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BACKGROUND

Pharmacodynamics (PD) is defined as “what the drug does 
to the body”1 and is a way of describing the mechanisms 
of drug action and defining the relationship between drug 
concentration and effect. Much of the science of PD began 
in the early 1960s with work by Levy2 and others describ-
ing the correlation between reversible drug effects and drug 
concentrations. Population PD evaluates physiological and 
biochemical effects of drugs on the body or disease-causing 
agents at the population level. As described in the second 
paper in this series,3 these evaluations are conducted using 
nonlinear mixed-effects modeling approaches. Thus, during 
the development of population PD models, the same major 
aspects of data, structural, statistical, and covariate models 
must be addressed.

PD data can be continuous (e.g., can take any value in a 
range), such as weight, blood glucose, enzyme levels, or cate-
gorical (e.g., can take only discrete values in a range), such as 
grade of an adverse event, or physician’s global assessment 
scales. Categorical data require special consideration and are 
usually handled with probability or count models. However, if 
the number of categories is sufficiently high  (usually 6–10), 
ordered categorical data may be treated as continuous. Here, 
we focus on models for continuous PD data.

Continuous PD responses can be broadly classed as 
reversible or irreversible. An example of the former would 
be antihypertensive agents, which reduce blood pressure 
with drug effect reversing after the drug has cleared from 
the body. The latter might be a cytotoxic chemotherapeutic 
agent, which acts to destroy tumor cells. Within each of these 
classes, the behavior is commonly categorized depending on 
the duration of time between administering drug and achiev-
ing a measurable response. Thus, drugs can have an imme-
diate effect (e.g., QT prolongation), or there can be a lag 
between measured concentration and response. The delay 

to effect can arise because the site of action is not readily 
accessible to a drug, which may result in maximum effects 
occurring later than maximum drug concentrations. The delay 
may also be because the drug affects something other than 
the measured response, such as inhibiting an enzyme, which 
increases substrate over time. In both types of systems, phar-
macological effects may persist even when drug concentra-
tions are no longer measurable.4

Before the inception of population-based approaches, data 
from multiple subjects or animals were evaluated using either 
a naive pooled approach, where data from all individuals are 
pooled and fit simultaneously ignoring individual differences in 
exposure and response, or the “two-step” method, where each 
individual’s data are fit, and summary statistics were deter-
mined from the individual values. These approaches have 
been shown to produce biased parameter estimates5 and are 
consequently rarely used today. The naive pooled approach 
produces imprecise estimates of mean responses and can-
not provide estimates of between-subject variability (BSV), 
whereas the two-step approach produces good estimates of 
mean response but biased and imprecise estimates of BSV.6

Population PD evaluations are useful both to identify 
appropriate dose regimens and to identify sources of vari-
ability that might contribute to lack of efficacy or predispose 
patients to adverse events. Other uses include extrapolation 
into different patient populations (e.g., pediatrics) or different 
therapeutic areas. PD modeling has been shown to be impor-
tant during regulatory review of new therapeutics.7 The US 
Food and Drug Administration8 states that PD modeling can 
represent a well-controlled clinical study, contributing to sub-
stantial evidence of effectiveness where clinical end points 
or accepted surrogates are studied or can add to the weight 
of evidence supporting efficacy where the drug’s mecha-
nism of action is well understood. PD models can contribute 
to optimal study designs. For example, PD modeling of viral 
growth during therapy has been successful in explaining the 
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dynamics of chronic infection.9 Models describing hepatitis C 
viral RNA decline over time suggested that the primary mode 
of action of interferon involved blocking viral production from 
infected cells rather than preventing infection.10 PD modeling 
has been used to stop further drug development11 or can be 
used to develop clinical studies and facilitate identification of 
meaningful drug activity (e.g., boceprevir and telaprevir).12,13

In this article, we examine fundamentals of population PD 
modeling of continuous data together with methods for com-
paring and evaluating population PD models.

GRAPHICAl EVAlUATIONS OF DATA

As mentioned in our previous paper,3 data preparation is a 
major component of modeling. Graphical evaluation of PD 
data is important not only to develop an understanding of the 
potential relationships between exposure and response, but 
to evaluate the data for missing or erroneous observations 
and to give insight into appropriate models to evaluate. Mul-
tiple plots are often generated, including plots of concentra-
tion and response vs. time and concentration vs. response. 
Generally, it is best to work with raw (untransformed) data, 
although transformations such as percent of baseline are 
commonly needed in reports. Figure 1 that plots systolic 
blood pressure over time in three subjects with severe (ID: 1), 
moderate (ID: 2), and mild (ID: 3) hypertension shows that 
such plots (and ensuing models) can result in biased assess-
ments of the actual effect of drug. Panel a is the raw data, 
and the numerical drop in systolic blood pressure is the same 
regardless of the starting systolic blood pressure; panel b 
that shows the percentage of baseline SBP suggests that 
drug does not work well in severe hypertension.

Graphical evaluations are generally most useful when plot-
ted on an individual basis; however, in many studies, there 
may be insufficient individual data to generate meaningful 
plots. In such cases, there are several options: (i) pool data 
from each dose group for plots or (ii) plot mean data from 
each dose group. However, plots of naive pooled or mean 
data can result in misleading representations of the data. 
Some potential issues are highlighted in Figure 1. Panel 
c shows individual data with varying sensitivity to drug as 
reflected in the Hill coefficient,14 which describes the steep-
ness of the concentration–response curve. Panel d demon-
strates the potential impact of high variability together with 
different values of observations at given times on finding 
trends in the data, making the mean response (shown as a 
solid smoothed line) appear blunted. Panel e shows that the 
mean of several individual PD time curves can misrepresent 
individual tendencies. Thus, while there may no choice but 
to evaluate pooled or mean data, care should be taken in 
the interpretation of such graphical explorations. Care should 
always be taken with graphical evaluations as the true con-
centration–response relationship can be obscured by hyster-
esis or with highly variable data.

