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Typical brain networks consist of many peripheral regions and a few highly central ones,

i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have

shown that networks, obtained from the analysis of specific frequency components

of brain activity, present peculiar architectures with unique profiles of region centrality.

However, the identification of hubs in networks built from different frequency bands

simultaneously is still a challenging problem, remaining largely unexplored. Here we

identify each frequency component with one layer of a multiplex network and face this

challenge by exploiting the recent advances in the analysis of multiplex topologies. First,

we show that each frequency band carries unique topological information, fundamental

to accurately model brain functional networks. We then demonstrate that hubs in the

multiplex network, in general different from those ones obtained after discarding or

aggregating the measured signals as usual, provide a more accurate map of brain’s most

important functional regions, allowing to distinguish between healthy and schizophrenic

populations better than conventional network approaches.

Keywords: multiplex networks, brain fMRI, schizophrenia, frequency bands, multiplex hubs

INTRODUCTION

The brain functional network is generally built by interconnecting brain regions according to some
measure of functional connectivity (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009, 2012).
Studies using functional magnetic resonance imaging (VanDenHeuvel and Pol, 2010; Poldrack and
Farah, 2015) (fMRI) provided convincing evidence supporting the existence of special regions, i.e.,
hubs, that play a fundamental role in brain functional connectivity (Achard et al., 2006; Power et al.,
2013) by mediating interactions among other regions and favoring the brain’s integrated operation.
Generally, the strength of this connectivity is empirically estimated by inter-regional correlations
calculated after post-processing and filtering fMRI signals with a conventional pass band, keeping
components between 0.01 and 0.1 Hz (Cordes et al., 2001, 2002; Fox and Raichle, 2007). The
importance of each region with respect to the overall connectivity, i.e., nodal centrality in the
functional network, is of particular interest in many applications (Sporns et al., 2007; Bassett et al.,
2008; Bullmore and Sporns, 2009; Lynall et al., 2010; Rubinov and Sporns, 2010; Zuo et al., 2012).
However, it has been shown that networks with unique hub regions can be built from different
frequency ranges (Sasai et al., 2014) and that region centrality might largely fluctuate depending on
frequency cuts (Thompson and Fransson, 2015), with components above 0.1 Hz also contributing
to functional connectivity with unique topological information (Bassett et al., 2006; Mantini et al.,
2007; Supekar et al., 2008; Chavez et al., 2010; Liao et al., 2013; Chen and Glover, 2015). Such an
evidence impels the development of a novel framework to account for full information from all
frequency bands separately and simultaneously, without discarding any particular component or
aggregating some of them to build single networks.
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In this study, we tackle this challenging issue by employing
the theoretical and computational tools recently developed for
analyzing and modeling multiplex networks (Mucha et al., 2010;
De Domenico et al., 2013, 2015b,c). Multiplex architectures
are special networks consisting of different layers, each
encoding a different type of relationship or interaction between
nodes (Boccaletti et al., 2014; Kivelä et al., 2014). Recent studies
modeled and analyzed brain networks using temporal networks,
a special type of multilayer system (Bassett et al., 2011, 2013;
Braun et al., 2015). In this context, we identify each frequency
component with a distinct layer of a multiplex network whose
nodes represent the brain’s regions of interest and edges represent
their functional connectivity in a specific frequency range.

This novel approach rises two fundamental questions,
requiring to (i) verify if and how brain regions playing the
role of hubs in the new multiplex functional network differ
from the ones obtained using standard network approaches;
and (ii) if and how we can exploit such differences to improve
our understanding of brain disorders. In the following, we will
provide extensive evidence demonstrating that hub regions in
multiplex functional networks are different from hub regions
in standard functional networks and that such differences in
the nodal centrality profile allow us to identify patients affected
by schizophrenia more accurately than conventional approaches
based on discarding or aggregating information about brain
functional activity.

MATERIALS AND METHODS

Overview of the Data Set and fMRI
Preprocessing
The publicly available MR data set contributed by The Center
for Biomedical Research Excellence (COBRE) was used in
this study. The data set was downloaded from the following
repository: http://fcon_1000.projects.nitrc.org/indi/retro/cobre.
html. It includes resting functional and anatomical MRI data
acquired from 71 Schizophrenic patients and 74 healthy controls
(age: 18–65 for both groups). Parameters of fMRI acquisition
released by the provider are as follows: TR = 2000 ms, TE =

29 ms, voxel size = 3 × 3 × 4mm3, total scan time = 6 min.
One patients data was discarded from all analyses due to the
shortness of the data length. The following pre-processing steps
were applied to functionalMR images by using the SPM8 package
(Wellcome Department of Imaging Neuroscience, London, UK):
motion-correction, slice-timing-correction, spatial smoothing
with Gaussian kernel (5-mm full-width-at-half-maximum) and
spatial normalization. Signal fluctuations of fMRI are driven by
not only neural but also physiological effects—such as respiration
and cardiac pulsation—and environmental conditions—such as
scanner instabilities and subject motion. These nuisance effects
can be canceled out by discarding, for instance, the signal from
the ROI centered in the white matter, the signal from the
ventricular ROI, and the signal from the ROI located within the
soft-tissue. We have linearly removed these components as well
as six motion-correction parameters after temporally shifting
them by optimal time-lags yielding the highest correlation with

the averaged signal of all gray matter voxels (Anderson et al.,
2011).

