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Abstract: The gut metabolite trimethylamine N-oxide (TMAO) at admission has a prognostic value in
ST-elevation myocardial infarction (STEMI) patients. However, its sequential changes and relationship
with long-term infarct-related outcomes after primary percutaneous coronary intervention (PCI) remain
elusive. We delineated the temporal course of TMAO and its relationship with infarct size and left
ventricular ejection fraction (LVEF) post-PCI, adjusting for the estimated glomerular filtration rate
(eGFR). We measured TMAO levels at admission, 24 h and 4 months post-PCI in 379 STEMI patients.
Infarct size and LVEF were determined by cardiac magnetic resonance 4 months after PCI. TMAO levels
decreased from admission (4.13 ± 4.37 µM) to 24 h (3.41 ± 5.84 µM, p = 0.001) and increased from 24 h
to 4 months (3.70 ± 3.86 µM, p = 0.026). Higher TMAO values at 24 h were correlated to smaller infarct
sizes (rho = −0.16, p = 0.024). Larger declines between admission and 4 months suggestively correlated
with smaller infarct size, and larger TMAO increases between 24 h and 4 months were associated
with larger infarct size (rho = −0.19, p = 0.008 and rho = −0.18, p = 0.019, respectively). Upon eGFR
stratification using 90 mL/min/1.73 m2 as a cut-off, significant associations between TMAO and infarct
size were only noted in subjects with impaired renal function. In conclusion, TMAO levels in post-PCI
STEMI patients are prone to fluctuations, and these fluctuations could be prognostic for infarct size,
particularly in patients with impaired renal function.

Keywords: trimethylamine N-oxide (TMAO); ST-elevation myocardial infarction (STEMI); infarct
size; left ventricular ejection fraction (LVEF); estimated glomerular filtration rate (eGFR)

1. Introduction

Preventative and therapeutic efforts have contributed to the decline of coronary heart
disease (CHD)-related mortality in the past decades. Nevertheless, CHD remains the main
global cause of death with rates exceeding 9 million deaths per year, thereby underscoring
the importance of furthering our current understanding of this disease [1–3].

Atherosclerosis hallmarks CHD, and efforts are currently being directed at better
understanding the manner through which this inflammatory process contributes to the
development of CHD. Trimethylamine N-oxide (TMAO), a gut microbial product derived
from L-carnitine and choline-rich foods, has gained substantial attention due to its athero-
genic potential and its impact on CHD prognosis and all-cause mortality [4–9]. Indeed,
recent endeavors have suggested that higher admission plasma TMAO values reflect a
larger atherosclerotic burden and a higher risk of plaque rupture in patients presenting with
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ST-segment elevation myocardial infarction (STEMI) prior to undergoing percutaneous
coronary intervention (PCI) [10,11]. Furthermore, higher systemic TMAO levels exhibited
a dose-dependent relationship with increased risk of incident major adverse cardiac events
(MACE) in patients presenting with acute coronary syndrome (ACS) [6].

While these aforementioned efforts have certainly delineated the value of pre-PCI
TMAO levels in STEMI patients, the relevance of circulating TMAO in the post-PCI context
remains elusive. Furthermore, data on the relationship between TMAO and infarct-related
outcomes in STEMI patients, which could potentially explain the current established
prognostic value of TMAO, is scant. For these reasons, the aim of the current study is
to (i) delineate the temporal course of TMAO levels in STEMI patients who underwent
primary PCI, and (ii) to outline the link between TMAO levels and infarct-related outcomes
4 months after the occurrence of STEMI.

2. Materials and Methods
2.1. Study Population and Design

Our study included all patients enrolled in the ‘Glycometabolic Intervention as Ad-
junct to Primary Coronary Intervention in ST Elevation Myocardial Infarction‘(GIPS-III)
trial. This clinical trial aimed to delineate whether metformin treatment preserved left-
ventricular ejection fraction (LVEF) in STEMI patients without diabetes [12]. In short, all
patients admitted to the University Medical Center Groningen (UMCG) via the STEMI
protocol between 1 January 2011 and 26 May 2013 were eligible for inclusion. Further
inclusion criteria included an age of older than 18 years, presence of STEMI, and percu-
taneous coronary intervention (PCI) utilizing a minimum of one stent with a diameter of
at least 3 mm which resulted in a post–intervention TIMI flow grade of 2 or 3 [12]. Major
exclusion criteria included previous myocardial infarction, known diabetes, the need for
coronary artery bypass graft surgery, severe renal dysfunction (creatinine > 177 µmol/L
or eGFR < 30 mL/min/1.73 m2), and standard contraindications for magnetic resonance
imaging (MRI) [12]. The GIPS-III trial showed that the use of metformin had no effect on
infarct-related outcomes in STEMI patients after 4 months [12]. Further detail regarding the
design and rationale of the GIPS-III trial can be found elsewhere [13]. Patients were treated
according to the standard protocol of the UMCG for PCI. Periprocedural medications
included heparin, acetylsalicylic acid, and P2Y12 receptor inhibitor. The GIPS-III trial was
carried out in agreement with the declaration of Helsinki and approved by the UMCG
Medical Ethical Committee (Groningen, the Netherlands, nr: 2010.077); informed consent
was obtained from all participating subjects prior to their inclusion [12].