Graphical evaluations of data with dropout
Subject withdrawal from a study (e.g., dropout, right censor-
ing) is common in clinical trials. Rubin15 suggested that the 
only time it was feasible to ignore the process that caused the 

missing data was if the missing data are “missing completely 
at random” and are independent of observable variables and 
unobservable parameters of interest. Conversely, data that 
are “not missing at random” are missing for a specific rea-
son (e.g., nonignorable) because the value of the variable 
that is missing is related to the reason it is missing, as is 
shown in Figure 1. Panel f shows the potential impact of 
dropout on the perceived concentration–response relation-
ship. Here, high PD response results in patients’ dropping out 
which would bias graphical (and model based) evaluations. 
A number of methods dealing with dropout have been used 
in practice, the most common being “last observation carried 
forward”, which implies that PD measurement stays fixed at 
the last observed value after drop out. Many methods, includ-
ing last observation carried forward, yield biased estimates of 
the efficacy or potency,16 especially with modeling. If the likeli-
hood of dropout is correlated to underlying, unobserved data, 
dropout is informative and cannot be ignored in the model-
ing process.17 Hu and Sale18 provided a good summary of 
the concept of accounting for dropout. Thus, it is important to 
inspect the potential impact of dropout during the preliminary 
evaluations of data prior to modeling.

Graphical evaluations of data with lag
PD can correlate directly with concentration, or there may 
be a delay between measured concentrations and response. 
Figure 2 shows example plots of concentration with progres-
sively delayed response. Note that when there is a delay 
between concentration and response, the plot of response 
vs. concentration will exhibit a counterclockwise loop referred 
to as “hysteresis.” Hysteresis is the dependence of a system 
on both its current and past environments. The term was 
coined around 1890 by Sir James Ewing to describe mag-
netic material behavior but is also used to describe situations 
where PD response lags behind concentrations such as is 
seen with neuromuscular blocking agents19 or with anxiolyt-
ics, sedatives, and anesthetic agents.20 Hysteresis can also 
result from active metabolite formation. Clockwise hysteresis 
is possible with PD tolerance. If a drug depletes a reservoir 
such as an enzyme pool, when drug exposure is protracted, 
PD response may decline while drug levels are still high. The 
resultant clockwise hysteresis curve in a plot of response vs. 
concentration (see Supplementary Data) can be useful to 
support testing models of tolerance. The area enclosed by 
a hysteresis plot is indicative of the magnitude of the delay 
between concentration and response—a larger loop implies 
a longer delay, although the magnitude of the delay is not 
readily quantitated from such plots.21

CONCENTRATION–EFFECT RElATIONSHIPS

Concentration–effect relationships are central to PD models. 
The origins of the four fundamental relationships in common 
use can be traced to receptor theory.22 A drug (D) binds with 
a specific three-dimensional receptor (R) in the body forming 
a drug–receptor complex (DR). The altered drug–receptor 
complex initiates an immediate (e.g., ion channel) or delayed 
(e.g., change in protein expression) sequence of events lead-
ing to an observable drug effect (E):
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While irreversible binding is possible (e.g., phenoxyben-
zamine and the α adrenergic receptor), typically binding is 

a dynamic process with the net concentration of the drug–
receptor complex being a balance between the rate of drug 
and receptor association (kon) and the rate the complex dis-
sociates (koff). The classical chemical equilibrium equation 
shows the ratio of free receptor concentration [R] to bound 

Figure 1 Basic plots of raw vs. transformed data and potential issues with mean and pooled data. In general, it is best to work with the raw 
(untransformed) data. (a) A plot of systolic blood pressure in three individuals with severe (ID 1), moderate (ID 2), and mild (ID 3) hypertension. 
(b) A plot of transformed data as percent of baseline for these same subjects. While the data in panel b appear to show a greater response in ID 
1, the decrease in blood pressure for all three was 60 mm Hg. This visual bias is owing to the lower baseline blood pressure and not the effect 
of drug. (c) The effect of varying Hill coefficients14 (which define the steepness of the concentration–response relationship) on concentration–
response curves. (d) Naive pooled plot of response vs. time—with different numbers of observations at varying times, trends in the data may 
become difficult to visualize. (e) The effect of drop out (here at high response) can lead to a truncated concentration–response curve. (f) Taking 
a mean of individual concentration response profiles can result in a shallower relationship than is evident in any individual subject.
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receptor concentration [DR] is a function of the drug concen-
tration [D] and the ratio of koff/kon (the receptor dissociation 
rate constant, Kd):

k
k

K
D R

off

on
d DR

= =
[ ][ ]
[ ]

 

(2)

Pharmacologists have devised many ingenious methods of 
estimating Kd. While more complex classes of receptor bind-
ing kinetics are possible, Eq. 2 illustrates a fundamental prin-
ciple of PD: as Kd is a constant, it can be seen that increasing 
drug concentration reduces [R] and increases [DR], hence 
increasing drug effect. If [D] is very high, receptors are satu-
rated; further increasing the drug concentration produces no 
additional increase in drug effect—there is therefore a maxi-
mal effect (Emax) for all drugs.

Sigmoid Emax concentration effect
Eq. 2 can be used to derive (see Supplementary Data 
online) a general equation for the relationship between drug 
concentration (using C now used instead of [D]) and effect 
(E)—the sigmoid Emax relationship:

E
E C

C

n

n n
= ⋅

+( )
max

EC50

 

(3)

In this general case, “n” drug molecules bind with each 
receptor, and Kd is expressed as the EC50, the concentra-
tion at which E is 50% of Emax. The shape of the concen-
tration–effect relationship implied by Eq. 3 is summarized in 

Figure 3. When the drug acts to inhibit a response, Emax and 
EC50 may be referred to as Imax and IC50, where I indicates 
inhibition, but this is a nomenclature of convenience, and the 
fundamental equations are unchanged. The parameter n (the 
“Hill” coefficient) affects the “steepness” of the concentration–
effect relationship. When n is high (>5), the concentration–
effect relationship may become steep enough for the effect to 
be functionally present or absent (i.e., the EC50 is a threshold 
concentration for drug effect).

Emax concentration effect
When only one drug molecule binds with one receptor, n = 
1, and Eq. 3 can be simplified (Eq. 4). While the origin of 
the parameter n is based on receptor theory, in practice, it is 
often an empirical device that can improve the fit of PD data. 
Hence, if Eq. 4 is found to fit a data set, it may be worthwhile 
also to try Eq. 3, with the initial parameter value set at 1, 
and the parameter range bounded to plausible values (e.g., 
0.1–10). There are few data sets where the BSV of n can be 
estimated with precision.