Statistical Analysis of Age, Gender, and
Handed-Ness Distribution
We performed a Wilcoxon rank-sum test, a non-parametric
version of unpaired two-sample t-test, to test the null hypothesis
that phenotypic details in the two groups are sampled from
continuous distributions with equal medians. The test did
not reject the null in the case of age (p-value = 0.4253)
and gender (p-value = 0.1186), therefore the discrimination
power of the method proposed in the following can not be
explained by differences in age or gender between the two
groups (see Supplementary Table 3 for statistical descriptors).
The test rejected the null in the case of handed-ness (p-value =
0.004), suggesting that this factor might affect the discrimination
power of our method. However, we show in Supplementary
Figure 3 that, by including such information in the classification
procedure, discrimination accuracy and all other statistical
indicators are not significantly improved with respect to the
case when phenotypic data is not accounted for, suggesting that
differences in handed-ness are not responsible for our findings.

Connectivity Matrices
A set of 264 spherical ROIs (5 mm radii) was used to extract the
mean signal within each ROI. For each individual, the coherence
between all pairs of in-ROI averaged signals was estimated in
specific frequency bands, as described in the text. We kept the
edges between pairs of ROIs whose weight was significantly
different from a null model where observed signals were replaced
by surrogates. More specifically, we used the well-known iterative
amplitude-adjusted Fourier transform (IAAFT) algorithm to
build surrogate time series preserving the power spectrum and
the probability density of the original ones, while removing
higher-order self-correlations. For each pair of ROIs i and j,
we have verified that the distribution of the weights obtained
from the null model corresponds to a Gaussian described by
sample mean µij and variance σ 2

ij . Let wij indicate the weight

obtained from empirical data: we have calculated the absolute Z-
score as zij = |wij − µij|/σij and discarded all those edges for
which zij < 3, corresponding to cross-coherence not statistically
significant. It is worth remarking that the chosen threshold
provides a statistical test with significance 99.8%. On one hand,
lower thresholds would keep links that are more likely to be
observed by chance; on the other hand, higher thresholds would
dramatically reduce the density of the network making any
further analysis less reliable. Our choice provides a good trade-
off between these two extremal cases. Finally, we used the values
zij as entries of the resulting connectivity matrix.

As a final remark, it is worth mentioning that using
the absolute value of z-scores does not allow to distinguish
between significantly correlated and anti-correlated signals, a
characteristic that is typically exploited in the neuroscience
literature. In a future study, we plan to take into account,
separately, the information obtained from correlated and anti-
correlated signals by using distinct layers. By comparing against
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other standardmetrics, we will be able to quantify how our results
might be further improved.

Multiplex Network Model
A multilayer network allows to encode different types of
interactions or relationships among a set of nodes. More
specifically, in the case of our study we make use of multiplex
networks to model functional connectivity. In a multiplex
network, the links are of different type: one can assign a
different “color” to each type, thus obtained an edge-colored
representation of the network. In this type of architectures,
nodes exist in one or more layers, i.e., it is not required that
all nodes exist in all layers. Correlation networks, as the ones
used in this study, define edge-colored graphs where each layer
encodes the correlations observed in a specific frequency band.
However, it has been shown that by interconnecting nodes with
their replicas across layers, the resulting interconnectedmultiplex
network can be described by an adjacency tensor (De Domenico
et al., 2013) with components Miα

jβ , an object generalizing

the well-known concept of adjacency matrix to higher orders,
encoding connections between node i in layer α and node j
in layer β . While a strict biological interpretation of inter-layer
links in this context might be difficult, we suggest that their
existence and their weight might encode how different frequency
components interact each other and with which intensity. For
interconnected multiplex networks, Miα

jβ = 0 for i6=j and

simultaneously α 6= β . The presence of interconnections
allows to exploit tensorial algebra to generalize many single-
layer network descriptors, from centrality (De Domenico et al.,
2015c) to mesoscale structure (Mucha et al., 2010; De Domenico
et al., 2015a). However, it is not always possible to assign a
weight to inter-layer links by using the data, and it is common
to parameterize the intensity of interconnections (Gomez
et al., 2013; De Domenico et al., 2014), i.e., Miα

jβ = D

for i = j and simultaneously α 6= β , to study the
resulting interconnected multiplex network as a function of
this parameter D. This is exactly the case of the present
study, where the choice of D depends on the analysis of
interest.