Out of the 1473 STEMI patients admitted to the UMCG between January 2011 and
May 2013, 379 subjects befitted the inclusion criteria and were included in our analysis.

2.2. Data Collection

Standard physical examination parameters and routine laboratory values were mea-
sured at admission as per protocol. Patients returned to the outpatient clinic for follow-up
at 2 weeks, 7 weeks, 4 months, and 1 year after discharge. Blood was sampled at these
timepoints according to protocol to allow for the routine measurement of common labora-
tory parameters (i.e., cardiac enzymes) [12–14]. Additional blood samples for metabolic
profiling (i.e., TMAO) were collected at admission, 24 h after PCI, and at 4 months after PCI
and at follow-up points beyond the 4-month mark [12,13]. Samples of sufficient quality
for TMAO measurement were only available at admission, 24 h and 4 months after PCI.
eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration study
equation [15]. The total number of subjects after eGFR stratification differs from the total
cohort because of missing eGFR data at baseline from some subjects. The methods utilized
for MRI measurement of LVEF and infarct size are described elsewhere [13].

Plasma TMAO was quantified using NMR by 1H-nuclear magnetic resonance (NMR)
spectroscopy employing a Vantera® Clinical Analyzer (LabCorp, Raleigh, NC, USA) as
previously reported [16]. To separate TMAO from other trimethylamine-containing species
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on the NMR spectrum, the pH was lowered to 5.3 by mixing TMAO specimens with a
citrate buffer (3:1 v/v). The Carr-Purcell-Meiboom-Gill (CPMG) acquisition technique was
used to obtain NMR spectra, after which TMAO was quantified from TMAO peaks using
a non-negative least squares fitting algorithm and subsequently converted to concentra-
tion units (µM) through an empirically determined conversion factor. The TMAO assay
has intra- and inter-assay coefficients of variation (CV%) that range from 4.3–10.3% and
9.8–14.5%, respectively [17].

2.3. Statistical Analysis

Baseline characteristics were expressed as means ± standard deviation when normally
distributed, as medians with interquartile ranges when non-normally distributed, or as
frequencies and percentages for categorical variables. Differences between groups were
determined by Student t test, Mann–Whitney U test, Chi-square or Fisher’s exact test.

The temporal course of TMAO at admission and in the post-PCI context was studied
using a mixed model with random intercepts followed by a pairwise comparison with a
Bonferroni correction to delineate differences between specific timepoints. Additionally,
we calculated Spearman rank correlation coefficients between TMAO values and infarct-
related outcomes at and across the different time points. This analysis was reiterated
twice after stratification of subjects based on their admission eGFR values (with 90 and
60 mL/min/1.73 m2 as two different cut-off values), seeing that renal impairment has been
reported to confound the associations between TMAO and cardiovascular disease [18].

In line with Benjamin et al., a 2-sided p-value < 0.005 was considered to be statistically
significant, whereas a p-value between 0.05 and 0.005 was considered to be suggestive [19].
All analyses were carried out using STATA version 16.0 (StataCorp LLC, College Station,
TX, USA). All figures were generated using GraphPad Prism version 9.0.1 (GraphPad
Software, LLC, San Diego, CA, USA).

3. Results
3.1. Study Cohort

Baseline characteristics are presented in Table 1. The median age at presentation was
59 years (interquartile range [IQR] 50.6–66.6 years), and 75% of all subjects were male. The
median ischemic time was 161 min (IQR 109–250 min), and the median eGFR was 93 (IQR
80–106 mL/min/1.73 m2). Baseline characteristics stratified according to eGFR values at
admission with 90 mL/min/1.73 m2 as cut-offs are presented in Table 1. The baseline
characteristics of groups stratified by eGFR with cut-off point 60 mL/min/1.73 m2 can be
found in Supplemental Table S1.

3.2. Temporal Changes in TMAO

Figure 1 depicts the levels of TMAO at admission, 24 h, and at 4 months after PCI
after logarithmic transformation. Mixed model analysis revealed that the mean TMAO
concentration differed significantly between the three time points (p = 0.001). Post hoc
pairwise comparison with an applied Bonferroni correction outlined that the reductions
in TMAO levels between admission and 24 h and subsequent increase between 24 h and
4 months were statistically significant (from 0.45 ± 0.02 µM to 0.34 ± 0.02 µM, p = 0.001,
and from 0.34 ± 0.02 µM to 0.43 ± 0.02 µM, p = 0.026, respectively).