E
E C

C
= ⋅

+( )
max

EC50

 

(4)

linear concentration effect
Eq. 4 can be simplified further when C is much less than 
EC50. This represents the apparent linear segment of the 
concentration relationship, which has an approximate slope 
of Emax/EC50 that can be represented by a single “slope” 
parameter. An apparent linear relationship may describe 

Figure 2 Interpreting pharmacodynamic plots. (a1) Plot of concentration and response vs. time for a direct effect drug. Note that the peak 
response and peak concentration are correlated. (a2) Shows the concentration vs. response, which shows the expected sigmoidal curve. 
(b1) Shows concentration and response vs. time for a drug with a delayed onset of effect. Note that the peak concentration and peak response 
are shifted, reflecting a delay. (b2) Shows the plot of concentration vs. time that results in hysteresis. (c1,c2) Represent a longer delay between 
concentration and response—as the delay increases, the plot of concentration vs. response will become less and less useful.
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studies where the range of doses used is relatively nar-
row (e.g., clinically used doses) but should only be used 
for interpolation rather than extrapolation of drug effects 
beyond the dose studied.

E
E

C C≈ ⋅ = ⋅max

EC
Slope

50

 

(5)

log-linear concentration effect
The apparent linear segment of the concentration–effect 
relationship can be extended by plotting effect against log 
concentration (Eq. 6). However, this equation cannot repre-
sent the case where C is zero and is problematical for this 
reason when baseline or placebo data are modeled. While 
not ideal, a log-linear relationship may be the only option for 
data with very high intrinsic variability (e.g., cytokines), when 
more physiologic models fail.

E C= ⋅Slope log( )

 

(6)

Note that all of the concentration–effect relation-
ships described here should be used with caution when  
extrapolating outside the range of data use to develop the 
model.

Concepts of additive and proportional drug effect
The fundamental concentration–effect relationships outlined 
above assume that the drug effect is zero when the drug con-
centration is zero. However, a more common scenario is that 
the drug effect has a baseline (predrug) value, and the rela-
tionship between the drug effect and the baseline effect value 
(Ebase) needs to be considered. Using a linear concentration–
effect relationship as an example, two common relationships 
are additive (Eq. 7) and proportional (Eq. 8).

E C

E E E
drug

base drug

Slope= ⋅

= +

 

(7)

E C

E E E

drug

base drug

Slope= ⋅

= ⋅ +( )1

 

(8)

The difference between the two is summarized graphi-
cally in the Supplementary Data. Notably, for a propor-
tional relationship, a higher baseline is associated with a 
greater drug effect. In practice, both relationships should 
be considered during model building (ideally in consulta-
tion with clinical experts), unless there is an established 
mechanistic understanding allowing informed selection. 

Figure 3 Fundamental concentration–effect relationships. (a) The Emax concentration–effect relationship that arises from receptor theory 
for the binding of a single drug to a single receptor. Fifty percent of the maximum effect is achieved at the EC50 concentration. (b) The same 
relationship over a much wider log-concentration scale. (c) The sigmoid Emax concentration–effect relationship that arises from receptor 
theory when there is allosteric inhibition or simulation of binding. The “Hill factor” n controls the steepness of the middle part of the curve. (d) 
A linear concentration–effect relationship that is a semiempirical but sometimes useful substitute for an Emax relationship when the range of 
concentration is relatively small and the drug effect is well below Emax.
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The Supplementary Data provide examples of visualizing 
concentration–effect relationships using the R language.

Drug combinations
While a full understanding of pharmacokinetic (PK) –PD rela-
tionships requires data on the drug given alone, clinically, 
most drugs are given in combination (whether by design 
or as a consequence of polypharmacy). The potential for 
PK drug–drug interactions through metabolic enzymes23 or 
transporters are well recognized.24 PD drug–drug interac-
tions become important when drugs act on the same recep-
tor or share components of a PD pathway. When two drugs 
act on the same PD effect, the concentration–effect relation-
ship is a three-dimensional surface (a “response surface”), 
and defining the shape of this surface can be a complex task. 
Modeling response surfaces can quantify additive or syner-
gistic PD effects.25,26 Furthermore, the Emax receptor model 
can be modified to account for competitive and noncom-
petitive antagonism,27,38 and these relationships have been 
implemented in population models.29,30 Eq. 9 summarizes 
how Eq. 4 can be modified to account for the interaction with 
an inhibitory drug (concentration Ci).

E
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(9)

An important class of PD drug–drug interactions occurs 
when a drug has active metabolites. The proportion of dose 
converted to metabolite can differ between oral and par-
enteral doses with hepatic first-pass metabolism, and the 
metabolite can act as a second drug with either agonist (e.g., 
morphine-6-glucuronide) or antagonist (morphine-3-glucuro-
nide) properties. A PK–PD model that ignores known active 
metabolites requires careful justification.

CONTINUOUS PD MODElS

While concentration–effect relationships are the building 
block of continuous PD models, there is a variety of continu-
ous PD models which differ in terms of the site at which the 
concentration–effect relationship “drives” the PD process 
or the representation of the PD process itself. The ideal PD 
model is not always possible, but it is best to describe the 
data using the most physiologically relevant model possible. 
The model chosen will be dependent on the type of data and 

how frequently it is measured. Well-constructed continuous 
PD models allow simulation of the whole time course of drug 
effect. This allows improved understanding of drug onset, 
when to expect maximal effects, when to expect steady state 
for efficacy, and the best times for evaluating efficacy.

There are at least five categories of continuous PK/PD 
models, and the relationship between them is summarized 
in Figure 4. These models are broadly differentiated by the 
duration of time between measurable concentration and 
observed effect.

Direct effect
When the apparent biophase equilibration is sufficiently rapid 
relative to the time scale of drug administration (e.g., chronic 
oral dosing), biophase equilibrium is less important. Plots 
of concentration vs. effect show minimal hysteresis, and a 
model directly linking plasma concentrations and effect can 
be used (Figure 4a)