It is worth mentioning that, in general, care must be taken
when network measures are applied to functional networks,
because links between nodes do not directly map physical
connections between different areas of the brain. Nevertheless,
links in functional networks indirectly quantify the statistical
correlation or similarity between two regions of interest and
are widely used in literature to gain insight about brain’s
activity (Bullmore and Sporns, 2009). In the following, we will not
make the difference between positive and negative correlations,
that will be considered, for each band frequency, as additional
layers of the multiplex functional brain network in a future study.

Structural Reducibility of Brain Multiplex
Functional Network
The analysis of structural reducibility of a multilayer network
allows to find layers that provide redundant topological
information, suggesting how to merge some layers with other

ones, to obtain an optimal multilayer network (De Domenico
et al., 2015b). The whole procedure can be summarized
as follows: (i) compute the distance (based on quantum
Jensen-Shannon divergence) between all pairs of layers; (ii)
perform hierarchical clustering of layers using such distance
matrix and use changes in the relative entropy q(•) as the
quality function for the resulting partition; (iii) finally, choose
the partition which maximizes the quality function, i.e., the
distinguishability from the fully aggregated graph obtained
by summing up the adjacency matrices of all layers. It is
worth remarking that this analysis is independent on the
choice of interconnections weight, i.e., it does not depend
on D. Here, we do not enter into the details of the whole
method; instead we focus on the Jensen-Shannon distance,
that is a key measure for two analyses presented in this
study.

The components A
[α]
ij (i, j = 1, 2, ...,N; being N the number

of ROIs in this study) of the adjacency matrix A
[α]—encoding

layer α—are obtained from the components of the multilayer

adjacency tensor as A
[α]
ij = Miα

jα . Here, A
[α]
ij > 0 if there

is correlation between ROIs i and j in the frequency band
represented by α. The Von Neumann entropy (Braunstein et al.,
2006; Passerini and Severini, 2010) of the corresponding complex
network is defined by

hA[α] = −Tr
[

L
[α] log2 L

[α]
]

, (1)

where L
[α] = c × (S[α] − A

[α]) is the combinatorial Laplacian

rescaled by c = 1/

(

N
∑

i,j= 1
A
[α]
ij

)

, and S is the diagonal matrix

of the strengths of the nodes. From the eigen-decomposition
of the Laplacian, it is possible to show that the entropy can be
calculated by

hA[α] = −

N
∑

i= 1

λ
[α]
i log2(λ

[α]
i ), (2)

where {λ
[α]
1 , λ

[α]
2 , . . . , λ

[α]
N } are the eigenvalues of L

[α].
The similarity of two layers can be calculated in terms

of differences in their entropy. Given two rescaled Laplacian
matrices L

[α] and L
[β], it is possible to quantify to which

extent layer α is different from layer β by their Kullback-Liebler
divergence, defined by

DKL(L
[α]||L[β]) = Tr[L[α](log2(L

[α])− log2(L
[β]))], (3)

encoding the information gained about L
[β] when the

expectation is based only on L
[α]. This divergence is not

a metric and a more suitable dissimilarity measure is the
Jensen-Shannon divergence, defined by

DJS(L
[α]||L[β]) =

1

2
DKL(L

[α]||L[µ])+
1

2
DKL(L

[β]||L[µ]), (4)

whereL
[µ] = 1

2 (L
[α]+L

[β]). It can be shown that
√

DJS, usually
called Jensen–Shannon distance, takes values in [0, 1], satisfies all
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the properties of a metric distance and provides a very powerful
measure of dissimilarity between layers.

Random Forest Classification
Machine learning has been used to train a classifier to distinguish
between control and schizophrenic individuals. We used the
random forest classifier (Breiman, 2001), well-known for its
robustness and for facilitating the interpretation of results. We
have fixed to 5 the maximum number of terminal nodes trees
the forest can have and to 2 the number of variables randomly
sampled as candidates at each split. We have verified that forests
consisting of 700 trees where enough to reach stable results
within this setup.

Given the importance of interconnections weight for our
analysis and, at the same time, the lack of knowledge about its
value, we used random forest to learn also which value ofDwould
be more suitable for calculations.

We have performed a first exploratory classification using
a leave-one-out approach to maximize the amount of data
used for training the classifier. The result of each classification,
corresponding to exactly one different individual (without
replacement) left out, was accompanied by the importance
assigned by the classifier to each ROI in terms of mean decrease

in its Gini index. Therefore, for each individual and each value
of D, we have ranked the ROIs according to this measure
and, eventually, summed up the ranks corresponding to all
classifications.

