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Abstract

 

Glycogen synthase kinase (GSK)-3 is a protein serine/threonine kinase that regulates differenti-
ation and cell fate in a variety of organisms. This study examined the role of GSK-3 in antigen-
specific T cell responses. Using resting T cells from P14 T cell receptor (TCR)-transgenic mice
(specific for the lymphocytic choriomeningitis virus and H-2D

 

b

 

), we demonstrated that GSK-
3

 

b

 

 was inactivated by serine phosphorylation after viral peptide–specific stimulation in vitro.
To

 

 

 

further investigate the role of GSK-3, we have generated a retroviral vector that expresses a
constitutively active form of GSK-3

 

b

 

 that has an alanine substitution at the regulatory amino
acid, serine 9 (GSK-3

 

b

 

A9). Retroviral transduction of P14 TCR–transgenic bone marrow
stem cells, followed by reconstitution, led to the expression of GSK-3

 

b

 

A9 in bone marrow
chimeric mice. T cells from chimeric mice demonstrate a reduction in proliferation and inter-
leukin (IL)-2 production. In contrast, in vitro assays done in the presence of the GSK-3 inhib-
itor lithium led to dramatically prolonged T cell proliferation and increased IL-2 production.
Furthermore, in the presence of lithium, we show that nuclear factor of activated T cells (NF-
AT)c remains in the nucleus after antigen-specific stimulation of T cells. Together, these data
demonstrate that GSK-3 negatively regulates the duration of T cell responses.
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Introduction

 

Understanding the signaling pathways associated with
TCR activation may provide insights that clarify the intra-
cellular mechanisms of costimulation in addition to under-
standing the sensitivity of TCR interactions that range
from antagonism to full T cell activation. TCR interactions
lead to phosphorylation of CD3 chains and the associated 

 

z

 

chains by lck and the activation of ZAP-70, followed by
the induction of the extracellular signal–regulated kinase–
mitogen-activated protein kinase (ERK–MAPK) pathway.
In addition, the activation of phospholipase C

 

g

 

 generates
phospholipid second messengers that activate protein kinase
C, calcium mobilization, and the downstream calcineurin/
nuclear factor of activated T cells (NF-AT)

 

1

 

 pathway (1–3).

One kinase that has not been well defined in TCR signal-
ing is glycogen synthase kinase (GSK)-3.

The two members of the protein serine/threonine ki-
nase GSK-3 family, GSK-3

 

a

 

 and 

 

b

 

, are involved in regu-
lating cell fate and differentiation in a variety of organisms,

 

including 

 

Dictyostelium

 

, 

 

Xenopus

 

, and 

 

Drosophila

 

 (4, 5). Un-
like most kinases, GSK-3 is active in resting cells. Stimula-
tion with mitogens or growth factors leads to the inactiva-
tion of GSK-3

 

b

 

 by phosphorylation of the regulatory
serine residue at position 9 (6, 7). There is evidence that
GSK-3 is downstream of the wingless pathway (8–10) as
well as the ERK–MAPK pathway (4, 8). GSK-3 acts on a
wide variety of substrates including glycogen synthase, c-Jun,
c-Myc, and eIF-2B (4, 5). Beals et al. have shown that
GSK-3 enhances nuclear export of NF-AT in brain ex-
tracts and transient transfection of COS cells, thereby neg-
atively regulating this pathway (11). Welsh et al. have
shown that GSK-3 can be inactivated by treatment with
PMA and ionomycin in peripheral human lymphocytes
(12). These studies suggest that GSK-3 may play a role in
T cell proliferation in vivo.
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 gp, glycoprotein peptide; GSK, glycogen
synthase kinase; LCMV, lymphocytic choriomeningitis virus; MSCV,
murine stem cell virus; NF-AT, nuclear factor of activated T cells; RAG,
recombinase-activating gene.
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We have examined the role of GSK-3 in antigen-specific
T cell responses. Together, biochemical analysis

 

, 

 

bone
marrow chimeric mice expressing a constitutively active
form of GSK-3

 

b

 

, and studies using inhibitors demonstrate
that GSK-3

 

b

 

 regulates NF-AT localization, antigen-spe-
cific T cell proliferation, and IL-2 production.