 (10)

link effect/effect compartment
Commonly, drug concentrations are measured in venous 
plasma, but this site in the body is largely a matter of con-
venience. Theoretically, it is more advantageous to mea-
sure drug concentration at the site responsible for “driving” 
the PD effect—that is the concentration at the receptor site 
linked to drug action. There are few drugs that act in venous 
plasma, and hence, there are convection transport (blood 
flow) and diffusion processes that “deliver” the drug to its 
site of action. These factors may contribute to the tempo-
ral difference (hysteresis) between the drug concentration 
in venous blood and the drug effect discussed previously. 
Effect compartment models19,31 account for this delay by 
representing it as an additional compartment between the 
blood concentration and effect defined by a first-order effect 
compartment rate constant ke0. It is the apparent (unmea-
sured) drug concentration in this effect (or link) compart-
ment that drives drug effect (Eq. 11). A large ke0 value 
means that the effect compartment is rapidly equilibrating 
and effect compartment concentrations closely follow the 
plasma concentration; a small ke0 value means the effect 
compartment equilibrates slowly and effect compartment 
concentrations (and hence effect) are delayed relative to 
plasma concentrations (Figure 5).
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While it is tempting to interpret the effect compartment rate 
constant as a physiologically based description of biophase 
equilibration, this is only the case in specific limited cases 
such as when the drug concentration is measured in arterial 
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blood and the drug acts in an identifiable target organ or 
tissue (e.g., central nervous system or myocardium).33 The 
effect compartment can then be substituted with a physio-
logical representation of the target organ.33 Commonly, when 
venous blood concentration is measured, the effect compart-
ment rate constant represents the net difference between the 
equilibration rate of the arm (if venous blood is drawn from 
an arm vein) and the target organ. Indeed, with rapid target 
organ equilibration and slow arm equilibration, drug effect can 
precede the measured concentration resulting in clockwise 
rather than anticlockwise hysteresis plots. When the rate of 
target organ equilibration and arm equilibration are the same, 
no hysteresis will be observed, but this is an artifact—not an 
indication—that biophase equilibration does not occur.

Algebraic solutions for common PK models including an 
effect compartment are implemented by some software (e.g., 

Monolix, Lixoft, France), but more generally, effect compart-
ment models can be implemented as differential equations.1 
The effect compartment rate constant is sometimes more 
usefully parameterized as an equilibration half-life (Ln(2)/ke0).

Indirect effect/turnover
When the apparent delay between drug concentration and 
effect is due more to lag in PD processes than biophase equil-
ibration, indirect or turnover PD models34,35 may be appropri-
ate. The observed effect is considered a dynamic process. 
The net baseline effect is a balance between the apparent 
rate of “production” of the effect and rate of “removal” of the 
effect. While production and removal of the effect can be com-
plex, multistep processes in vivo, generally one step is rate 
limiting, and these are represented by first-order rate con-
stants kin and kout, respectively. Turnover models are best con-
ceptualized when the effect is an endogenous biomarker. For 
example, serum creatinine level at any given time is the net 
balance of production via breakdown of creatine phosphate 
in muscle and removal via glomerular filtration. If production 
rate increases, or removal rate is reduced, serum creatinine 
will rise and vice versa. Turnover systems are defined by two 
important relationships. First, baseline steady-state level of 
the effect (Ebase) is given by the ratio of the rate constants 
(Eq. 12). Second, turnover time of the system is given by the 
inverse of kout (Eq. 13). Longer turnover times are associated 
with longer times for a new steady state to be established fol-
lowing a step change in one of the rate constants.

E
k
kbase

in

out

=

 

(12)

Turnover
out

= 1
k

 

(13)

Drugs can affect turnover systems by four main mecha-
nisms—inhibiting production, stimulating production, inhibit-
ing removal, or stimulating removal (Figure 6). Eq. 14 shows 
an example system of equations for a turnover model where 
a drug has an inhibitory effect on kin (kin0 is the baseline value 
of kin). Other examples are given in the Supplementary Data.
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Both an effect compartment model and turnover model 
may fit a given data set equally well, and the choice between 
the two may need to be made on mechanistic grounds. Effect 
compartment models are perhaps better suited to relatively 
short delays; turnover models may favor longer delays. 
Indeed, both an effect compartment process (biophase equil-
ibration) and turnover process can be concurrent in vivo, but 
few data sets have enough information to support such com-
bined models.

Figure 4 Representative continuous pharmacodynamic models. 
(a) A direct response model where effect is driven by the plasma 
drug concentration. (b) An effect compartment model where effect 
is driven by the effect compartment drug concentration, which is 
delayed relative to the plasma concentration by a first-order rate 
constant ke0. (c) A turnover model where drug effect is a balance 
between an apparent production rate (kin) and an apparent removal 
rate (kout). Drug affects the net effect by altering kin or (kout). (d) A 
transit compartment model, where the drug effect is at the end of 
chain of processes and drug action is on the first process. (e) A 
tolerance compartment model, where the drug effect is described 
by an effect compartment and the development of tolerance is 
described by a slower inhibitory compartment that reduces the net 
drug effect with time.
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Figure 5 Effect compartment models—influence of ke0. A simulation where a hypothetical drug is infused for 20 min, with resultant plasma 
concentrations (Cp) shown by blue. Each row shows the effect compartment concentrations (Ceff, orange) for a different effect compartment 
rate constant. Drug effect in arbitrary units (E, red) is related to the effect compartment concentrations by an Emax model with Emax = 1,000 
and EC50 = 500. The left column shows the time course of Cp, Ceff, and E. The right column shows a hysteresis plot of E vs. Cp (blue) 
and E vs. Ceff (orange). (a) The time course of Ceff is similar to Cp for this value of ke0 and this study time scale. (b) As the maximum Cp is  
~20 ng/ml, the E–Ceff relationship is essentially linear with a slope of 2 (1,000/500). The E–Cp relationship shows minimal hysteresis. (c) The 
time course of Ceff now lags behind Cp, and the peak Ceff occurs later than the peak Cp (although at equilibrium, Ceff = Cp by definition). (d) The 
E–Ceff relationship is unchanged, but the E–Cp relationship now shows hysteresis. The hysteresis is anticlockwise—the rise in concentration 
precedes the rise in effect. (e) The time course of Ceff is now substantially different to Cp. The transient peak in effect associated with the high 
Cp during the infusion is now absent. (f) The E–Cp relationship now shows hysteresis, with a complex shape dictated in part by the shape 
of the Cp time course.
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Transit models
The turnover model can be extended by adding more turn-
over (transit) compartments,36,37 each representing a step 
in the progression of observed drug effect (Figure 4). This 
strategy is useful with long delays between drug administra-
tion and observable effect. An example is the effect of anti-
neoplastics on neutrophils.36 Neutrophils are formed from 
progenitor myeloblasts in the bone marrow which undergo 
maturation through at least five distinct cell populations 
before becoming neutrophils. Antineoplastics affect myelo-
blast formation, lowering neutrophil counts only when the 
decreased production rate has propagated down the matu-
ration pathway—often 5–7 days after antineoplastic admin-
istration. Each distinct cell population can be represented as 
transit compartment linked in series. While it may be feasible 
to define the kin and kout rate constants for each transit com-
partment, in practice, only one step is rate limiting, which 
is represented as a transit compartment rate constant (ktr), 
which is the same for each compartment (Figure 4). The 
greater the number of transit compartments and the slower 
ktr, the greater the delay between drug administration and 
first observable effect and the time of the peak drug effect. 
Transit compartment models are most easily represented as 
differential equations.

