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Abstract: It is well known that type-2 diabetes mellitus (T2D) is increasing worldwide, but also the
autoimmune form, type-1 diabetes (T1D), is affecting more people. The latest estimation from the
International Diabetes Federation (IDF) is that 1.1 million children and adolescents below 20 years
of age have T1D. At present, we have no primary, secondary or tertiary prevention or treatment
available, although many efforts testing different strategies have been made. This review is based on
the findings that apolipoprotein CIII (apoCIII) is increased in T1D and that in vitro studies revealed
that healthy β-cells exposed to apoCIII became apoptotic, together with the observation that humans
with higher levels of the apolipoprotein, due to mutations in the gene, are more susceptible to
developing T1D. We have summarized what is known about apoCIII in relation to inflammation and
autoimmunity in in vitro and in vivo studies of T1D. The aim is to highlight the need for exploring
this field as we still are only seeing the top of the iceberg.

Keywords: apolipoprotein CIII; type-1 diabetes; β-cells; apoptosis; inflammation; calcium channels

1. Introduction

Diabetes mellitus has been known for more than 3500 years, but still there are many
unanswered questions. It is a heterogeneous disease, mainly divided into type-1 (T1D),
consisting of 10–15% of the cases, and type-2 diabetes (T2D).

In T1D, there is a destruction of the insulin secreting pancreatic β-cells resulting in
insulin deficiency. Genetic, immunological and environmental factors are involved in the
pathogenesis, although it is likely that their relative contribution vary in different individuals.

T1D is an autoimmune disease and there are several biomarkers serving as risk
indicators. A genetic predisposition is required and certain high-risk human leukocyte
antigen (HLA) genotypes have been identified [1–3]. There is a genetic inheritance, but
only 15% of patients with T1D have a first-degree relative with the disease.

Autoantibodies, single or multiple, can be detected years before the onset of T1D and
are measurable signs of immunological activity although their pathogenic significance
remains unclear. In the general population, the risk of T1D is about 0.5% and studies have
found that the presence of one autoantibody increases the risk, but fewer than 10% of
those with a single autoantibody develop T1D [4]. In the Environmental Determinants of
Diabetes in the Young (TEDDY) study, where children with an increased genetic risk of
T1D have been followed since birth, they reported a 70% risk of developing T1D within
10 years in children with two or more autoantibodies [5]. As possible trigger factors,
initiating the destruction process of the β-cells, viral infections, D-vitamin, increased
insulin demand, toxins, chemical compounds, intestinal microbiota are examples of what
has been discussed [6]. A major problem to identify the triggering factor(s) is that, although
T1D usually appears during childhood or adolescence, it can be diagnosed at any age.
Another problem is that we have not had tools to in vivo measure ongoing β-cell death.
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In this review, we will focus on the pro-inflammatory factor apolipoprotein CIII
(apoCIII) and its possible role as a co-player in the multifaceted process that progressively
destroys the pancreatic β-cells resulting in T1D.

2. Apolipoprotein CIII, Structure and Function

ApoCIII is a 79 amino acid glycoprotein with a molecular weight of 8.8 kDa [7,8].
ApoCIII is mainly expressed in hepatocytes and, to a lesser extent, in enterocytes [9–12].
There are three different isoforms: apoCIII0, apoCIII1 and apoCIII2, with 0, 1 or 2 sialic acid
molecules bound to the protein [13,14]. The different isoforms contribute, respectively, to
approximately 10, 55, and 35% of the total apoCIII levels in circulation [15]. The importance
of the post-translational modification has been discussed. Mutagenesis of the glycosylation
site and expression in cell lines suggest that intracellular glycosylation is not required for
transport and secretion [16]. It has also been demonstrated that lack of glycosylation does
not affect the binding of apoCIII to very low-density lipoproteins (VLDLs) [16]. However,
nearly two decades later, it was shown that the kinetics of the isoforms apoCIII1 and CIII2
show the strongest correlation to hypertriglyceridemia and reduced VLDL, intermediate-
density lipoproteins (IDLs) and apoB-100 catabolism, which are important risk factors for
cardiovascular diseases (CVDs) [17]. Furthermore, the degree of sialylation affects the
hepatic clearance by triglyceride-rich lipoprotein (TRL) receptors [18]. There was a similar,
concentration-dependent, inhibitory effect on lipoprotein lipase (LPL) activity when total
and the three isoforms of apoCIII from patients with CVD were tested separately [19]. Nei-
ther was there a difference in the increase in cytoplasmic free Ca2+ concentration ([Ca2+]i)
upon depolarization in pancreatic β-cells exposed to the three isoforms of apoCIII [20].

