables reflected informa-

tion about pre-operative disease severity, disease presentation, patient demographics, and

comorbidities. A machine learning approach of feature engineering, data pre-processing,

and model optimization was used to create the most accurate predictive model of outcome

after surgery for DCM. Following data pre-processing 48, 108, and 101 features were cho-

sen for model training at 6, 12, and 24 months respectively. The best performing predictive

model used a random forest structure and had an average area under the curve (AUC) of

0.70, classification accuracy of 77%, and sensitivity of 78% when evaluated on a testing

cohort that was not used for model training. Worse pre-operative disease severity, longer

duration of DCM symptoms, older age, higher body weight, and current smoking status

were associated with worse surgical outcomes. We developed a model that predicted posi-

tive surgical outcome for DCM with good accuracy at the individual patient level on an inde-

pendent testing cohort. Our analysis demonstrates the applicability of machine-learning to

predictive modeling in spine surgery.
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Introduction

Degenerative cervical myelopathy (DCM) is a spinal cord condition that results in progressive

non-traumatic compression of the cervical spinal cord[1,2]. DCM is the most common cause

of spinal cord dysfunction globally and can result in significant impairment in quality of life

and function among affected patients[3]. Surgical decompression is the preferred treatment to

alter the course of DCM and has been shown to improve functional outcome and quality of

life in most but not all patients[4]. Indeed, the variability in extent of improvement in patients

undergoing surgery for DCM is striking[4–8].

Selecting patients who will benefit from surgery for DCM necessitates consideration of a

large quantity of information relating to disease presentation, imaging features, and patient

characteristics. Previous studies have used classical regression models to associate pre-opera-

tive clinical factors with surgical outcome and identified predictors of a good surgical outcome

[9–11]. Longer duration of DCM symptoms and more severe myelopathy have been identified

as the most significant predictors of a worse surgical outcome[6,12].

Machine learning is an approach to data modeling that combines computer science and sta-

tistics with the goal of delivering maximal predictive accuracy. In recent years a number of

studies have applied these new analytic tools to clinical databases to predict disease and treat-

ment outcomes for conditions as varied as radiosurgery for arteriovenous malformations,

childhood acute lymphoblastic leukemia, and subarachnoid hemorrhage[13–15]. These studies

demonstrate that machine learning techniques can achieve higher predictive power and

robustness than classical statistical methods.

In the present study our aim was to apply a supervised machine learning approach to

develop a classification model to predict individual patient outcomes after surgery for DCM. A

secondary aim was to use the machine learning approach to identify factors associated with a

good surgical outcome.

Materials and methods

Patient population

We conducted a post-hoc analysis of 757 patients with DCM enrolled in the prospective,

multi-center AOSpine CSM North America (CSM-NA; ClinicalTrials.gov NCT00285337) or

AOSpine CSM International (CSM-I; ClinicalTrials.gov NCT00565734) cohort studies. The

study received approval from the institutional review boards at the 12 participating sites (S2

Table). Patients were enrolled if they provided written consent and met eligibility criteria as

follows: 1) age� 18; 2) symptomatic DCM with one or more sign of myelopathy; 3) imaging

evidence of cervical cord compression; and 4) no prior cervical spine surgery. Exclusion cri-

teria were asymptomatic DCM, active infection, neoplastic disease, rheumatoid arthritis,

trauma, ankylosing spondylitis, or concomitant lumbar stenosis. All enrolled patients

underwent surgical decompression of the cervical spine, with or without an instrumented

fusion.

Surgical techniques

The surgical approach, number of operated levels, and use and type of instrumentation was at

the discretion of the treating surgeon. Patients were treated anteriorly by cervical discectomy

and/or corpectomy with fusion, or posteriorly, by laminectomy with or without instrumented

fusion or laminoplasty, or by a combined circumferential approach.
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Baseline data and outcome measures

Baseline data included variables pertaining to patient demographics (e.g., age, sex, weight, height,

race, education, etc.), clinical presentation (e.g., symptoms, signs, causative pathology, etc.), surgical

treatment (e.g., approach, number of cervical levels operated on, operation duration, etc.), and

detailed medical co-morbidities (previous MI, smoking history, cardiac pathology, psychiatric his-

tory, etc.). The pre-operative mJOA score, SF-36 score, neck disability index (NDI), and Nurick

score were collected[16–19]. Our goal was to generate a model that could predict surgical outcome

based on pre-operative clinical variables. We therefore did not include variables pertaining to the

type of surgery (anterior vs. posterior) or the number of spinal levels operated on in our final model.