Tolerance models
Many biological systems are under homeostatic control, and 
when perturbed by drug, they tend to return to baseline state 
(set point), which can produce characteristic differences in 
the concentration–effect time course with clockwise hys-
teresis. An example is the development of tolerance to opi-
oids.38 While the physiological mechanism of opioid tolerance 
is complex and multifactorial,38 relatively simple models can 
account for both the dose- and time-dependent nature of the 
development of tolerance. One approach is the use of a par-
allel, slower equilibrating hypothetical tolerance compartment 
(Figure 4, Supplementary Data) which represents the time 
course of hypothetical inhibitory drug. The inhibitory drug 
modifies the effect produced by the “real” drug via reverse 
agonist, competitive antagonist, noncompetitive antagonist, 
or partial agonist mechanisms.38 Tolerance models can also 
be derived from turnover models, where tolerance acts by 
altering kin or kout

27 or via depletion of a precursor pool when 
additional compartments are added to turnover models.28

PlACEBO MODElS/DISEASE PROGRESS

Baseline (predrug) and placebo (vehicle dose) data are as 
important for PD modeling as the drug treated data and 

Figure 6 Drug effects on turnover models. A simulation where a hypothetical drug is infused for 20 min after 60 min of baseline observations 
of drug effect that is described by a turnover compartment. The resultant plasma concentrations (Cp) are shown in blue. The drug effect has 
a baseline of 100 units, and the time course of effect is shown for system that turns over rapidly (turnover = 1 min, orange) or slowly (turnover 
= 200 min, red). The four scenarios show drug affecting turnover by: (a) inhibiting production (kin), (b) stimulating production (kin), (c) inhibiting 
removal (kout), and (d) stimulating removal (kout). Drug effect on turnover compartment rate constants (kin or kout) was via an Emax relationship. 
The EC50 was 50 ng/ml, and Emax was 1, 1, 0.5, and 5 for a–d, respectively.
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should be given equal attention. It is only with a faithful model 
of baseline and placebo data that it is possible to distinguish 
drug effect from placebo effect and from noise in the data.

Placebo models
Placebo models account for the time course of PD effects in 
the absence of drug. Time-dependent changes in effect in 
placebo cohorts can occur for a variety of reasons. Models 
can be either empirical (e.g., linear or curvilinear compen-
sation for a drift in a PD measurement)39 or mechanistically 
based (e.g., a circadian rhythm). In both cases, the relation-
ship between baseline values, placebo effect, and drug effect 
must be carefully considered. A common assumption is that 
changes that occurred with placebo also happened with 
drug treatment, and the effect of the drug is referenced to 
these changes. Eq. 15 shows a system where placebo effect 
changes linearly over time, while the drug reduces the effect 
via an Emax relationship. Both act proportionally relative to 
the baseline effect. An empirical curvilinear relationship can 
be achieved using a quadratic equation (Eq. 16), but, like all 
polynomial functions, should not be used for extrapolation.

 (15)

 (16)

Circadian rhythms are evident in many behavioral, physi-
ological, and endocrine systems.40,41 If placebo data are col-
lected over more than 24 hours, circadian patterns may be 
evident. Caution is needed when placebo data are collected 
at times that are only multiples of 24 hours (e.g., daily), as 
a potential circadian rhythm may be hidden by “temporal 
aliasing” (where an oscillating signal is masked because it is 
sampled at times that only reflect the same part of the curve). 
Circadian rhythms can be represented using trigonometric 
functions that oscillate over 24 h (Eq. 17).

E Tplacebo amplitude phase= ⋅ −( ) ⋅





cos
2
24

π

 

(17)

Unrecognized circadian rhythms can obscure significant 
concentration–effect relationships. Seasonal variation, which 
affects temporal response, can also mask drug effect and is 
handled the same way.

Insult/disease models
Placebo data may reflect an active experimental insult or 
disease progression. The latter is a complex area and has 
been covered in detail elsewhere.42 An example of the for-
mer is the induction of adjuvant-induced arthritis in rats,43 
where adjuvant injection causes paw swelling, which evolves 
until it reaches a maximum value and subsequently resolves 
with time. Efficacy is measured as the ability to prevent or 
treat swelling. A modeling approach is very useful for resolv-
ing the competing time-dependent process of experimental 
injury and drug effect. Turnover models can be adapted using 

time-dependent rate constants representing the increase 
from and return to baseline in the placebo group (see Sup-
plementary Data).

POPUlATION PD MODEl DEVElOPMENT

Generally, methods used to develop and evaluate PD mod-
els are similar to methods used for PK evaluations. However, 
there are a few exceptions that can require specialized tech-
niques. One issue arises from the increased complexity of 
PK/PD modeling, which requires robust estimation methods, 
although the ensuing run times must also be considered. 
Plan et al.44 investigated parametric approaches for maxi-
mum likelihood estimation: first-order conditional estimation 
in NONMEM and R, LAPLACE in NONMEM and SAS, adap-
tive Gaussian quadrature in SAS, and stochastic approxima-
tion expectation maximization in NONMEM and MONOLIX 
(both stochastic approximation expectation maximization 
approaches with default and modified settings). They noted 
that run times were shortest with first-order conditional esti-
mation and LAPLACE and longest with adaptive Gauss-
ian quadrature; when the initial estimates were incorrect, 
adaptive Gaussian quadrature, and first-order conditional 
estimation in NONMEM, LAPLACE in SAS, and stochastic 
approximation expectation maximization in NONMEM and 
MONOLIX had lower relative root mean squared error than 
the other methods. Thus, it may be necessary to explore dif-
ferent estimation approaches depending on the needs of the 
individual projects.

Model building methods
When developing population PD models, several approaches 
can be taken: both the PK and dynamic models can be fit 
simultaneously to both data types (“simultaneous” method), 
or first a PK model can be developed and then the PD model 
can be developed. This second approach can either condi-
tion on the PK information using fixed parameter estimates 
with or without the PK data, or individual estimates of the 
PK parameters can be added to the database in lieu of the 
PK data (“sequential” methods). Zhang et al.45 investigated 
these approaches and found that the best approach in terms 
of computational time, convergence, and estimated param-
eter precision was to fix the PK parameters and retain the PK 
data in the database. It should be noted, however, that these 
results apply to models where the PKs are independent of 
the PD. For example, the PKs of many biological agents are 
highly dependent on the PD response,46,47 which often neces-
sitates simultaneous fitting of the data. In such situations, it 
may be reasonable to first include the PD assessment as a 
covariate to allow preliminary evaluations of the PK data, fol-
lowed by simultaneous model development.