ApoCIII is the most abundant C-apolipoprotein in humans and is present on TRLs,
high-density lipoprotein (HDL) and low-density lipoprotein (LDL) particles [21–25]. ApoC-
III has been defined as an important serum factor involved in lipid metabolism [23,24,26].
The main pathways by which apoCIII exerts its actions are the inhibition of lipoprotein
lipase (LPL)-mediated lipolysis and the prevention of the hepatic clearance of TRL via the
LDL receptor (LDLR) and LDL-related protein 1 (LRP1) [27–32]. Both mechanisms are
tightly related since the clearance of circulating triglycerides (Tgs) is linked to lipolysis of
TRLs by LPL [27–32].

3. ApoCIII Gene Regulation

The gene-encoding human apoCIII is located in a cluster between APOAI and APOAIV
on chromosome 11 [33–35]. The cluster gene, and specifically apoCIII gene expression, is
under the control of a common enhancer located 590 to 790 nucleotides upstream of the
apoCIII gene [35–37]. There are a number of factors involved in the regulation of the gene,
but glucose, insulin and cytokines are of particular interest in relation to diabetes [38–41].

3.1. Insulin

Under physiological conditions, apoCIII gene expression is negatively regulated by
insulin, which represses the activity of the apoCIII promoter activity via inhibition of
the insulin/phorbol ester responsive element (IRE) within the apoCIII gene [42–44]. The
inhibitory action of insulin on the gene expression is mediated by the nuclear transcription
factor forkhead box O1 (Foxo1), known as signal transductor of insulin for liver gluconeoge-
nesis [38,45,46]. The sequence −498/−403 located in the apoCIII promoter, containing an
IRE that mediates the repressing action of insulin on apoCIII gene expression, is also a tar-
get site for Foxo1 [38]. Thus, Foxo1 is suggested to be the responsible mediator regulating
apoCIII promoter activity in response to insulin [38].

3.2. Glucose

In contrast to insulin, glucose increases apoCIII gene expression in rodents and hu-
mans both in vitro and in vivo [38,39]. However, for many years, the mechanisms by
which glucose controls the apoCIII gene remained unknown. Glucose-mediated liver gene
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regulation relies on the carbohydrate response element-binding protein (ChREBP), together
with the participation of other factors for the glucose response, such as the hepatocyte
nuclear receptor-4α (HNF-4α) and liver X receptors (LXRs) [47–52]. The effect of glucose
on apoCIII gene expression has been shown to be mediated by activation of liver pyruvate
kinase (PK), ChERBP and HNF-4α [39]—the latter is required for intestinal and hepatic
apoCIII expression by the interaction with its binding site in the enhancer of the apoCIII
gene [53]. It is also an essential participant of the glucose response complex on the hepatic
PK promoter [51].

3.3. Cytokines

Other factors regulating apoCIII gene expression are pro-inflammatory cytokines
and signaling molecules [40,41]. The acute phase inflammatory response is mediated by
cytokines such as tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6. TNF-α
and IL-1 control apoCIII gene expression by repressing the promoter activity of the gene. It
has been shown in vitro, that TNF-α-induced complexes are related to C/EBPδ/NF-IL6-β
(CAAT enhancer-binding protein δ/nuclear factor/IL6-β) and p50 and that overexpression
of C/EBPδ mimics the repressing effect of TNF-α on the promoter activation of the apoCIII
gene. Additionally, it appears that the proximal and distal regulatory elements, CIIID and
CIII-I, respectively, also bind to factors activated by different signaling pathways such as
the nuclear factor kappa-B (NF-κB) that in a complex way, involving multiple regulatory
elements, influences the apoCIII production rate [54].