 

Materials and Methods

 

Mice.

 

P14 TCR–transgenic mice (327 line) express a V

 

a

 

2/
V

 

b

 

8.1 heterodimer specific for lymphocytic choriomeningitis vi-
rus (LCMV) glycoprotein peptide (gp) p33 (KAVYNFATM) and
H-2D

 

b

 

 (13). The P14 receptor is expressed on 70–90% of mature
CD8

 

1

 

 T cells. We have also bred the P14 TCR on a recombi-
nase-activating gene (RAG)2

 

2

 

/

 

2

 

 background (H-2

 

b

 

). These mice
were bred and maintained under specific pathogen–free condi-
tions according to institutional guidelines. C57BL/6 mice were
purchased from The Jackson Laboratory.

 

Western Blot Analysis.

 

2–5 

 

3

 

 10

 

6

 

 cells were lysed in gentle
soft buffer (10 mM NaCl, 20 mM Pipes, pH 7, 0.5% NP-40,
0.05% 2-ME, and inhibitors 0.1 mM PMSF, 100 

 

m

 

M Na

 

3

 

VO

 

4

 

,
leupeptin, 50 mM NaF, and 1 mM benzamidine) and run on
SDS-PAGE. Western blots were probed with hemagglutinin
(HA)-specific antibodies (Upstate Biotechnology) to detect the
expression of the retroviral GSK-3

 

b

 

A9, or phospho-specific
GSK-3

 

b

 

 (serine 9 specific; New England Biolabs, Inc.) or anti-
GSK-3 (Upstate Biotechnology). Laser scanning densitometry
(Molecular Devices) was used to determine fold increase in phos-
pho-GSK-3

 

b

 

 relative to the AV-stimulated control at each time
point. Densitometry readings were taken as the sum above back-
ground.

 

Generation of Retroviruses and Bone Marrow Chimeras.

 

Recom-
binant retroviruses were packaged using a packaging cell line
GP

 

1

 

E and titrated on NIH 3T3 cells as previously described
(14). Packaging cell lines producing high-titer viruses (10

 

6

 

 CFU/
ml) were used to infect bone marrow from 2–4-mo-old P14
TCR–transgenic mice as previously described (15). In brief, cells
were cultured at 5 

 

3

 

 10

 

5

 

 cells/ml in IMDM supplemented with
50 

 

m

 

M 2-ME, 10% heat-inactivated FCS (Sigma-Aldrich), and
IL-3– and IL-6–conditioned media. After 48 h, bone marrow
cells were cocultivated with the packaging cell line producing the
replication-defective retroviruses for a further 48 h. Selection of
bone marrow cells was done with 0.75 mg/ml G418 (GIBCO
BRL) for 24 h. Approximately 10

 

6

 

 cells were infused into irradi-
ated recipients (900 rads), and animals were reconstituted for
8–12 wk.

 

Proliferation Assays and IL-2 Production.

 

Splenocytes (2 

 

3 

 

10

 

5

 

)
were cocultivated with 10

 

5

 

 irradiated C57BL/6 splenocytes as
APCs that were previously pulsed with 10

 

2

 

7 

 

M peptides for 1–2 h
at 37

 

8

 

C in 96-well flat-bottomed plates. After 48 h, 1 

 

m

 

Ci of
[

 

3

 

H]thymidine (NEN Life Science Products) was added to the
wells and cultured overnight. Cells were harvested and counted
on a Matrix 96 direct 

 

b

 

-counter (Canberra Packard). The pep-
tides have been characterized to be a strong agonist ligand, p33
(KAVYNFATM); a weaker agonist, A4Y (KAVANFATM); or a
nonstimulatory control ligand, AV (SGPSNTPPEI) (16, 17).
Peptides were generated and purified as previously described
(16). In some assays, 10 mM LiCl was added, or as a control, 10
mM KCl.