The result of the exploratory classification was an overall
ranking suggesting which ROIs, in general, have been more
crucial than others in the classification process. Therefore, we
performed a second classification round by using only the
top ROIs according to the above ranking. We first varied the
number of kept features and the value of D, to find the values
with best classification performances in terms of accuracy (see
Supplementary Figure 1). The numerical analysis indicated that
the best classification is achieved for interconnections weight
close to 24.7708 and about 30 top ROIs: that value of D and that
sub-set of ROIs have been used for analysis reported in the text.

Using a similar approach, we have compared the best
performance obtained from the full multiplex functional network
(12 layers) against multiplex functional networks obtained by
keeping layers in the typical band (Supplementary Figure 2)
and against classifier trained by including phenotypic data
(Supplementary Figure 3). In all cases, the classification obtained
using the full multiplex functional network was equal or better
than the other ones.

FIGURE 1 | Schematic illustration of brain multiplex functional network construction. (A) We measure the brain activity with a set of 264 ROIs (here, we only

draw five ROIs, for simplicity), and estimate the coherence spectrum of signals between any pair of ROIs. (B) Averaged coherence values are calculated in 12

frequency bands (here we only show four bands, for simplicity), to quantify the strength of frequency-specific functional connectivity. The statistical significance of each

connection is calculated (see Methods) and connections with Z-score smaller than 3 are discarded. (C) The remaining connections are used to build adjacency

matrices, weighted by Z-scores, that constitute the layers of the multiplex functional network once interconnected. (D) Resulting single-layer and multiplex networks

obtained from this procedure.
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ROIs PageRank Centrality
PageRank is a measure of node’s centrality originally introduced
by Google founders to rank Web pages according to their
importance in the Internet (Brin and Page, 1998; Ermann et al.,
2015). The algorithm consider a random walker exploring the
network with the following rules: 85% of times the walker jumps
from the current node to one chosen with uniform probability
from the neighborhood, whereas 15% of times the walker is
allowed to jump to any node of the network, with uniform
probability. The stationary probability of finding the walker in a
specific node is then used to rank the importance of nodes in the
network, the rationale being that central nodes have high number
of incoming links from other important nodes.

The natural extension of the PageRank algorithm
to the context of multiplex networks has been recently
introduced (De Domenico et al., 2015c) and proved to perform
better than its single-layer counterpart in some applications.
Let us indicate with Riαjβ the transition tensor, governing the

dynamics of a random walker jumping to neighboring nodes
with rate 0.85 and teleporting to any other node in the network
with rate 0.15. This rank-4 tensor is given by

Riαjβ = 0.85× Tiα
jβ +

0.15

NL
uiαjβ , (5)

where Tiα
jβ governs the standard moves of a classical random

walker from a node i in layer α to one of its neighbors j in layer β ,
L is the total number of layers and uiαjβ is the rank-4 tensor with

all components equal to 1. The steady-state solution of the master
equation

πjβ (t + 1) =

N
∑

i= 1

L
∑

α= 1

Riαjβπiα(t), (6)

obtained in the limit t −→ ∞, provides the PageRank centrality
for interconnected multiplex networks. To compute the overall
PageRank of a node, accounting for the whole interconnected
topology, we can safely sum up the stationary probabilities π⋆

jβ

over the layers, to obtain the components of the centrality profile

vector π̃⋆
j =

L
∑

β=1

π⋆
jβ used in our analysis. It is worth remarking

that the interconnection weight used for this purpose is D =

24.7708, the one yielding the highest classification accuracy.

FIGURE 2 | Frequency-dependent connectivity. Stacked histograms of structural descriptors where colors encode the contribution of each layer to each bin. The

distribution of the average degree (left panels), average strength (central panels) and assortative mixing coefficient (right panels) are shown for healthy (top) and

schizophrenic (bottom) subjects. For each panel, the dashed line indicates the median of the overall distribution (i.e., regardless of the frequency-dependent

contribution).
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RESULTS

Building Aggregated and Multiplex
Functional Connectivity Networks
We use a publicly available COBRE data set of resting state
fMRI, consisting of 71 patients affected by Schizophrenia and
74 healthy controls (age: 18–65). The set of 264 regions of
interest (ROIs) introduced by Power et al. (2011) is used to
extract the mean signal within each ROI, for each individual
separately. After estimating coherence between all pairs of ROIs,
the frequency-specific connectivity matrices are obtained by
averaging coherence within 12 frequency bands, defined by
decomposing the frequency range from 0.01 to 0.25 Hz into
intervals with equal widths of 0.02 Hz. The upper bound of
this frequency range corresponds to the Nyquist frequency of
fMRI signals, while the lower bound is obtained by following
conventional way to eliminate long term drift (Cordes et al.,
2002).