In some situations, PK data may not be available or may 
be unreliable (e.g., the presence of interfering substrate may 
result in concentration data that are questionable). In this sit-
uation, the use of “kinetic-pharmacodynamic (K-PD) K-PD” 
models,48 which implements a forcing function to replicate 
drug exposure, becomes necessary. This approach involves 
setting up a one compartment intravenous bolus model with 
first-order clearance as a forcing function that represents 
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dose regimens. This forcing function can then be used to 
drive the PD model and is commonly used in meta-analy-
ses,49 which is a means of modeling aggregate (e.g., mean) 
data from multiple studies. In the setting of meta-analysis, 
where only the PD data are available, a K-PD model is useful 
to reflect different dose regimens tested in different studies.50 
A K-PD model was also used for characterizing the PD of 
ibandronate51 owing to its PK complexity and substantial time 
dissociation between measured concentrations and changes 
in urinary excretion of the C-telopeptide of the α chain of type 
I collagen (uCTX, a marker of ibandronate activity). Zhang 
et al.52 tested using forcing functions when modeling com-
plex, multiresponse PD systems. They found that final param-
eter estimates cannot be trusted when the multiresponse 
system being modeled involves feedback. They also noted 
that with forcing functions, it is difficult to impose “realistic” 
global constraints on the “piecewise” solutions described with 
a forcing function, and these models will have problems esti-
mating standard errors. Thus, using forcing functions (“K-PD” 
Kinetic - Pharmacodynamic) models should not be the first 
choice. This would be particularly true with many biological 
agents since the PKs often depends on the PD response.

Identification of appropriate structural models
Model selection is usually initially guided by the drug’s pharma-
cology. Most PD models are semi-physiologic and are param-
eterized to reflect what is known about the drug’s mechanism 
of action. Despite this, identification of appropriate structural 
models for PD evaluations is not straightforward. Comparing 
models with a linear drug effect vs. a nonlinear drug effect are 
not nested (such that fixing one new parameter to 0 simplifies 
the test model to the reference linear model), thus the likelihood 
ratio test is generally not an appropriate metric to compare 
different models. Instead, the use of the Akaike Information 
Criteria or similar comparisons should be used.3 Preference 
is generally given to models that converge and provide robust 
parameter estimates. Other diagnostics such as goodness-of-
fit plots, as were used for PK evaluations, are also used to help 
select appropriate models.

Parameterization can be important with PD models. PD 
data are often more variable than PK data; appropriate 
parameterization can improve stability and ensure conver-
gence. For example, EC50 was parameterized as shown 
below to improve stability and ensure that EC50 remains posi-
tive. Providing a parameterization that does not require fix-
ing boundaries is beneficial because it does not constrain 
minimization.

EC e EC50
50 = ( )θ

 

(18)

Other functions are often used to ensure values fall within 
specific intervals. Logit transforms, for example, are often 
used to constrain models to measurement scales. Below, 
Emax was parameterized using a logit function to ensure that 
the parameter remains positive in the open interval (0,1).

E
E

max
max
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(19)

Therapeutic monoclonal antibodies bind to a target anti-
gen with high affinity, lowering the reservoir of free antigen 

and occasionally depleting it. If antigen turnover is slow, 
concentrations of free antigen may be zero for a long period 
of time, resulting in a large number of “zero” observations. 
Such data are referred to as being heavy at the boundary 
(e.g., the limit of the measurement scale or assay). Models 
generally do not predict boundary values well and removing 
all zero values is not appropriate because the zero in this 
example is an important response. Consequently, “standard 
modeling approaches” often result in models with upwardly 
biased predictions, and the estimated random-effects distri-
butions may exhibit severe departures from normality.53 This 
situation occurs when response to drug results in a maximum 
response for protracted periods.

A “two-part model” should be used for dealing with data 
that are heavy at the boundary.53,54 Two-part models describe 
zeros (or boundary values) as discreet values such that the 
probability of a zero response given a drug concentration is 
modeled. Responses with values that are outside the bound-
ary are modeled as a continuous function. Such models can 
reproduce zero (boundary) observations. In some extreme 
cases, where data are heavy at two boundaries (e.g., 0 and 
100%), a three-part model can also be developed.

The two-part model first describes the probability of a zero 
or boundary value (πAij,) for the ith subject at the jth time point 
using a binomial logistic function:

ln
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(20)

where PRB describes the probability that the PD observa-
tion is zero in the absence of measurable drug levels, and 
Slope is the estimated effect of active drug concentration 
(Cp). The second component of the model describes the con-
tinuous portion of the data with probability 1−πA as truncated 
log-normal distribution using a sigmoidal Emax function:
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where Base is the baseline value for free receptor, Emax 
is maximal drug effect, Cp is drug concentration, EC50 is 
the concentration of drug at half-maximal response, and γ 
is the Hill coefficient. The likelihood of the data (L(Aij)) is as 
described below:
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(22)

where Aij and PAij are observed and predicted PD val-
ues, respectively. In this equation, Tij = 1 if Aij > 0, else Tij 
= 0; σ is the estimated within-subject variability as a SD (in 
the log space) for continuous data above the cutoff. The 
factor (1−φij) in the denominator of the normal density por-
tion of the likelihood is a normalizing factor representing 
the probability that PAij is greater than half the cutoff. This 
correction allows the function to integrate to unity, neces-
sary for a probability model; φij is computed using Cheby-
chef polynomials.
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Development of statistical models
As with PK models, the statistical model describes variabil-
ity around the structural model, including BSV (variance of a 
parameter across individuals), between-occasion variability 
(BOV) (variance within individuals), and residual variability 
(unexplained variability after controlling for other sources 
of variability).3 Between-subject differences in response 
to drug may have a PK basis, a PD basis, or both. When 
assessing pharmacologic response, it is important to deter-
mine BSV and BOV for both the PKs and the dynamics and 
to explore the possible influence of underlying diseases 
and other physiologic variables on concentration–effect 
relationships.