4. ApoCIII and Inflammation
4.1. Vascular Effects

It has been established for many years that there is a relationship between apoCIII and
CVD [55–59]; the nature of this is not only due to modulations in lipoprotein metabolism,
but also inflammation, which is regarded as an important part of the development of
atherosclerosis. ApoCIII-rich lipoproteins, as well as apoCIII itself, increase the adhesion of
monocytes to vascular endothelial cells (ECs) by activation of protein kinase C-α (PKC-α),
NF-κB and β1-integrins in monocytes [55,56,60]. The expression of vascular cell adhesion
molecule-1 (VCAM-1) in ECs is also increased by apoCIII, thus facilitating adhesion of
monocytes and thereby the development of atherogenesis [55].

Another effect of higher levels of apoCIII is an increased sialylation of the lipopro-
tein and it is the sialylated isoforms that can induce an increased secretion of the pro-
inflammatory mediators IL-6, IL-8 and TNFα, as well as expression of intracellular adhesion
molecule (ICAM-1) [61].

4.2. Inflammasomes

Inflammasomes are large intracellular multi-protein multimeric complexes that have
the ability to integrate a number of signals from pathogen-associated molecular patterns
(PAMPs), derived from invading pathogens and danger-associated molecular patterns
(DAMPs) derived from endogenous stress, into a pro-inflammatory response [62]. The
nod-like pyrin domain-containing 3 (NLRP3) inflammasome is the most studied and it is
related to a variety of diseases and, therefore, there has been interest in finding endogenous
factors that induce the sterile inflammation mediated by the inflammasome with the aim
to find new therapeutic targets [63]. When serum lipoproteins were tested for their ability
to induce IL-1β in human monocytes, apoCIII was identified as an activator of the NLRP3
inflammasome [63]. Interestingly, apoCIII induced an alternative inflammasome activation
by heterotrimerization of Toll-like receptors 2 and 4 and the Toll-like receptor adapter
protein SCIMP (SLP adaptor and CSK interacting membrane protein) [63]. These data are
of importance for understanding the regulation of the NLRP3 inflammasome and thereby
providing new possibilities for preventive treatment strategies.

Interestingly, a number of viruses have been associated with T1D, including en-
teroviruses, rotavirus, parechovirus, rubella and mumps virus. [64]. The relationship
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between viral infections and autoimmune diabetes is complex, involving several mecha-
nisms, and, with the knowledge that apoCIII activates NLRP3 inflammasome, a possible
contributing pathway is depicted in Figure 1.
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Figure 1. Possible mechanisms by which viral infections can induce β-cell death. Activation of
inflammasomes and cytokine release upon viral infections can be participating in β-cell death
leading to insulin deficiency and hyperglycemia. This results in elevated apoCIII, which mediates an
alternative activation of inflammasomes.

5. ApoCIII and Autoimmunity

ApoCIII was discovered in 1969 [7], but little is known about whether there is a link
to autoimmunity. To the best of our knowledge, this lipoprotein has only been studied in
systemic lupus erythematosus (SLE) [65], primary antiphospholipid syndrome (PAPS) [66]
and T1D [20,67].

SLE is a chronic inflammatory autoimmune disease. One severe manifestation, affect-
ing the kidneys in 60% of adults and 80% of children with SLE, is lupus nephritis. Analysis
of serum levels of apoCIII in controls and SLE patients with and without nephritis revealed
that there was an increase in those with nephritis [63]. As atherosclerosis in SLE patients is
not solely depending on traditional risk factors [68,69], the authors suggest that the increase
in the pro-atherogenic apoCIII could be a contributing factor to the renal complication and
might be used as a biomarker for the risk of developing nephritis and atherosclerosis [65].