Weighted adjacency matrices, defining the functional network
for each frequency component separately, are yielded by
discarding from frequency-specific connectivity matrices those
connections with non-significant amount of correlation (see
Materials and Methods). The resulting multiplex network is

obtained, for each individual separately in control and patient
groups, by interconnecting the layers encoding functional
connectivity in each frequency band (Figures 1A–C). We
also define two single-layer networks, obtained by averaging
coherence signals within 0.01–0.25Hz and 0.01–0.1 Hz frequency
ranges (Figure 1D). We refer to such conventional networks as
full-band and typical-band single-layer networks, respectively,
both representing averaged and filtered versions of the full
multiplex functional networks.

Frequency-Dependent Structural Analysis
and Small-Worldness
For each subject and for each layer of the corresponding
multiplex brain network, we calculate some well-known
structural descriptors to better characterize the networks.

We show in Figure 2 the distribution of average degree
and average strength—characterizing ROI’s mean number
and weight, respectively, of functional connections in each
frequency band—and ROI’s assortative mixing (Newman,
2002)—characterizing the tendency of ROIs to connect to other
ROIs with similar or dissimilar connectivity. For both healthy
and schizophrenic brains we observe similar distributions and

FIGURE 3 | Frequency-dependent clustering. As in Figure 2, showing the distribution of edge density (left panels), average weighted clustering coefficient (central

panels) and modularity (right panels).

Frontiers in Neuroscience | www.frontiersin.org 6 July 2016 | Volume 10 | Article 326



De Domenico et al. Human Functional Brain Networks

positive assortativity, meaning that, on average, nodes with
similar degree tend to be functionally connected each other.

Figure 3 shows the distribution of edge density—defined
by the ratio between the number of links in the network
and the maximum number of possible connections—,
average weighted clustering coefficient (Barrat et al., 2004)—
characterizing the tendency of nodes to form weighted
triads—and modularity (Blondel et al., 2008)—quantifying
the mesoscale organization of nodes into functional modules.
We find that, in both groups, layers are moderately dense and
modular, with highly clustered ROIs.

Finally, we are interested in quantifying to which extent the
characteristic path length of each layer (Figure 4, left panel)—
defined by the average over all shortest paths connecting
ROIs each other—and the average local clustering (Figure 4,
middle panel) are different from their expectation when using
an Erdos-Renyi graph, with the same number of nodes and
edges, to model the network topology. We find that regardless
of the frequency band and the group, the functional brain
networks are characterized by short average path length and
high clustering, property typical of small-world topologies (Watts
and Strogatz, 1998). To better quantify this finding, we calculate
the small-world index (Humphries et al., 2006; Sporns, 2011)

defined by

S(f ) = (C̄(f )/Crand(f ))/(ℓ̄(f )/ℓrand(f )),

where C̄(f ) is the average local clustering coefficient and ℓ̄(f ) is
the average path length, with Crand(f ) and ℓrand(f ) being their
random expectations. These quantities are calculated for each
layer separately and depend on the corresponding frequency
band. The results, shown in the right panel of Figure 4 confirm
that all layers are, on average, characterized by a small-world
topology, being the median small-world index close to 2.5.

Structural Reducibility of the Multiplex
Functional Connectivity Network
First, we verify if the multiplex network is a valid and
suitable model of the underlying brain connectivity. For this
purpose, we analyze the structural reducibility of a multiplex
network (De Domenico et al., 2015b), allowing to identify
layers carrying redundant topological information. The method
incorporates redundant layers into other ones to reduce the
overall structure, while still maximizing the distinguishability
between the multiplex network model and the corresponding
fully aggregated graph, obtained by summing up the connectivity

FIGURE 4 | Frequency-dependent small-worldness. As in Figure 2, showing the distribution of average path length (left panels), average local clustering

coefficient (central panels) and small-world index (right panels).
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of all layers (Figure 5A). The difference between connectivity
in different layers is quantified by Jensen-Shannon divergence
(see Materials and Methods), a powerful information-theoretical
measure of (dis)similarity. A quality function controls the
reduction process and its global maxima identify optimal
structural reduction strategies.

We perform structural reducibility for each individual
separately and calculate the corresponding quality functions,
for control and patients groups (Figure 5B). In both cases, we
found that the maximum value of the quality function is attained
when no reduction is performed at all, providing evidence that
the topological information carried by each functional network,
corresponding to a different frequency component, should not
be disregarded from structural analyses. It is worth noting that
the behavior of the quality function alone does not allow to
distinguish between the two groups of individuals.