Between-subject variability. Developing models for PD BSV 
is similar to the approach used for PKs. However, while PK 
BSV is frequently described using a log-normal distribution 
because parameters such as clearance must be constrained 
to be positive and are often right skewed, for some PD 

parameters such as baseline, BSV can be described using 
an additive (normal) distribution:

Baseline = +θ ηi

 

(23)

where θ is the population mean and ηi is the deviation from 
the mean for the ith subject such that η~N(0, ω2). The SD in 
the population is the square root of ω2, and the coefficient of 
variation (CV) in the population is

CV (%) %= ×ω
θ

100

 

(24)

An additive BSV is also necessary when a parameter can 
take positive and negative values (e.g., slope in a linear con-
centration–effect relationship if negative slope is physiologi-
cally plausible). The distributions of individual η values must 
be checked to ensure the appropriate function is being used 
to describe the distribution. When modeling dense data, it is 

Figure 7  Multimodal and skewed distributions, responders, and nonresponders. This figure shows two common, non-normal distributions. 
(a) A bimodal distribution suggesting two subpopulations. (b) A highly skewed distribution. In both cases, a mixture model may be used. 
For the bimodal distribution, the identification of two populations may reflect patients who are more or less sensitive to a drug effect. For 
the skewed distribution, a mixture model does not necessarily imply a subpopulation but can be a useful tool for resolving highly skewed 
distributions. (c) Shows two populations, responders, and nonresponders. These two populations may not arise from bimodal distribution of 
pharmacodynamic parameters, but may instead be described using a mixture of models, allowing the non-responders to follow one trajectory 
while responders follow a different one.
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possible to examine the distribution of the η estimates and 
graphically determine (via histograms or quantile–quantile 
plots) if parameters are normally or log-normally distributed. 
With sparse data, one might test both normal and log-nor-
mal distributions and examine the objective function value or 
simulate using both distributions to determine which assump-
tion appears to best reproduce the data, although the use of 
the likelihood ratio test as a criterion for including BSV terms 
is inappropriate. However, because the objective function is 
a measure of how well a model describes the data, it can 
be used to make some distinctions between distributional 
assumptions.

Note that BSV can be different in different patient types 
due to varying sensitivity to the drug, or disease severity for 
instance. Thus, combining data from patients with data from 
healthy volunteers may require separate variance compo-
nents for each subject type.

E P Pmax exp= × × + −( )×( )θ η η1 21

 

(25)

where P is an indicator variable that takes values of either 
0 (if the subject is healthy) or 1 (if the subject has disease), 
ω1

2 is the variance of subjects with disease, and ω2
2 is the 

variance of healthy volunteers.
BSV on parameters can often be correlated. This is par-

ticularly true for PD models and using ω block structures for 
PD random effects describing this correlation is encouraged. 
For example considering a simple Emax model:
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where Emax is the maximum effect a drug can elicit, EC50 is 
the concentration at half-maximal response, Cp is the con-
centration of drug, and E(t) is the measured PD effect at 
time t. In this function, the parameters Emax and EC50 are 
often correlated, and BSV can often be estimated more 
reliably for both parameters when correlation is described. 
For some biologic agents, the PKs are dependent on the 
PD. For example, Campath (Sanofi, Paris, France), a mono-
clonal antibody directed against CD52, a protein pres-
ent on the surface of mature lymphocytes, acts to reduce 
the lymphocyte counts but is also cleared by these cells. 
Response to Campath results in substantially decreased 
clearance.55 When fitting such models, describing the cor-
relation between PKs and PD via off-diagonal elements of 
the omega matrix is recommended.

Owing to varying response to drugs, η distributions for 
PD parameters may be skewed or multimodal (Figure 7). 
In our previous paper,3 we investigated methods for dealing 
with skewed distributions. There may be situations where 
transforming the η distribution does not resolve the skew-
ness. Using a mixture model to account for a heavy-tails in 
the distribution does not necessarily imply the existence of 
subpopulations unless the tail of the distribution arises from 
patients who are inherently (usually) less sensitive to drug 
effects. When parameter distributions are clearly multimodal, 

mixture models may be used to identify subpopulations con-
tained within the distribution of a random effect when there 
are no covariates that are predictive of a patient belonging to 
one subpopulation or other.

Traditionally, mixture models represent a situation where 
we have unobserved (latent) variables (e.g., missing 
 genotypes) in our data. Latent variables may be continu-
ous, discrete, or a combination. Mixture modeling refers to 
modeling with categorical (discrete) latent variables that 
represent subpopulations where population membership 
is not known but is inferred from the data. This is referred 
to as finite mixture modeling in statistics.56 The likelihood 
ratio test is not a good test of the appropriateness of using 
a mixture model because mixture models are not nested. 
Implementation of a mixture model always decreases the 
objective function because effectively, the data are split 
into subsets and fit using different functions. Mixture mod-
els are used when multimodal behavior cannot be removed 
or made symmetric by inclusion of a covariate, transforma-
tion of η values or other “tweaking,” and there is a good 
physiological reason to suspect the existence of subpopu-
lations. Frame provides an excellent reference for the use 
of mixture models.57

Coding for mixture models depends on the modeling soft-
ware. The code below is used with NONMEM to describe two 
populations, one with a high response and one with a low 
response. The parameterization for each population prevents 
aliasing, which is that the subpopulation associations may 
switch during estimation and simulation. The parameteriza-
tion used for the probability of a subject being in one popula-
tion is coded to avoid placing constraints on the parameters. 
The probability must range between 0 and 1, but using this 
parameterization, the value of θ can range from −∞ to +∞. 
When the probability is coded as P1 = θ and P2 = (1−θ), the 
confidence intervals of the mixing probabilities can include 
boundary points, resulting in model instability.

IF
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These mixture models describe subpopulations on an indi-
vidual level, whereby an individual is assigned to a subpopu-
lation and cannot change populations. The two-part models 
described previously are mixture models at the observation 
level.

Between-occasion variability. The concept of BOV,3 where 
response to drug varies between occasions, is also important 
with PD evaluations, particularly in crossover study designs 
where the baseline drug effect can differ between treatment 
arms within a subject. In some settings owing to tolerance 
to drug or to progressing disease, a patient’s response to 
treatment can change over time. Describing BOV can be an 
important tool for identifying underlying reasons for altered 
response over time.