PAPS is characterized by the presence of antiphospholipid antibodies and idiopathic
thrombosis. Proteomic analysis of serum samples from 14 patients with PAPS and 17 sex-
and age-matched controls was performed with the aim to identify proteins that could
be used in the evaluation, diagnosis and prognosis of PAPS. Of 65 proteins, nine were
upregulated in relation to serum from control subjects. Four of these: fibrinogen α-chain,
fibrinogen γ-chain, α-1-glycoprotein-1 and apoCIII, are according to the authors function-
ally involved in processes associated with the induction of a procoagulant state and with
autoimmune response, but to confirm the findings they conclude that more studies are
necessary [66].

The serum levels of apoCIII are increased in T1D [70–79]. This can probably, to a major
extent, be explained by the fact that insulin induces a dose-dependent down-regulation of
the apoCIII gene at the transcriptional level [42].

Sera from a group of patients with T1D and first-degree relatives affected intracellular
Ca2+-handling in healthy pancreatic β-cells, but this was not correlated to the presence of
autoantibodies [80].

Based on the few available data, it is not possible to exclude that there can be a link
between apoCIII and autoimmunity, but this needs to be further investigated.



Int. J. Mol. Sci. 2021, 22, 932 5 of 13

6. T1D and ApoCIII
6.1. Serum

We have previously shown that exposing pancreatic β-cells to serum from patients
with T1D increases the activity of voltage-gated Ca2+-channels (CaV) [81]. This leads to
increased cytoplasmic free Ca2+ concentration ([Ca2+]i) and apoptosis. These effects can be
prevented by Ca2+-channel blockers [81]. To identify what it was in the diabetic sera that
induced the observed effects, several different fractions of sera were tested. Finally, we were
able to establish apoCIII as the responsible factor and that the levels of this apolipoprotein
were increased in sera from TID patients compared to healthy control subjects [20]. As a
proof of concept, diabetic serum and pure apoCIII added to normal sera, with and without
antisera against apoCIII, were tested and all confirmed that increased levels of apoCIII are
detrimental to β-cells [20].

6.2. Voltage-Gated L-Type Ca2+ Channels

The CaV is a key player for the function of insulin-secreting cells. CaV channels
are divided into low- and high-CaV channels depending on their activation thresholds.
The L-type channels have a larger unitary conductance and mediate long-lasting currents
(L for larger and long-lasting). In β-cells, the major type of CaV channels is the CaV1 that
conducts L-type Ca2+ currents. The channels, located in the plasma membrane, regulate in
a very strict way the influx of Ca2+ to the cytoplasm. Membrane depolarization changes the
channels from an impermeable to a Ca2+ permeable state [82]. Exposing cells to T1D serum
hyperactivated the subtypes CaV1.2 and CaV1.3 channels by increasing their conductivity
and number [83].

Although the exact molecular mechanisms are not known, it has been demonstrated
that apoCIII hyperactivates the CaV-channel through scavenger-receptor class BI (SR-BI)/β1
integrin-dependent co-activation of protein kinase A (PKA) and proto-oncogene tyrosine-
protein kinase Src (Src) [84].

The increase in Ca2+-channel activity was seen in primary β-cells and β-cell lines, but
also in non-β cells, indicating that the observed effects could be of interest not only for
β-cells, but as well for cells in other tissues involved in diabetes complications [20,81,85].

In the β-cell line INS-1E, it was demonstrated that elevated levels of apoCIII induced
apoptosis by activating the mitogen activated protein kinase (MAPK) p38 and the extra-
cellular signal-regulated kinases 1/2 (ERK1/2). If cells were exposed to the L-type Ca2+

channel blocker nimodipine, prior to apoCIII, these effects were prevented [86].
Changes in [Ca2+]i are playing a major role for the stimulus-secretion coupling leading

to secretion of insulin from the β-cells, and the apoCIII-mediated hyperactivation of the
voltage-gated Ca2+ channels resulted in apoptosis that could be prevented by a Ca2+-
channel blocker [20,81]. There is a study where they used multiple doses of streptozotocin
(STZ) to induce insulin-deficient diabetes in mice and on the fifth and last day of the STZ
treatment they started to give verapamil, a Ca2+-channel blocker, in the drinking water.
The control mice became diabetic, while those given verapamil remained normoglycemic.
Immunohistochemistry revealed that in pancreases from the verapamil-treated mice, there
were normal insulin containing islets, while in the only STZ-treated mice the islets were
destroyed [87]. Although there are no data on apoCIII in this study, it shows the importance
of [Ca2+]i.