For IL-2 production, supernatants were removed at the time
points indicated in Figs. 3 and 4. IL-2 activity was assayed by pro-
liferation of the IL-2–dependent CTLL-2 cell line. 5 

 

3

 

 10

 

3

 

CTLL-2 cells were cultured with the supernatant for 24 h, fol-
lowed by a pulse of 1 

 

m

 

Ci of [

 

3

 

H]thymidine overnight.

 

Immunofluorescence.

 

10

 

5

 

 cells were stained with antibodies spe-
cific for CD4, CD8, V

 

b

 

8, or V

 

a

 

2 (PharMingen) in PBS, 1%
FCS, and 0.1% sodium azide. Cells were washed once and then
fixed in 1% paraformaldehyde.

For intracellular NF-ATc staining, P14 TCR RAG

 

2

 

/

 

2

 

 sple-
nocytes were cocultivated with thioglycollate-stimulated mac-
rophages pulsed with the LCMV-gp peptide p33. After 3 d in the
presence of 10 mM KCl or LiCl, cells were harvested and spun
onto slides. Cells were dipped in acetone for 15 s, followed by
methanol for 6 min. Slides were incubated in blocking buffer
(PBS, 2% FCS, 5% donkey serum, 5% BSA) for 1 hr, followed by
anti–NF-ATc1 (a gift from G. Crabtree, Stanford University,
Stanford, CA) for 72 h. After washing, the donkey anti–mouse
secondary antibody (The Jackson Laboratory) was added for 1 h,
followed by streptavidin–FITC (Sigma-Aldrich).

 

Results and Discussion

 

Studies have suggested that GSK-3 may be involved in
lymphocyte activation (11, 12). To determine whether an-
tigen-specific stimulation of lymphocytes inactivates GSK-3,
naive CD8

 

1

 

 splenocytes were sorted from P14 TCR–
transgenic mice (specific for LCMV-gp [amino acid 33–41,
p33] and H-2D

 

b

 

) and stimulated with macrophages pulsed
with the antigenic ligand p33 or a control peptide AV (Fig.
1). Western blot analysis using an antibody specific for in-
active GSK-3

 

b 

 

(GSK-3 serine phosphorylated at position
9) shows an increase in phosphorylated GSK-3

 

b

 

 after pep-
tide-specific stimulation. Densitometry analysis indicates
that the amount of phosphorylated GSK-3

 

b

 

 has increased
one- to twofold. This demonstrates that GSK-3

 

b

 

 becomes
inactivated after antigen-specific T cell stimulation.

Previous studies have demonstrated that a substitution of
alanine for serine at amino acid position 9 of GSK-3

 

b

 

 leads
to constitutive kinase activity in human cell lines and trans-
genic mice (7, 18). To understand the role of GSK-3 in T
cell responses, an HA-tagged constitutively active form of
GSK-3

 

b

 

 (GSK-3

 

b

 

A9) was cloned into the retroviral vector
murine stem cell virus (MSCV; Fig. 2 A; reference 14). Ex-
pression was confirmed by transfecting NIH 3T3 cells with
MSCV/GSK-3

 

b

 

A9 and examining expression by Western
blot analysis using HA-specific mAbs (Fig. 2 B). A high-
titer packaging cell line for MSCV/GSK-3

 

b

 

A9 and control

Figure 1. TCR-specific stim-
ulation leads to inactivation of
GSK-3. CD8-purified P14
TCR–transgenic T cells were
incubated with macrophages
pulsed with the antigenic ligand
p33 (P) or nonstimulatory ligand
AV (A). After the indicated time
periods, cells were lysed and ana-
lyzed by Western blot using
phospho-serine–specific GSK-3
antibodies. Numbers indicate the
densitometry measurements as
fold increase relative to AV-
treated cells. Total GSK-3 was
shown as a control.
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MSCV was obtained (10

 

6 

 

CFU/ml) and used to infect
bone marrow stem cells from P14 TCR–transgenic mice.
The frequency of bone marrow precursors that were trans-
duced with the retrovirus was quantitated by selecting cells

with neomycin. Routinely, 60–90% of stem cells carried
the selectable marker. These cells were used to generate
bone marrow chimeric mice with C57BL/6 irradiated host
animals.