To gain insights about (dis)similarities between different
layers of the multiplex functional network in the two groups,
we use the quantum Jensen-Shannon distance (see Material
and Methods) calculated during the structural reducibility

analysis. The distance matrix, whose entries provide the Jensen-
Shannon distance between any pairs of layers, is first built for
each individual separately, and group average µ and standard
deviation σ are calculated. The signal-to-noise ratio (SNR)
defined by their ratio is successively calculated for each pair
of layers and for each group, separately (Figure 5C), as well
as the relative difference between the two group-averaged
values. We observed differences of up to 30% in absolute
value between the two groups, for specific pairs of layers.
Dissimilarities between layers within the typical-band were
higher in healthy individuals than in schizophrenic patients.
On one hand, functional connectivity in healthy subjects is
rather volatile and, in general, exhibits topological differences
across individuals (Sasai et al., 2014) that we did not observe in
patients, suggesting the possibility that schizophrenia might alter
brain’s integrated operation to reduce such a functional diversity.
On the other hand, an abnormal amount of dissimilarity
between functional networks corresponding to other frequency
bands (such as those within relatively higher ranges, e.g., 0.09–
0.19 Hz) was observed in patients but not in healthy individuals.

FIGURE 5 | Structural reducibility of the multiplex functional network. (A) Schematic illustration of how the analysis structural reducibility of the network works:

it allows to identify frequency bands providing redundant topological information and to verify the validity of the multiplex model with respect to conventional

single-layer models. Global maxima in the quality function identify optimal structural reductions. (B) The median quality function is shown for healthy control (solid) and

schizophrenic patients (dashed), with shaded areas indicating the standard deviation around each value. (C) Signal-to-noise ratio (SNR; see text for further details) for

Jensen-Shannon distance calculated for each pair of layers, color-coded for both groups, and corresponding relative difference between the two groups.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2016 | Volume 10 | Article 326

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


De Domenico et al. Human Functional Brain Networks

These results suggest that the dependence on frequency of
patients’ functional connectivity is different from that of healthy
individuals and we might use such dissimilarity patterns as a
fingerprint of brain’s functional organization for each group.

Identifying Schizophrenic Patients by the
Centrality Profile of Their Brain Functional
Connectivity
The importance of a region with respect to the overall
brain functional connectivity can be quantified by centrality
descriptors (Achard et al., 2006; Sporns et al., 2007; Bassett
et al., 2008; Lynall et al., 2010; Power et al., 2013; Rubinov and
Bullmore, 2013; van den Heuvel and Sporns, 2013; Thompson
and Fransson, 2015). Here, we propose to use PageRank (Brin
and Page, 1998; Ermann et al., 2015) as a measure of centrality,
which is based on the rationale that nodes linked by influential
nodes are more central than those linked by un-influential
nodes. It has been used in several applications, from ranking
relevant Web pages in the World Wide Web (Brin and Page,
1998) to identifying important nodes in the human functional
connectome (Zuo et al., 2012) and, more recently, in a variety of
multiplex networks (De Domenico et al., 2015c). Once centrality

scores are calculated for each node, the set of all their values
constitutes the centrality profile of the underlying functional
network. The Spearman’s correlation coefficient between the
centrality profiles corresponding to the multiplex, full-band and
typical-band functional networks is calculated (Figures 6A,B).
While very strong correlations are observed for centrality profiles
calculated from single-layer networks, no significant correlation
with multiplex centrality profiles were found.

These results suggest the appealing possibility to use the
multiplex centrality profiles to gain new insights about brain
functional connectivity. To this aim, we interpret the centrality
profiles as characteristic features of each individual (control
or patient) and we use the well-known and robust random
forest method (Breiman, 2001) to train a classifier distinguishing
between healthy and schizophrenic individuals (see Material and
Methods for further details). At the very beginning, we trained
the classifier by using all 264 centrality scores available for each
individual and found a classification accuracy of about 60–65%,
regardless for the type of centrality profile used (i.e., multiplex,
full-band and typical-band). One of the main advantage of
random forest classification is that it also ranks the features based
on their classification power, i.e., on the degree of discrimination
they have. We capitalize on this precious information to perform

FIGURE 6 | Comparing centrality profiles of multiplex and conventional functional networks. Spearman’s correlation coefficient between the centrality

profiles obtained from multiplex, full-band and typical-band functional networks for (A) healthy and (B) patient groups.
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a second round of classification, this time using only top-ranked
features instead of the full set. We varied between 10 and 260
the number of top features used to discriminate between healthy
and schizophrenic individuals. The comparison between the
results obtained from different centrality profiles are shown in
Figure 7A (see Supplementary Figures 1–3 for further details) for
top features varying between 10 and 50, being the accuracy of the
classification rapidly decreasing for increasing size of centrality
profiles. Remarkably, multiplex centrality profiles allow a more
accurate discrimination of the two populations, confirming the
hypothesis that multiplex functional networks are able to encode
richer information than their single-layer aggregations, providing
a suitable framework to better discriminate healthy brains from
schizophrenic ones. This result is robust against the selection of
the number of features used to discriminate, with the multiplex
approach significantly outperforming the other ones.

To gain further insights, we focus on the regions
corresponding to the top 30 ROIs of the multiplex centrality
profile, where we attained the maximum discrimination
between control and patient groups. The spatial distribution
of the corresponding brain’s regions are shown in Figure 7B.
Anatomical information about these ROIs is summarized in
Supplementary Table 1.

