
EDUCATION

Hidden Markov Modeling with HMMTeacher

Camilo Fuentes-BealsID
1, Alejandro Valdés-JiménezID
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Is it possible to learn and create a first Hidden Markov Model (HMM) without programming

skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM

through the 2 general questions it was initially developed to answer and describe its ele-

ments. The HMM elements include variables, hidden and observed parameters, the vector

of initial probabilities, and the transition and emission probability matrices. Then, we suggest

a set of ordered steps, for modeling the variables and illustrate them with a simple exercise

of modeling and predicting transmembrane segments in a protein sequence. Finally, we

show how to interpret the results of the algorithms for this particular problem. To guide the

process of information input and explicit solution of the basic HMM algorithms that answer

the HMM questions posed, we developed an educational webserver called HMMTeacher.

Additional solved HMM modeling exercises can be found in the user’s manual and answers

to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.

org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool

and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.

Introduction

Hidden Markov Model (HMM) is a general modeling technique suited to represent a sequence

of hidden features in time or space, in which each hidden feature causes or emits an observa-

tion [1]. In practice, given a model, an observed sequence is the input, for which the most

basic HMM either calculates its probability or outputs a prediction of the most probable

sequence of hidden features in it. Two known application examples are as follows: (1) the dis-

covery of the most probable sequence of hidden functional motifs, in a sequence of observed

nucleotides, or a gene; and (2) the most probable sequence of hidden protein structural fea-

tures, like α-helices or β-sheets, in an observed sequence of amino acids, or a protein [2]. The

examples, however, are not restricted to computational biology. To find the most probable

sequence of letters or words in a sequence of sounds, or speech recognition, was the first prob-

lem that inspired HMM development in the 1960s and 1970s [3].
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Given a question suitable for HMMs, in terms of observed sequence of symbols and the hid-

den features we want to discover, the next step is to build the model. However, as the meaning

of modeling is broad, we will arbitrarily divide it into “variables modeling” and “parameters

estimation.” In an HMM, the variables modeling consists in abstracting the situation to be

modeled in terms of observed and hidden variables, and their relationships called parameters.

Broadly, this concept refers to a model of computation called (finite) state machine or finite

state automaton and is applicable not only to HMMs, but to any graph model [4]. The parame-

ters estimation can be divided into training and validation. Training is the calculation of

parameters. It is achieved, usually, through the data processing of an available set of observed

sequences with a known mapping of hidden features. This set is called training set. Baum–

Welch and Viterbi training are common algorithms for model training [5]. Validation is a

quality control process of assessing how general the predictions are. If the predictions are cor-

rect only for the training set, the model is said to be overtrained. Cross-validation and simula-

tion are current methods for model validation [6]. Whenever the training set is large enough,

part of it is used for training the model, and the rest is used to validate it. Sensitivity and Selec-

tivity, Receiver Operating Characteristics (ROC) charts, and other measures are performance

indicators for a model [7].

The focus of this tutorial is on the variables modeling of an HMM. In what follows, we will

show the elements of an HMM and a set of practical rules to model in an orderly manner the

variables of a situation using HMMs, and answer, through the most basic HMM algorithms

Forward and Viterbi, respectively, 2 questions: (1) What is the probability of an observed

sequence given a model? and (2) What is the most probable sequence of hidden features in it?

Finally, we will interpret the results in an analysis of the parameters under the light of the mod-

eled problem. For this, we will illustrate the rules with a simplified modeling of a known bioin-

formatic puzzle, the prediction of transmembrane segments in a protein sequence, using a

publicly available web server, HMMTeacher, which we developed for educational purposes.

Our target audience are beginners in HMM modeling and trainers. Therefore, variations and

extensions of HMMs were not included here.

Elements of an HMM

As previously mentioned, a suitable question to be modeled with an HMM is one in which the

inputs and outputs are sequences of observations and hidden features, respectively. The term

“sequence” is key here. It is an ordered list of symbols. This order is represented by conditional

probabilities between consecutive positions or moments of the sequence, called for generality

“states.” These dependency probabilities between consecutive hidden states are called transi-

tion probabilities or Markovian dependencies, after the mathematician Andrey Markov

(1856–1922). Thus, the name Hidden Markov Model. As a sequence starts with a first symbol,

there is no dependency of this symbol with a symbol before it. For this reason, one additional

probability vector must be set, the one with the initial or prior probabilities for each hidden

symbol of the HMM. As the discussion of Begin and End states is beyond the scope of this

review, more information can be found in [1,2].