Figure 2. Retroviral expres-
sion of GSK-3bA9. (A) A retro-
viral vector was generated using
MSCV and a constitutively ac-
tive form of GSK-3b (GSK-
3bA9) tagged with HA. GSK-
3bA9 is expressed from the ret-
roviral LTR, using the splice do-
nor and splice acceptor sites. The
selectable neomycin (G418)-re-
sistant marker is expressed from
the phosphoglycerate kinase
(pgk) promoter. (B) NIH 3T3
cells were transduced with the
retrovirus MSCV/GSK-3bA9,
and expression of GSK-3bA9
was examined by Western blot
using HA-specific antibodies,
compared with control (con)
NIH 3T3 cells.

Figure 3. Overexpression of constitutively active
GSK-3b inhibits antigen-specific T cell prolifera-
tion and IL-2 production. (A) Similar reconstitution
of P14 TCR–transgenic T cells in retroviral trans-
duced bone marrow chimeric mice. The spleen
cells from chimeric mice, reconstituted with P14
TCR–transgenic bone marrow transduced with
MSCV/GSK-3bA9 (left panel) or MSCV/neo
(right panel), were stained with antibodies specific
for CD8 and Va2. T cells from bone marrow chi-
meric mice expressing GSK-3bA9 show decreased
proliferation and IL-2 production. (B) Splenocytes
from bone marrow chimeric mice transduced with
MSCV/GSK-3bA9 show reduced proliferation in
response to the strong agonist peptides p33 and
weaker agonist A4Y compared with control
MSCV-transduced T cells. Proliferative responses
using the nonstimulatory AV peptide for the P14
TCR was ,500 cpm. Proliferation was measured
on day 2. (C) A reduction in IL-2 production was
also seen from P14-transgenic T cells from MSCV/
GSK-3bA9 chimeric mice. Supernatants from cul-
tures were removed after 24 h, and the amount of
IL-2 was quantitated by measuring proliferation of
the IL-2–dependent cell line CTLL-2.
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Chimeric mice were compared from P14 TCR–trans-
genic bone marrow transduced with MSCV/GSK-3

 

b

 

A9
and control MSCV. After reconstitution, flow cytometry
analysis using antibodies specific for CD4, CD8, and V

 

a

 

2

(expressed by the P14 transgenic TCR) showed compara-
ble numbers of P14-transgenic CD8

 

1

 

 T cells in the thymus
(data not shown) and spleen (Fig. 3 A). This suggests that
positive selection and survival of peripheral T lymphocytes

Figure 4. Inhibition of GSK-3
leads to prolonged T cell prolif-
eration and IL-2 production.
Splenocytes from P14 TCR–
transgenic mice were coculti-
vated with APCs pulsed with the
strong agonist ligand p33 or con-
trol AV peptide, in the presence
of LiCl or KCl. (A) Proliferation
of T cells was measured by thy-
midine incorporation. Prolifer-
ation in response to AV was
below 300 cpm. (B) IL-2 pro-
duction was measured by prolif-
eration of the IL-2–dependent
cell line CTLL-2 by the addition
of supernatant from cultures har-
vested from the indicated days.
(C) GSK-3 regulates NF-ATc
nuclear localization. Purified
CD81 T cells from P14 TCR–
transgenic RAG22/2 mice were
cocultured with APCs pulsed
with p33 for 3 d in the presence
of LiCl or KCl. Cells were fixed,
permeabilized, and stained using
an NF-ATc–specific antibody.
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was not dramatically affected by the presence of GSK-
3

 

b

 

A9. Mature T cell LCMV peptide-specific responses
were assessed using a strong agonist ligand p33, the weaker
agonist A4Y, and nonstimulatory control peptide AV. Pro-
liferative responses were consistently reduced in GSK-
3

 

b

 

A9–reconstituted animals (Fig. 3 B). IL-2 production
from these cultures was also assessed by measuring prolifer-
ation of an IL-2–dependent line, CTLL-2. Fig. 3 C shows
that IL-2 production was also reduced in T cells from
MSCV/GSK-3

 

b

 

A9 chimeric mice. Therefore, inactivation
of GSK-3 is required for maximal proliferation and IL-2
production.