Characterizing Regions Distinctive of
Schizophrenic Brain Functional Activity
Capitalizing on results from group discrimination using
centrality profiles, we investigate more in detail the role of hub

regions. In particular, our interest is twofold. On one hand,
we wonder if the most central regions obtained from multiplex
and conventional functional networks are the same (it is worth
remarking that previous correlation analysis of centrality profiles
does not provide this information, because differences might
be due to low-ranked regions, for instance). On the other
hand we want to clarify which hub regions are found only in
healthy individuals, which ones are found only in schizophrenic
individuals and which ones are found in both groups.

Hubs were identified as ROIs ranked in top 5% in terms
of group-averaged region centrality. Figure 8 shows the spatial
distributions in the brain of such hubs, for each group,
while the corresponding anatomical information is reported
in Supplementary Table 2. In all cases we found hub regions
peculiar for each group and hubs regions that are common
to both groups. While significant differences are not observed
between networks built from conventional approaches, hubs
from multiplex analysis constitute a distinct set.

In both conventional networks, healthy-specific hubs are
located in cuneus, precuneus, transvers temporal, superior
temporal, and superior parietal cortices, whereas schizophrenic-
specific hubs are located in superior frontal, middle frontal, and
precentral cortices as well as thalamus. Hubs shared by both
groups are identified along the midline of the brain, in particular
the medial superior frontal, precuneus and cingulate cortices.
In the multiplex network, healthy-specific hubs controls are
located in anterior cingulate, superior frontal, insula and superior
temporal cortices, whereas those pertaining to schizophrenic

FIGURE 7 | Discrimination performance of the multiplex functional networks vs. conventional networks. (A) The statistical indicators of the discrimination

between control and patient groups obtained from conventional network approaches (i.e., full-band and typical-band networks) are compared against the full multiplex

functional network, which provides better overall discrimination. Note that the features are ROIs and their values are centrality scores. (B) Location of top 30

discriminating ROIs, obtained from multiplex analysis.
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FIGURE 8 | Brain regions playing the role of hubs in functional connectivity. The most central regions, i.e., hubs, identified in multiplex and conventional

functional networks are shown (from top to bottom). Markers indicate their locations, whereas panels from left-hand to right-hand side show hubs found only in

healthy controls (left), only in schizophrenic patients (center), or in both (right).

patients are distributed over frontal, parietal and occipital
cortices. Hub regions shared by both groups groups are localized
in frontal, occipital cortices and cerebellum. Notably, no hub
region has been identified in the precuneus cortex, a region well
known to function as a hub in healthy individuals (van den
Heuvel and Sporns, 2013).

Finally, we compared the top 30 hubs found in each group
against the top 30 distinctive ROIs found from the classification
procedure previously described. In the case of random forest
classification, we ranked ROIs by their average rank to identify
the most discriminating ones; let us indicate by Rclass the set
of the top 30 ROIs according to this ranking. Similarly, we first
rank the ROIs by their PageRank versatility and then calculate

their group-averaged ranks; let us indicate by R
H
pr and R

S
pr the

sets of the top 30 ROIs found in healthy and schizophrenic
groups, respectively, according to this ranking. In the case of
healthy subjects, 3 hubs inR

H
pr are found to be also discriminating

features; the Jaccard index of the two sets is 0.053. Remarkably,
in the case of schizophrenic subjects, 13 hubs inR

S
pr are found to

be also discriminating features; the Jaccard index of the two sets
is 0.277. The ROIs corresponding to the two cases are reported
in Supplementary Table 4. This finding confirms that highly
central regions in schizophrenic brains are different from highly
central regions in healthy brains, and that this result can be used
in practical applications to better identify patients affected by
schizophrenia.
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DISCUSSION

Resting state functional connectivity has been widely investigated
with fMRI in the past two decades. Since the first study conducted
by Biswal et al. (1995), functional connectivity has been defined
as an inter-regional temporal correlation of fMRI signals that
are preprocessed with band-pass filters, removing frequency
components below 0.01 and above 0.1 Hz. In fact, the power
spectrum of spontaneous fluctuations of fMRI signals roughly
follows a 1/f power-law scaling (He, 2011), where powers in the
higher frequency range are relatively weaker than lower ones,
suggesting the hypothesis that only the lower frequency range
substantially contributes to brain’s function. However, recent
studies have reported that conventionally excluded frequency
bands might provide additional insights on brain activity (Bassett
et al., 2006; Liao et al., 2013; Sasai et al., 2014; Chen and Glover,
2015; Thompson and Fransson, 2015). As a consequence, brain
functional networks exhibit a peculiar architecture, consisting
of a few regions acting as hubs, strongly dependent on the
frequency components of brain activity that contribute to inter-
regional interactions. However, a rigorous method to identify
such hubs in networks built from different frequency bands
simultaneously is a challenging problem remaining largely
unexplored.