An HMM, then, can be described as a set of hidden symbols connected by Markovian depen-

dencies, which “emit” observed symbols (Fig 1B). The emissions are also conditional probabili-

ties. They represent the relationship between the hidden states and the observations. A directed

graph is a structure of nodes and edges that represent an HMM (Fig 1C). The nodes represent

the hidden symbols, and the arrows represent the transition probabilities that relate them.

Therefore, the elements of an HMM are a set of observed symbols, a sequence of observed

symbols, a set of hidden symbols, a vector of prior probabilities of hidden symbols, a matrix of
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transition probabilities between hidden symbols, and a matrix of emission probabilities

between hidden and observed symbols.

The modeling steps

Assuming there is already a question suitable for HMM modeling, the basic ordered steps we

suggest to designate the elements are as follows:

1. Define the sequence of observed symbols; the query, or input of the HMM.

2. Define the alphabet of observed symbols. These are derived from the observed input just

defined.

Fig 1. (A) Structural representation of a protein inserted into a membrane with several segments traversing the bilipid layer. (B) Example of an HMM process. The

process starts with a hidden state, in this case I (Inside), M (Membrane), or O (Outside), which emits (green arrow) an observed state (an amino acid in 1 letter code).

Then, it transitions to the next hidden state (orange arrow), which emits the next observed state, and so on. (C) Graph representation of the transition probability

matrix of the HMM. The circle nodes represent the hidden states; the arrows between hidden states are transition probabilities. The emission probabilities were omitted

from the graph for simplicity (S5 File). HMM, Hidden Markov Model.

https://doi.org/10.1371/journal.pcbi.1009703.g001
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3. Define the alphabet of hidden symbols, or hidden states. These define attribute(s), which

their most probable sequence we seek to know in the query. These symbols define the for-

mat of the output of the HMM.

4. Determine the vector of prior probabilities of the hidden states. This is the probability dis-

tribution of the first hidden state.

5. Establish the transition probabilities between hidden states.

6. Establish the emission probabilities from a hidden state to an observed state.

A working example of Hidden Markov Modeling
To illustrate these steps, we will develop in a simplistic form a well-known, many times

addressed since 1998 [8], bioinformatic problem of the prediction of transmembrane segments

in a protein sequence [9,10]. Transmembrane proteins are one of the oldest types of proteins

known [11]. After translation, they are embedded into the membrane of the cell (Fig 1A) [12],

to serve as channels or transporters, for exchange of molecules with the medium [13], or to

serve structural purposes, like cell walls for mechanic rigidity and defense [14], or anchors for

organelles [15], or to serve the immune system as presenters of potentially antigenic peptides

[16], among other functions [17,18]. To understand their function, it is useful to describe in

the protein sequence which subsegments are faced inward, outward, and the segments that

will attach the protein molecule to the bilipid layer of the cell.

The novelty in this exercise is doing so in a manner such that anyone without programming

skills or background in HMM algorithms can reproduce explicitly the modeling, the develop-

ment of the algorithms toward the results, and their back translation to the context of the prob-

lem, i.e., their interpretation.

In the following, we will apply each proposed abstract rule above. HMMTeacher, an educa-

tional tool to develop and solve HMMs, will help the process of modeling by taking the inputs

in an orderly manner. There are alternative tools (S4 File). However, HMMTeacher is, in our

experience, the most complete, user friendly, and general enough to edit a simple model, solve

it explicitly, and have the results ready for interpretation, without needing any familiarity with

the terminal or statistical analysis programs like R or Matlab, nor practice in programming.

1. The observed sequence will be a sequence of the protein of which we want to make the

transmembrane prediction. In this case, it will be a 100 aa sequence, obtained from the

5-hydroxytryptamine receptor 2A with UniProtKB—P18599:

MEILCEDNTSLSSIPNSLMQVDGDSGLYRNDFNSRDANSSDASNWTIDGENRTNLSFEG
YLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS

2. This also defines the set of observed states alphabet, which is the amino acid alphabet or a

subset of it. In HMMTeacher, choose the Protein alphabet option. Then, copy and paste the

observed sequence into the corresponding box.