Changes in [Ca2+]i, upon depolarization, were measured in β-cells incubated overnight
with sera from children and adults with T1D, first-degree relatives and healthy controls
from Finland, Sweden and Miami, FL, USA. Around 30% of the tested sera from T1D
patients and first-degree relatives interfered with intracellular Ca2+ handling. This effect
was not correlated, as mentioned in Section 5, to the presence of autoantibodies, neither to
ethnic background, age or gender [80].
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6.3. Cytokines

When islets from neonatal rats were incubated with the islet cytotoxic cytokines, IL-1β
and interferon-γ, to mimic the intraislet inflammatory milieu seen in T1D, the addition of
apoCIII to the incubation medium provided protection against apoptosis by degradation
of the inhibitor of κB (IκB) and stimulation of the phosphorylation of survival serine-
threonine kinase Akt [67]. Initially, these data seemed contradictory to the data on primary
β-cells from adult animals and β-cell lines where apoCIII induced apoptosis. However, the
explanation to this discrepancy may be that the levels of apoCIII in neonatal islets are very
low and that the addition of the apolipoprotein to the medium with cytokines increased it
to levels within the normal range [88]. This is in line with the observations in humans and
rodents that not only high, but also too-low, levels of apoCIII are harmful to [89,90].

6.4. In Vivo Effects

In the diabetes-prone Biobreeding (DPBB) rat, which develops human-like T1D within
a narrow time window of around 60 days [91–93], the onset of diabetes was prolonged
when apoCIII was lowered during 28 days of the prediabetic phase (from 12 to 40 days of
age), when the rats were not insulin deficient and had normal blood glucose levels [93].
These data indicate that other mechanisms mediated by apoCIII can be involved in the
development of T1D before the β-cells are destroyed, resulting in a lack of insulin and
upregulation of the gene.

The association between T1D and haplotypes within the apoCIII gene has been
tested [94]. DNA was collected from 584 T1D patients and 591 control subjects. The
samples were genotyped for six single nucleotide polymorphisms in the apoCIII gene
(C-641A, C-482T, T-455C, C1100T, C3175G, and T3206G). Two alleles of a haplotype block
in the promotor region, containing an insulin response element, were identified to be
associated with T1D. The frequency of the A-T-C-C allele was higher, while that of the
C-C-T-C allele was reduced, in T1D. Based on these findings a model of the etiology of
T1D was proposed by the authors. A haplotype block that includes genetic variants within
the regulatory region of the apoCIII promoter results in increased levels of apoCIII and
β-cell apoptosis. The progressive reduction of β-cells reduces insulin secretion and further
increases apoCIII by the lack of down-regulation of the gene expression by the negative
insulin response element. The vicious cycle continues until onset of TID [94].

Many studies have confirmed that elevated apoCIII confer increased risk of macrovas-
cular diseases [61,79,95–101]. In normolipidemic subjects with T1D, higher circulating
levels of apoCIII are associated with changes in subclasses of lipoproteins and an in-
creased risk of CVD [102]. Furthermore, an independent positive association between
levels of apoCIII and microvascular complications has been demonstrated in patients
with T1D [103].

7. Concluding Remarks

T1D, previously called juvenile diabetes, is a disease that can be diagnosed at any
age, although the onset is more common at younger ages. It belongs to the autoimmune
diseases and it is the vital insulin-secreting pancreatic β-cells that are destroyed. This
process of destruction occurs in genetically susceptible individuals during interaction
with an immune system that does not distinguish foreign tissue from own tissue, and one
or more environmental factors. Although much effort has been made to try to identify
underlying mechanisms, we still lack the knowledge of how to prevent or stop ongoing-β-
cell destruction.