Outcome measures were assessed at 6-months, 12-months, and 24-months after surgery.

The primary outcome measure was an improvement in quality of life as measured by the SF-6D

score, derived from the SF-36 questionnaire. An improvement in quality of life was defined as

an increase in the SF-6D score by 0.03, which represents the minimal clinically important differ-

ence (MCID)[20]. The secondary outcome measure was improvement in the mJOA score by at

least 2 points, which represents the average MCID for all pre-operative disease severities[11,19].

Data pre-processing and feature engineering

Missing data were handled in two ways. For features in which greater than 5% of data were miss-

ing the entire feature was eliminated. For features in which less than 5% of data were missing a

k-nearest-neighbor algorithm (kNN) was used to impute the missing data. All samples were

plotted in a 111-dimensional feature space and for each sample the 10 neighbors with the mini-

mum Euclidian distance were identified. Missing values were then imputed by calculating the

mean value among the 10 neighbors. Data pre-processing was carried out by creating dummy

variables for categorical features and centering and scaling the ordinal and continuous features.

Feature selection was carried out using recursive feature elimination. A random forest

model was generated with improvement in SF-6D as the outcome and the root mean squared

error (RMSE) was recorded. The feature importance was determined by calculating the num-

ber of trees that used each feature and the most important feature was eliminated. Next the

random forest model was generated with the remaining features and the process was contin-

ued iteratively until all features had been eliminated. The set of features that produced the low-

est RMSE was chosen as the final feature set. The data sets were split into a training/validation

and testing data set. The data were split such that class frequencies were equal between the

training/validation and testing datasets.

Model selection

Model selection, training, and testing was accomplished using RStudio™ with the Caret pack-

age for machine learning functionality.

Initial model selection was carried out by comparing a random forest, support vector

machine, logistic regression, simple decision tree, and artificial neural network (ANN) model

using all features with improvement in SF-6D as the outcome. For initial model comparison

4-fold cross validation with two repeats was used. The default hyper-parameters provided by

the Caret package were used for the random forest, support vector machine, logistic regres-

sion, decision tree, and artificial neural network models.

Model training and testing

To train the final models repeated 10-fold cross validation with 5 repeats were used to mini-

mize over-fitting[21]. Class imbalance was handled by up-sampling the under-represented
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class so that class frequencies were equal[22]. The number of random variables used at each

node in the tree was designated (M-TRY). The model was tuned using a grid search strategy to

vary M-TRY[21]. We used Area Under the Receiver Operating Characteristic (AUC) as the

performance metric to compare models.

Results

Data pre-processing

Of the 757 patients a varying number were excluded for incomplete follow-up information

leaving 605 patients with 6-month follow-up, 583 with 12-month follow-up, and 539 with

24-month follow-up. Baseline characteristics for the 6-month follow-up dataset can be seen in

(Table 1).

A varying number of dummy variables were created for the categorical features such that all

categorical features had only two classes. The pre-operative insurance information had greater

than 5% missing values and the features pertaining to insurance were therefore eliminated. All

other features had either none or less than 5% missing values. Next a k-nearest-neighbor algo-

rithm was used to impute missing values in the remaining features. Finally, the ordinal and

continuous variables were centered and scaled to a mean of 0 and standard deviation of 1. This

left 111 features to be carried forward into model selection and feature engineering.

Model selection

Model selection was carried out with all 111 features and the outcome was improvement in the

SF-6D score. A random forest, support vector machine, logistic regression, simple decision

tree, and artificial neural network model was trained using the 6-month, 12-month, and

24-month datasets. The fit and performance of the four models was compared in (Table 2).

The random forest model exhibited the best performance at all time-points with an area under

the receiver operating characteristic curve (AUC) of 0.64, 0.68, and 0.7 at 6-months,

12-months, and 24-months respectively. The random forest model also exhibited the best pre-

dictive performance at all time-points with an accuracy of 70%, 71%, and 69% at 6-months,

12-months, and 24-months respectively. The random forest model was thus chosen for further

optimization.

Feature selection

The recursive feature elimination algorithm was run using all 111 features and improvement

in the SF-6D score as the outcome (Fig 1). The feature set that produced the lowest RMSE was

chosen for model training and all other features were eliminated. This process of feature selec-

tion resulted in 41 features for the 6-month dataset, 108 features for the 12-month dataset, and

101 features for the 24-month dataset (S1 Table).