T cell responses were also examined in the presence of
LiCl, which selectively inhibits GSK-3 activity in a variety
of cells, including COS cells, rat PC12 cells, 

 

Drosophila, Xe-
nopus, 

 

and 

 

Dictyostelium

 

 (9, 19, 20). Splenocytes from P14
TCR–transgenic mice were incubated with the strong an-
tigenic peptide p33 and weaker agonist A4Y ligand, in the
presence of 10 mM LiCl or 10 mM KCl, and pulsed with
[

 

3

 

H]thymidine at several time points. The initial prolifera-
tive responses after 24 h were similar (data not shown).
However, in the presence of lithium, dramatically in-
creased and prolonged proliferative responses to p33 and
A4Y were seen after 3, 4, and 5 d (Fig. 4 A). In addition,
IL-2 production was dramatically increased in the presence
of lithium, as measured by proliferation of the IL-2–depen-
dent line CTLL-2 (Fig. 4 B). Together, these data suggest
that GSK-3 regulates the duration of T lymphocyte re-
sponses.

Previous studies have shown that GSK-3 phosphorylates
NF-ATc, which promotes cytoplasmic localization and also
export from the nucleus (11). Therefore, the presence of
LiCl should inactivate GSK-3

 

b

 

, resulting in prolonged de-
phosphorylation of NF-ATc and sustained nuclear localiza-
tion. We examined the localization of NF-ATc 3 d after T
cells were stimulated with the antigenic peptide p33 in the
presence or absence of LiCl. Fluorescent microscopy
showed that NF-ATc was found in the nucleus in the pres-
ence of inactive GSK-3 (Fig. 4 C). This demonstrates that
GSK-3 plays an important role in antigen-specific T cell
activation by regulating NF-ATc localization.

Our studies suggest that TCR signals inactivate GSK-3,
which negatively regulates T cell proliferation and IL-2
production by altering the nuclear import/export of NF-
AT. Evidence from other systems support this model.
Studies using HeLa and BHK cells have shown that Crm1
and Ran are involved in NF-AT export from the nucleus
and have suggested that GSK-3 contributes to this process
(21, 22). In addition, mutation of the serine residue in NF-
AT that is phosphorylated by GSK-3 leads to constitutive
nuclear localization (23). Astoul et al. (24) have examined
the role of GSK-3 in B cell receptor signaling using the B
lymphoma cell line A20. Cross-linking the B cell receptor
with F(ab

 

9

 

)

 

2

 

 fragments lead to the phosphorylation and in-
activation of the GSK-3

 

a

 

 isoform. Together, studies from a
variety of models support a role for GSK-3 in receptor-
mediated signals that shuttle NF-AT from the nucleus.

Surprisingly little is known about the negative regulation

of T cell activation. Cell surface interactions through mole-
cules such as CTLA-4 negatively regulate T cell responses
by interacting with the costimulatory ligands B7-1 and B7-2
(25). Other molecules such as CD5 have been shown to
negatively influence TCR-mediated signals (26, 27). In ad-
dition, signaling molecules such as the tyrosine kinase Csk
(28), SHP-1 (motheaten; PTP-1C; references 29–32),
Cabin 1 (33), and the adaptor Cbl (34, 35) have also been
demonstrated to play a role in negatively regulating T cell
responses. In this study, we have shown that GSK-3, a
molecule that is generally known to be active in resting
cells, is inactivated upon TCR stimulation. We show that
GSK-3 is involved in the regulation of TCR-mediated
proliferation and that one role of GSK-3 is to negatively
regulate NF-ATc activity and IL-2 production. However,
GSK-3 has a multitude of substrates, and it will be interest-
ing to understand how these different effectors interplay
with other pathways to orchestrate resting T cell survival
and activation.
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