The discovery that healthy β-cells undergo apoptosis if they are exposed to serum
from T1D patients and that the responsible serum factor was identified to be apoCIII has
created a new and exciting field for investigations (Figure 2).
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Figure 2. A schematic overview of factors involved in the development of type-1 diabetes (T1D).
The background rests on three pillars: genetic predisposition, a dysfunctional immune system and
environmental factors. The autoimmune attack on the pancreatic islet β-cells starts. ApoCIII increases
the activity of voltage-gated Ca2+-channels, thereby increasing [Ca2+]i resulting in apoptosis. The
progressive decrease in insulin and rise in glucose in the blood diminish the inhibition of the apoCIII
gene and the increase in apoCIII hyperactivates Ca2+-channels, and a vicious circle is established.

ApoCIII is an interesting small protein that, for many years, has been known to be
a risk factor for CVD [55–57] and, in diabetes, most of the complications are related to
vascular changes. There are studies on CVD in patients with T1D that show an association
with apoCIII [79,102,103]. In the prospective Coronary Artery Calcification Study in Type
1 Diabetes (CACTI), elevated serum apoCIII was observed to be a risk factor for CVD
and, although not independent from Tgs, it was a stronger predictor than Tgs [79]. An
accumulation of atherogenic lipoproteins in the artery wall, promoted by the increased
levels of apoCIII, was suggested as a possible underlying mechanism [79]. When carotid
intima-media thickness was measured cross-sectionally and prospectively in subjects with
T1D, it pointed to an adverse association to apoCIII [104]. Data from humans reveal that
HDL containing apoCIII no longer acts as the “good protective cholesterol”, but instead
is related to an increased risk of atherogenesis and diabetes, which further confirms the
complexity of this apolipoprotein [105,106].

Several studies have concluded that individuals with mutations in the apoCIII gene,
which results in life-long lower levels of the apolipoprotein, are healthier with a favorable
pattern of lipoproteins, increased insulin sensitivity, lower incidence of hypertension and
they live longer [107–110]. These data are important since they emphasize that lower than
what is considered to be normal levels of apoCIII improve health.
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In recent years, the focus regarding apoCIII and its effects has expanded, and this
broadened perspective includes T1D. As lowering of apoCIII during a period of the predia-
betic phase in the BB rat animal model for T1D delayed the time to onset; it is of interest to
investigate whether it is possible, by prolonging the treatment, to prevent the disease. So
far, antisense against apoCIII has been used to decrease the lipoprotein, but there are other
options such as siRNAs and monoclonal antibodies that can be tested. Furthermore, there
is a need to investigate if there is a link to the autoimmune attack against the β-cells and
also if viral infections related to T1D involve changes in apoCIII.

The complexity behind the development of T1D is challenging and we need to find the
pieces lacking in the jigsaw puzzle to be able to understand the multifaceted pathogenesis
of this devastating disease.
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ERK1/2 Extracellular signal-regulated kinases 1/2
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IDL Intermediate-density lipoproteins
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IκB Inhibitor of κB
LDL Low-density lipoprotein
LDLR LDL receptor
LPL Lipoprotein lipase
LRP1 LDL-related protein 1
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MAPK Mitogen activated protein kinase
NF-κB Nuclear factor kappa-B
NLRP3 Nod-like pyrin domain-containing 3
PAMPs Pathogen-associated molecular patterns
PK Pyruvate kinase
PKA Protein kinase A
PKCα Protein kinase C α

SCIMP SLP adaptor and CSK-interacting membrane protein
SLE Systemic lupus erythematosus
SR-BI Scavenger-receptor class BI
Src Proto-oncogene tyrosine-protein kinase Src
T1D Type-1 diabetes
T2D Type-2 diabetes
TEDDY The Environmental Determinants of Diabetes in the Young
Tgs Triglycerides
TNF-α Tumor necrosis factor α
TRL Triglyceride-rich lipoprotein
VCAM-1 Vascular cell adhesion molecule-1
VLDL Very low-density lipoproteins
[Ca2+]i Cytoplasmic-free Ca2+ concentration
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