Model training and testing

The dataset was split with 70% of samples assigned to the training/validation dataset and 30%

to the testing dataset. A separate random forest model was trained using the selected features

for each follow-up time-point. At each follow-up time-point a separate model was trained with

improvement in SF-6D score and mJOA score as outcomes. The model fit during each cross-

validation run is summarized in (Fig 2). Models were tuned automatically using a grid search

strategy and the best performing model was chosen from the entire set of generated models.

The final random forest model had M-TRY of 9, 37, and 35 for the 6-month, 12-month, and

Using machine learning to predict outcome after surgery for DCM

PLOS ONE | https://doi.org/10.1371/journal.pone.0215133 April 4, 2019 4 / 12

https://doi.org/10.1371/journal.pone.0215133


24-month time-points, respectively. All random forest models used 500 trees with a tree depth

of 20.

The best performing model for each time-point and outcome was tested on the testing data-

set. Model performance is summarized in (Table 3). The best performance was achieved at the

12-month time-point with a accuracy of 77.0% and 71.3% when predicting improvement in

the SF-6D and mJOA score respectively. At other time-points the model performance was

Table 1. Baseline characteristics of combined training, validation, and testing dataset.

n = 605

Age (IQR) 56 (48,64)

Male 62.7%

Current Smoker 26.8%

Comorbidities

Previous MI 3.7%

Angina 6.7%

Congestive Heart Failure 0.9%

Cardiac Arrhythmia 2.2%

Hypertension 38.6%

Peripheral Arterial Disease 1.5%

Respiratory Disease 9.1%

Hepatic Disease 2.2%

Gastrointestinal Disease 12.4%

Pancreatic Disease 0%

Diabetes 13.3%

Psychiatric Disease 11.0%

Rheumatic Disease 4.5%

Previous Stroke 2.0%

Neuromuscular Disease 2.1%

Diagnosis

Disk Herniation 71.7%

Spondylosis 76.9%

OPLL 21.0%

HLF 24.4%

Subluxation 5.7%

Symptoms

Numb Hands 88.8%

Clumsy Hands 74.1%

Gait Difficulty 75.2%

Bilateral Arm Paresthesia 56.5%

L’Hermitte’s Parasthesias 26.6%

Weakness 82.3%

Signs

Corticospinal Distribution of Motor Deficits 62.4%

Atrophy of Hand Intrinsic Muscles 35.8%

Hyperreflexia 77.4%

Hoffman’s Reflex 62.0%

Babinski Reflex 35.3%

Lower Limb Spasticity 46.6%

Unstable Gait 58.4%

https://doi.org/10.1371/journal.pone.0215133.t001
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comparable with a accuracy range of (67.7% - 77.0%) and an AUC range of 0.68–0.73). Confu-

sion matrixes were generated for the testing data (Table 4).

Feature importance

The random forest models were analyzed to determine the features that were the most impor-

tant for prediction of the outcome. The most important features varied slightly between the

models for the different time-points. However, the following 6 features were ranked among

the 10 most important features at all time-points and for both outcome measures: age, dura-

tion of DCM symptoms, pre-operative mJOA score, pre-operative SF-6D score, current

smoker, body weight. The distribution of these top 6 features is summarized in (Fig 3).

Discussion

Surgical decompression is the preferred treatment for DCM and can result in long-term

improvement of myelopathic symptoms and quality of life in the majority of patients although

the extent of improvement can vary widely[4]. In this study we applied a machine learning

approach to a multi-centre prospective database and were able to predict outcome after sur-

gery for DCM at the individual patient level with good performance. In addition we identified

the following pre-operative variables as important predictors of surgical outcome: older age,

duration of DCM symptoms, pre-operative disease severity, body weight, and smoking status.

To our knowledge this is the first study to apply a machine learning approach to predict

Table 2. Comparison of model performance when predicting improvement in SF6D score.

AUC Accuracy

6 months 12 months 24 months 6 months 12 months 24 months

Random Forest 0.64 0.68 0.7 0.70 0.71 0.69

Support Vector Machine 0.65 0.62 0.7 0.64 0.67 0.68

Logistic Regression 0.58 0.63 0.67 0.62 0.60 0.65

Decision Tree 0.65 0.63 0.67 0.64 0.49 0.65

Artificial Neural Network 0.59 0.52 0.53 0.56 0.52 0.51

https://doi.org/10.1371/journal.pone.0215133.t002

Fig 1. Results of the recursive feature elimination algorithm applied to 6-month follow-up (A), 12-month follow-up (B), and 24-month follow-up (C). The figures

demonstrate the change in root mean squared error (RMSE) as features were iteratively added to the model. As greater number of features were added to the model the

RMSE decreased to a minimum value, demonstrating best model fit, then began to increase as greater numbers of ‘distracting’ features were added. The set of features

that achieved the minimum RMSE were used for model training (shown by vertical black line).

https://doi.org/10.1371/journal.pone.0215133.g001
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surgical outcome after DCM. These results can be applied to guide surgical decision-making

and support the results of previous studies using classical statistical methods.