3. The alphabet of hidden states. The original problem modeled by Krogh and colleagues,

TMHMM [19], had over 150 hidden states. Subsets of hidden states represented different

sequence signals, namely, the globular protein that sometimes hangs from the membrane

facing the cytosol, the cap signal that represents the amino acids at the extremes of the α-

helix at the core of the membrane, the α-helix in the core of the membrane, the loops at the

outside of the membrane (non-cytosol), and the final globular protein that is sometimes

attached to the outer side of the cell membrane. The more hidden states there are, the more

precise is the answer of the HMM. However, as we are looking for developing basic
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modeling skills, we will naively represent all of this only with 3 states: Inside (I), Membrane

(M), and Outside (O). The final output of TMHMM (S2 File) is the most probable sequence

of these 3 hidden states, which results from the postprocessing of the Viterbi prediction

using the large set of hidden states. In HMMTeacher, we just add the letters in the boxes of

“Hidden states” in the Protein central section of the webpage.

The next step is to determine the parameters of the HMM: (4) the vector of prior probabili-

ties of the hidden states; (5) matrix of transition probabilities, representing the frequencies by

which the hidden states change in a training set of membrane protein sequences; and (6) the

matrix of emission probabilities, representing the frequency composition of the amino acids

for each hidden state. For this particular example, we copied the emission probabilities from

the TMHMM webpage (S5 File) and invented the transition probabilities so to have a mem-

brane prediction similar to the one from a recently available improved membrane predictor,

DeepTMHMM [20]. The input parameters are available at the top of S1 File. The transition

probabilities matrix of our HMM can also be represented as a graph (Fig 1C).

In the case the user does not know what numbers to use for filling the matrices, HMMTea-

cher counts with a “Random” button, which assign them automatically. The idea is to explicitly

show that the parameters are the heart of the model and that they can be changed to see how

they affect the final prediction. To decide which parameters to change, the interpretation of

the probabilities of the matrices is the key. In our case, the vector of prior probabilities means

how frequently, after being inserted into the cell bilipid layer, the N-terminal of the protein

ends up in the cytosol, in the membrane, and in the outside of the cell. As these are all the pos-

sibilities, the probabilities must sum to 1. The transition probability matrix and the emission

probability matrix can be interpreted as part of the membrane properties that affect the topol-

ogy of the protein when it is inserted. Different membrane lipids composition [21] could ren-

der different transition and emission matrix probabilities, resulting different protein

topologies [22]. The emission probability matrix could model the properties of direct interac-

tion between the membrane with the protein amino acids [23].

After defining the parameters of the HMM, the model is ready to be interrogated. In the

next step, the user defines which questions to answer. The question of predicting which seg-

ments are inside, which are within the membrane, and which are outside can be expressed

generally as “The most probable sequence of hidden states that emit the query protein

sequence.” The HMM algorithm called Viterbi is the one to answer this question. However,

HMMTeacher can answer 2 additional questions for which there are 2 additional algorithms,

Forward and Backward. The first algorithm answers the question “What is the probability of

the observed sequence, under the model?” The second one, not previously mentioned, answers

the question “What is the probability that a particular hidden state, “i,” emitted the observed

state at a particular sequence position, “j”?” If we answer the Backward question for every

observed position, and each hidden state, we end up with a chart of probabilities of emission

per hidden state, in Y axis, and the observed sequence positions, in X axis. This chart is called

“Posterior decoding” (Fig 2B) [5].

In the final step, HMMTeacher provides the explicit solution for all chosen algorithms. The

results page shows the input parameters of the HMM followed by 1 tab per algorithm. Each

tab shows the recursion formulas adapted from [5,24], and the calculations step-by-step. In the

end of each tab, the result. The Forward algorithm tab shows the probability of the observed

sequence; Viterbi tab shows the most probable sequence of hidden states; and Backward tab

shows the Posterior decoding chart. Most of the time, the sequence of hidden states with the

highest probabilities in the Posterior decoding chart agrees with Viterbi prediction (S1 File).
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How to interpret the results?