Our results, based on multiplex modeling and analysis of the
brain activity, provide convincing evidence that characterization
of brain functional networks can not prescind from considering
the whole information observed from different frequency
bands, simultaneously. This crucial finding allows to exploit
new theoretical and computational tools for the analysis of
brain activity and opens a new direction toward a deeper
understanding of brain function and its operated integration. As
a first hint of the power of the new methodology, we have shown
that multiplex characterization of brain regions, in terms of
network centrality, allows to find new areas of the brain that have
never been classified as relevant in brain’s functional integration
(or the opposite). This is the case of ROIs in the precuneus
cortex, a well-known region of highly central functional hubs
(van den Heuvel and Sporns, 2013), that are not found by
our multiplex network analysis, reflecting the importance of
considering the whole information simultaneously, rather than
aggregating or neglecting part of it (De Domenico et al.,
2015c).

We wondered if this result could be exploited for practical
applications, where the choice of specific frequency bands might
play a crucial role. We focused our attention on characterizing
brain disorders in schizophrenic patients, a research topic of
great interest that has been largely explored (Bassett et al.,
2008; Lynall et al., 2010; van den Heuvel et al., 2013), although
individual diagnosis based on brain imaging remains still
undeveloped (Rubinov and Bullmore, 2013). With the aid of
the MRI technique, it has been recently shown that regions
affected by schizophrenia are distributed across the brain (Glahn
et al., 2008; Ellison-Wright and Bullmore, 2009), impelling
researchers to move from the conventional perspective where
the causes of disorders are localized in specific areas, to a wider
perspective with emphasis on abnormality in brain structural

and functional connectivity (van den Heuvel and Fornito,
2014). Studies on structural connectivity provided evidence that
schizophrenic brains exhibit abnormal network architecture,
characterized by reduced hierarchical organization, the loss
of frontal hubs with emergence of non-frontal hubs (Bassett
et al., 2008; Lynall et al., 2010) and degraded rich-club
organization (van den Heuvel et al., 2013). Methods not based
on networks were able to provide satisfactory performance in
discriminating schizophrenic patients from the analysis of their
brain activity (Yang et al., 2010; Chyzhyk et al., 2015), although
they are often based on very complicated machine learning
algorithms and make use of heterogenous data sources, thus not
improving our understanding of brain function. Here, we have
found that multiplex centrality profile of brain regions allow
to discriminate between control and schizophrenic groups of
individuals more accurately than centrality profiles calculated
from networks obtained by using conventional approaches,
such as aggregating and/or disregarding the measured activity.
Nevertheless, the discrimination accuracy is comparable to
other methods, with the additional advantage of providing
a framework facilitating the interpretation of results, without
relying on external data sources or phenotypic information.
In fact, we were able to identify many regions distinctive of
schizophrenic brains, some of them localized where abnormality
has been previously suggested (Honea et al., 2005; Rubinov
and Bullmore, 2013). The analysis of dissimilarities between
networks corresponding to different layers of the multiplex
functional network, confirmed significant differences between
healthy and schizophrenic individuals in specific frequency
ranges, including the higher ones. This finding demonstrates
that brain activity in higher frequencies provides unique
information about functional interaction in the brain, even
if their amplitudes are under-represented in the power
spectrum.

Nevertheless, the present study presents some limitations.
First, the sampling rate of fMRI signals (0.5 Hz) is lower than
the values recently used to investigate frequency-specificity of
functional connectivity (Wu et al., 2013; Gohel and Biswal,
2015). We think that a future study would benefit from
taking into account a wider frequency range, as the one
provided by a higher sampling rate. Second, neural mechanisms
generating frequency components of fMRI and their interactions
still remain unclear. Electrophysiological signals, as well as
fMRI signals, include many different frequency components
showing distinct network topology (Siegel et al., 2012). The
fact that electrophysiological studies have repeatedly shown
cross-frequency coupling as a mechanism of interactions
between different frequency layers (Canolty et al., 2006; Tort
et al., 2009; Axmacher et al., 2010; Belluscio et al., 2012),
we conjecture that inter-layer interactions between functional
networks built in the present study may reflect the corresponding
mechanism in the case of fMRI signals. The differences
between healthy and schizophrenic functional brains found
in our study are related to some layers, suggesting that
pathological abnormality in schizophrenia may occur on neural
mechanisms with specific frequency-dependent fingerprints.
Further studies, for instance with simultaneous recording of
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electroencephalography and fMRI, could allow us to examine the
electrophysiological background of fMRI frequency components
and possible mechanisms of interactions between different
components.

The proposed methodology suggests a guideline for future
studies designed to consider brain’s inter-regional interactions
at different frequencies, encouraging the application of other
multiplex network measures to functional networks obtained, for
instance, from variable brain states.
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