In our initial analysis we compared a random forest (RF), support vector machine (SVM),

logistic regression (LR), simple decision tree (DT), and artificial neural network (ANN) model

on the entire feature set. The RF and SVM models outperformed the LR, DT, and ANN mod-

els. These results are similar to other studies that found that RF and SVM models outperform

classical LR and DT models on classification tasks on large health datasets[13,14]. This is

attributable to the ability of the RF and SVM models to model complex non-linear and condi-

tional relationships that may be missed by the LR and DT models. Of note, the ANN per-

formed poorly compared to the other tested models. This is likely due to the limited number

of training samples that were available to train the ANN. ANN models generally require a

Fig 2. Receiver operating characteristic curves for the random forest model at all follow-up points on the training/validation dataset. The blue lines

represent each cross validation fold.

https://doi.org/10.1371/journal.pone.0215133.g002

Table 3. Predictive performance of the random forest model on the testing dataset.

Samples Features Accuracy Sensitivity Specificity PPV NPV AUC

SF-6D

6 months 181 41 71.8% 0.75 0.50 0.90 0.25 0.71

12 months 181 108 77.0% 0.78 0.63 0.98 0.12 0.70

24 months 181 101 70.8% 0.74 0.47 0.92 0.17 0.73

mJOA

6 months 195 41 66.7% 0.70 0.59 0.82 0.43 0.73

12 months 188 108 71.3% 0.72 0.69 0.91 0.36 0.73

24 months 168 101 64.9% 0.63 0.80 0.96 0.23 0.67

https://doi.org/10.1371/journal.pone.0215133.t003
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higher number of training samples than SVM or RF models for adequate training [13]. The RF

model outperformed the SVM at all time-points. This is likely due to the ability of the RF

model to avoid over-fitting on datasets with a low sample to feature ratio. Our dataset had a

sample to feature ratio of approximately 5:1, which may have limited the ability of the SVM

model to converge on a local minimum. It is possible that a technique of dimensionality reduc-

tion, such as principle component analysis, would have increased the predictive performance

of the SVM model. A low ratio of samples to features is a common challenge encountered in

health datasets and RF models are thus well suited to classification tasks in this domain.

The RF model was then optimized using a process of feature selection and 10-fold cross val-

idation. When tested on the independent testing cohort of 180 patients the final RF model

identified patients who would benefit from surgery with a sensitivity of 75%, 78%, and 74%

and AUC of 0.71, 0.73, and 0.70 at 6, 12, and 24 months respectively. Given the complexity of

the pathology and patient cohort this is a good sensitivity and is comparable to what has been

achieved by machine learning models applied to other health datasets. On the validation

cohort our model achieved a higher AUC of 0.85, 0.83, and 0.87 at 6, 12, and 24 months

respectively. It is generally accepted that classification models will exhibit a certain degree of

over-fitting on the validation cohort. It is thus important to note that our model exhibited

good sensitivity and AUC on the testing cohort, which suggests our model is generalizable to a

broader patient population.

Comparison of our RF model with previously published regression models is limited due to

differences in methodology. In addition, previously published models did not utilize an inde-

pendent testing cohort to evaluate model performance and may therefore be susceptible to

over-fitting. A previously published model utilized a logistic regression to predict surgical out-

come at 12 months[9,23]. This model achieved an AUC of 0.74 on the validation cohort, while

our model achieved an AUC of 0.83 at the same time-point on the validation cohort. This pre-

viously published model was not tested on an independent testing cohort and a full compari-

son with our RF model is thus not possible. In addition this model defined a good surgical

outcome as a post-operative mJOA score� 16 at 12-months, while we defined a good surgical

Table 4. Confusion matrix showing the random forest model predictions for the independent testing dataset at 6,

12, and 24 months.