Residual variability.  As mentioned previously, PD data are 
generally more variable than PK data. This is often a result 
of the assays used to measure response, which are less 
precise than the methods used to measure drug concentra-
tion. Coding for residual variability with PD data therefore 
follows the same process used for PK data. The modeler 
should determine if the PD marker can take negative values. 
Some markers, such as cell and receptor counts can never 
be negative. With such data, the log transform both sides 
approach is useful to ensure that negative values cannot be 
simulated.

With some therapeutic agents, PD may be impacted due 
to low receptor expression, the disease being dependent 
on other pathways, or may be affected due to other events 
resulting in erratic response, leading to subpopulations 
of responders and nonresponders (Figure 7c). In some 
situations, nonresponders exhibit a random walk around 
the placebo trajectory, resulting in high residual variability. 
Attempting to use a traditional mixture model as described 
previously results in both high residual variability and biased 
or highly skewed distributions of PD parameters. Note that 
with a nonresponder population, the distribution of indi-
vidual η values is generally not bimodal. In this situation, 
describing the PD of the entire population using a single 
function is inappropriate as response  trajectories are  
different. In this setting, a “mixture of models”58 or an “inde-
scribable” mixture model,59 which applies separate sub-
models to each subpopulation can be used to separate 
nonresponders from responders. This approach provides 
unbiased estimates of BSV and residual  variability and 
allows estimation of the percentage of patients likely to be 
unresponsive to treatment, which is important in clinical trial 
simulation and study design.

The implementation of this sort of mixture model requires 
that the data be flagged depending on type (PK (DVID = 1 
where DVID is a flag defining the type of observation) or 
dynamic (DVID = 2)). In the example equations below, the 
responders were described using one function, the nonre-
sponders were assumed to stay at baseline. Other func-
tions for nonresponders can be implemented. This approach 
was used to describe responder/nonresponder PD for HIV 
agents.60

(28)

WPD 1; residual error for responders

WPD2 2; residual err

=
=
θ

θ oor for nonresponders

IF DVID .EQ. 2 .AND. MIXNUM .EQ. 1 THEN( )
IIPRED LOG PD Function

Y IPRED WPD*ERR 1 ; responder subpop

= ( )
= + ( ) uulation

ENDIF

IF DVID .EQ. 2 .AND. MIXNUM .EQ. 2 THEN

IPRED LO

( )
= GG Baseline

Y IPRED WPD2*ERR 1 nonresponder subpopulation

( )
= + ( );

EENDIF

where WPD is the residual error of the PD observations in 
the log domain, IPRED is the individual predicted response, 
and the PD function can be any of the models described in 
previous sections.

Evaluation of model performance and when to evaluate
Population PD models should be evaluated to ensure that 
they are fit for purpose. The same evaluations described pre-
viously3 are applicable for PD models. However, model eval-
uation should be tailored to the pharmacology of the drug 
which requires understanding the pharmacology. For exam-
ple, with models describing the time course of neutrophils 
following chemotherapy, the nadir is an important component 
of the model, and the ability of the model to reproduce nadir 
cell counts would be an important additional evaluation. Simi-
larly, for safety and efficacy, models of international normal-
ized ratio used to evaluate anticoagulants need to accurately 
describe both the lowest and highest expected international 
normalized ratio values.

The visual predictive check may also need special consid-
eration because drugs are often adaptively dosed to ensure 
patient safety and allow adjustment of individual patient 
doses based on measured responses to achieve a response 
within a target range. During the conduct of the study, individ-
ual patient doses may stay the same, increase, or decrease 
over time; or a patient may be put on hold until the response 
of interest returns to some satisfactory range. Dose adjust-
ments may be based on recent measurements, time aver-
aged measurements, or may take into account multiple types 
of responses.

In such cases, the dose adjustment strategy used in the 
trial must be implemented for model evaluation and simula-
tion59 as other strategies (e.g., validation databases or other 
visual predictive check options such as prediction-corrected 
visual predictive checks)61 will not address this issue. Simu-
lations using the original dosing records are usually inap-
propriate in this setting because the simulation scenarios 
often contain much higher and lower responses than those 
observed with the index data, producing prediction intervals 
that are inflated and potentially biased. The potential impact 
of ignoring dose adjustments is shown in Figure 8. Typically, 
PK models are not affected, although in some cases, PD 
response alters PK behavior.
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The simulated subject’s response to the drug rarely reflects 
the original patient’s sensitivity, so dose adjustments in the 
original dose records are not appropriate for the simulated 
subject. The discrepancy arises when the BSV drawn during 
simulation results in simulated subjects who’s responsive-
ness to drug effect differs from the original patient’s sensitiv-
ity. Using the original dose records is not realistic because 
in a clinical setting, the clinician would not have dosed the 
simulated subject without regard for response. There are four 
check statistics that should be considered when simulating 
data arising from a study implementing adaptive dosing:

1. Number of subjects never in therapeutic range
2. Number of subjects put on hold for no reason
3. Number of subjects that received inappropriate dose 

increases
4. Number of subjects that received inappropriate dose 

decreases

Owing to BSV, some subjects may be simulated that are 
never in the therapeutic range even with adaptive dosing. 

However, simulations using the adaptive dosing paradigm 
used in the clinical trial will not generate subjects that fit the 
last three check statistics.

CONClUSIONS

There is no “correct” method for developing and evaluating 
population PD models of continuous PD data. The nature of 
the model is very dependent on the data and the intended 
purpose of the model. However, more than population PK 
modeling, there is the potential for constructing models that 
perform poorly due to parameters or variables taking values 
in some circumstances that are mechanistically impossible 
or biologically implausible. Using a systematic piece-wise 
model building process where the behavior of each sub-
component of the model is well understood by test simula-
tions and plots help guard against this (see Supplementary 
Data). Errors can be further minimized by testing that the 
steady-state solution of the coded model (either by algebra 
or simulation; see Supplementary Data) meets expectations 
and by checking that the units of all parameters and variables 
are consistent with expectations.

Like all population modeling, population PD requires a 
clear understanding of the assumptions made and a rigorous 
examination of model performance in describing the index 
data. As always, the model should be challenged and modi-
fied by comparison of its predictions with new data as part 
of the “learn and confirm” cycle of model development.61,62 
PD modeling, although more challenging than PK model-
ing, can provide substantial benefits including providing a 
basis for evaluating alternative dosing strategies and study 
design. A well-conducted evaluation can add to the weight of 
evidence supporting efficacy where mechanism of action is 
well understood. Even if concentration data are not available, 
evaluating the PD time course leads to substantial benefits.
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