The probability of an observed sequence given a model is a measure of how well the query

information fits the HMM of the problem. However, probability values become meaningful

only when compared with other probabilities. Therefore, without running the HMM for dif-

ferent queries, or the same observed sequence with different parameters, the result from For-

ward algorithm has no initial meaning. For long observed sequences, the Forward will render

very low values (in the order of 10−127, in this case). The results from Viterbi and Posterior

decoding are almost self-explanatory. In our case (Fig 2B), we have a clear prediction of a

membrane segment from protein position 76 onwards. Viterbi result agrees with this predic-

tion. What about before this position? The chart depicts an inside (I) prediction with high

probability, which tends to fall coming closer to the 53rd position, in favor to the membrane

(M) probability. TMHMM and DeepTMHMM smoothed the results averaging the probabili-

ties over a sliding window of positions, rendering a slightly lower probability than we have in

our example, but apparently more stable for the protein to be in the cytosol than the outside of

the cell (S2 and S3 Files).

ThisAU : PleasecheckandconfirmthattheeditstothesentenceThismade � up; arguablyoversimplified; andovertrainedexampleimitatesthe:::didnotaltertheintendedthoughtofthesentence:made-up, arguably oversimplified, and overtrained example imitates the membrane

prediction of TMHMM and DeepTMHMM. Notice that the transition probability parameters,

Fig 2. Results of Viterbi and Backward algorithms for the prediction of membrane segments in our example protein sequence. (A) Viterbi prediction of the most

probable sequence of hidden states: Inside (I), Membrane (M), and Outside (O), per input protein sequence position. In the HMMTeacher Viterbi output, Q is the

sequence of hidden states. The letter O inside the probability is the sequence of observed states. P(Q|O) is the conditional probability of the hidden states given the

sequence of observed states. (B) Posterior decoding chart derived from running the Backward algorithm in all observed protein sequence positions for all hidden states.

https://doi.org/10.1371/journal.pcbi.1009703.g002
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showed in Fig 1C, are plausible: The transitions between I and O hidden states are both null in

probability, as these transitions are not physically possible in the cell. On the other hand, the

remaining transition probabilities reflect the expected frequency of amino acids between hid-

den states. In particular, the transition probabilities between each state and itself are close to 1,

for I and M, which is the situation we are modeling.

Conclusions

When modeling an HMM, the hidden variables are the ones that represent the elements of the

answer we are looking for. The observed sequence is the query, and the parameters are the

information of how the hidden states are related between each other, and with the observed

states. Finally, the understanding of the parameters of an HMM and the consequences they

convey in the prediction of (hidden) attributes is a powerful tool for understanding the biology

of proteins. HMMTeacher is a calculator that facilitates this process.

Afterthought

After more than 15 years teaching Markov Chains and HMMs as the last of 3 units in a semester

course of “Mathematical Models in Biological Systems” for Bioinformatics Engineer students, we

have accepted that teaching the math needed, the modeling, the algorithms in detail, the program-

ming of the algorithms, their solution, and the interpretation of the results within the biological

context of the initial problem takes more than 3 or 4 weeks in an undergraduate classroom.

HMMTeacher saves teaching time by apportioning the process of modeling and solving the

model, between the user and the machine. Each one does what each does best. We humans do the

thinking and apply ingenuity: problem modeling and results interpretation. The server performs

all the calculations in between. HMMTeacher allows to teach HMM basics and practice the

modeling in classes with the help of the HMMTeacher manual’s exercises, within 2 weeks.

We have been using HMMTeacher for at least 3 years. Before that, a couple of surveys

showed us that 1 year after the course in which only the HMM theory and algorithms were

presented, the students were just familiar with the HMM terminology. Today, the students

become enabled at least mechanically if not conceptually to the process of HMModeling. They

can actually invent new problems and solve them with HMMTeacher. This is not ideal, since

learning the algorithms and their programming is also very important. However, for the ones

who really want to learn the algorithms, HMMTeacher shows their solution step-by-step. This

is an improvement in bioinformatics education.

Supporting information

S1 File. HMMTeacher report - 5H2A_CRIGR.

(PDF)

S2 File. TMHMM report - 5H2A_CRIGR.

(PDF)

S3 File. DeepTMHMM report– 5H2A_CRIGR.

(PDF)

S4 File. List of software and packages for Hidden Markov Modeling.

(XLSX)

S5 File. Matrix of emission probabilities of the example.

(XLSX)
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