6 months

Prediction

Reference Not Improved Improved Totals

Not Improved 13 13 26

Improved 38 117 156

Totals 51 130

12 months

Prediction

Reference Not Improved Improved Totals

Not Improved 5 3 8

Improved 37 129 166

Totals 42 132

24 months

Prediction

Reference Not Improved Improved Totals

Not Improved 8 9 17

Improved 38 106 144

Totals 46 115

https://doi.org/10.1371/journal.pone.0215133.t004
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outcome as an improvement in the SF-6D or mJOA by the MCID, which further limits com-

parison. Nonetheless, our random forest model appears to outperform previously published

regression models.

While our model exhibited good sensitivity the specificity was moderate at 0.5, 0.47, and

0.63 at 6, 12, and 24 months respectively. This indicates that while our model was able to iden-

tify the majority of patients who benefit from surgery, it misclassified patients who did not

benefit from surgery approximately 50% of the time. This is likely due to the fact that the

majority (75–78%) of patients in the overall cohort benefited from surgery. Given the relatively

low number of patients in the cohort who did not benefit from surgery there were a limited

number of samples with a negative outcome to be used for model training. We attempted to

account for this class imbalance by using up-sampling. It is likely that a larger cohort of

patients with a negative surgical outcome would be required to further increase the perfor-

mance of our model.

Our RF model identified longer duration of DCM symptoms, worse pre-operative disease

severity, higher age, greater body weight, and current smoking status as being associated with

worse surgical outcomes. These results support the findings of previously published models

and expert consensus[24–28]. A previously published logistic regression model identified

higher age, longer duration of DCM symptoms, current smoking status, psychiatric comorbid-

ities, and gait impairment as being associated with worse surgical outcome, which is similar to

the results of our model[10,29]. A recent systematic review again identified worsened pre-

operative disease severity and longer duration of DCM symptoms as being associated with

worsened surgical outcome[12]. In summary our model using a machine learning approach

identified similar factors as being associated with surgical outcomes as previous models that

used classical statistical methods.

Our analysis addresses a number of limitations of previous studies. Our use of a machine

learning approach allowed us to model complex non-linear and conditional relationships,

Fig 3. Density plots for the top 6 most important predictive features selected by the random forest model. These density plots demonstrate the distribution of the

key features between the patients who did (blue) and did not (red) show improvement in SF6D at 1-year follow-up. In all key features there is overlap of the curves,

demonstrating that there is no one singe feature that can alone predict if a patient with DCM will improve with surgery.

https://doi.org/10.1371/journal.pone.0215133.g003
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avoid over-fitting, account for the non-normal distribution of outcomes, and generate individ-

ual patient-level predictions. Our model thus achieved better performance than previously

published models. In addition our model demonstrated good performance on an independent

patient cohort that wasn’t used for model training, which suggests our model is generalizable

to a broader patient population. Despite these strengths our study is subject to some limita-

tions. Firstly, approximately 29% of patients were lost to follow-up by the 24-month time-

point. Secondly, our model used pre-operative clinical variables relating to disease presenta-

tion, patient demographics, and medical comorbidities. We did not, however, include radio-

graphic parameters when training our model, as this information was not available for the

majority of the patients in our cohort. Our model would likely have performed better if fea-

tures relating to pre-operative magnetic resonance images (MRIs) had been included in model

training[30,31]. Finally, we were limited by the number of samples in our dataset. Although

we found we had enough samples to train a binary RF classification model with good accuracy,

we did not have sufficient samples to generate a multi-class model. In addition, we did not

have sufficient samples to train an ANN, which may have limited the predictive power of our

final model. These limitations highlight the importance of a large diverse dataset when

attempting to create a clinical prediction model. Although machine learning provides a power-

ful toolset to model complex patterns and generate predictions, machine learning models

require relatively large datasets to achieve optimum performance when compared to tradi-

tional statistical methods. Nonetheless, our model was able to address an important clinical

endpoint–improvement of the mJOA score and SF-6D score by the MCID.

Conclusion

We retrospectively applied a machine learning approach to a multi-centre cohort of patients who

underwent surgical decompression for DCM. Our final random forest model was able to predict

positive surgical outcome with good accuracy at the independent patient level on an independent

testing cohort that was not used for model training. Our model identified worse pre-operative

disease severity, longer duration of DCM symptoms, older age, higher body weight, and current

smoking status as being associated with worse surgical outcomes. To our knowledge our model,

using a machine learning approach, achieved a higher accuracy than previously published mod-

els. We identified longer duration of DCM symptoms, worse pre-operative disease severity,

higher age, higher body weight, and current smoking status as being associated with worse surgi-

cal outcomes, which supports the results of previous studies. Our analysis demonstrates the

applicability of machine-learning to predictive modeling in spine surgery.
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