3.3. TMAO and Infarct-Related Outcomes

Spearman correlation analysis revealed that TMAO levels at the three timepoints,
as well as their changes across such timepoints were not associated with LVEF. The gut
metabolite did, however, exhibit suggestive associations with infarct size (Table 2). Specif-
ically, higher TMAO levels at 24 h were associated with smaller infarct sizes, whereas
larger TMAO declines between admission and 4 months were associated with smaller
infarct sizes (rho = −0.16, p = 0.024 and rho = −0.19, p = 0.008, respectively). Furthermore,
larger TMAO increases between 24 h and 4 months were correlated with larger infarct sizes
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(rho = −0.18, p = 0.019) (see Supplementary Table S3 for delta values). The baseline Spear-
man correlations between TMAO and MRI indices 4 months post-STEMI stratified by eGFR
with cut-off point 60 mL/min/1.73 m2 can be found in Table S2.

Table 1. Baseline characteristics of GIPS-III subjects.

Total eGFR Groups

Reduced Normal p-Value

eGFR < 90 eGFR≥90
n = 379 n = 144 * n = 188 *

Age 59.1 (50.6–66.5) 63.7 (54.6–71.1) 54.9 (48.4–62.7) <0.001
Female sex 95 (25.1%) 43 (29.9%) 39 (20.7%) 0.056
BMI (kg/m2) 26.6 (24.2–29.3) 27.1 (25.1–29.6) 26.2 (24.1–29.1) 0.050
Cardiovascular related history

Hypertension 112 (29.6%) 60 (41.7%) 42 (22.3%) <0.001
Current smoking 209 (55.1%) 64 (44.4%) 123 (65.4%) <0.001
Hypercholesterolemia 239 (63.1%) 83 (57.6%) 126 (67.0%) 0.079
Stroke 3 (0.8%) 2 (1.4%) 1 (0.5%) 0.580
Peripheral artery disease 0 0 0 -
Previous PCI 4 (1.1%) 2 (1.4%) 2 (1.1%) 1.00

Blood Pressure
Systolic (mmHg) 133 (120–147) 133 (120–149) 132 (120–146) 0.750
Diastolic (mmHg) 83 (74–94) 84 (72–93) 83 (76–95) 0.440

Heart rate (beats/min) 74.0 (64.0–85.0) 72.0 (61.0–84.5) 73.0 (65.0–84.0) 0.460
Ischemia time (min) 161 (109–250) 144 (107–203) 170 (113–273) 0.030
Single vessel disease 258 (68.1%) 96 (66.7%) 128 (68.1%) 0.780
Culprit vessel

LAD 146 (38.5%) 52 (36.1%) 72 (38.3%)
LCX 64 (16.9%) 27 (18.8%) 26 (13.8%)
RCA 169 (44.6%) 65 (45.1%) 90 (47.9%)

Laboratory measures
CK-MB (U/L) 16 (13–25) 15 (13–22) 17 (13–27) 0.130
Troponin (ng/L) 50 (23–136) 49 (26–136) 50 (23–136) 0.970
NT-proBNP (ng/L) 81 (40–200) 90 (45–218) 77 (37–172) 0.120
eGFR (mL/min/1.73 m2) 93 (80–106) 79 (68–85) 104 (96–117) <0.001
TMAO (µM) 3.10 (1.80–5.10) 4.10 (2.50–6.10) 2.80 (1.55–4.00) <0.001
Cholesterol (mmol/L) 5.3 (4.7–6.0) 5.2 (4.6–5.9) 5.4 (4.8–6.2) 0.026
HDL cholesterol (mmol/L) 1.1 (0.9–1.3) 1.1 (0.9–1.3) 1.1 (0.9–1.4) 0.570
LDL cholesterol (mmol/L) 3.8 (3.2–4.4) 3.6 (3.0–4.3) 3.8 (3.3–4.6) 0.006
Triglycerides (mmol/L) 0.9 (0.6–1.5) 1.0 (0.7–1.4) 0.9 (0.6–1.6) 0.059

Data are expressed as median (interquartile range [IQR]) or as number (%). p-values were based on Student t test, Mann–Whitney U
test, Chi-square, or Fisher’s exact test when appropriate. * The total number of subjects after eGFR stratification differs from the total
cohort because of missing eGFR data at baseline from some subjects. Abbreviations: BMI—body mass index; CK-MB—myocardial band of
creatine kinase; eGFR—estimated glomerular filtration rate; PCI—percutaneous coronary intervention; NT-proBNP—N-terminal pro-brain
natriuretic peptide; TMAO—trimethylamine N-oxide; LAD—left anterior descending; LCX—left circumflex artery; RCA—right coronary
artery; LDL—low-density lipoprotein; HDL—high-density lipoprotein.

Some of these suggestive findings persisted and became significant after eGFR stratifi-
cation with 90 mL/min/1.73 m2 as a cut-off value, but only in patients with an
eGFR < 90 mL/min/1.73 m2 (Table 3). To illustrate, in the <90 mL/min/1.73 m2 eGFR
group, the TMAO decline between admission and 4 months became significantly asso-
ciated with infarct size (rho = −0.49, p < 0.001), and the TMAO increase between 24 h
and 4 months became significantly associated with infarct size (rho = −0.35, p = 0.004).
Additionally, these patients exhibited a positive suggestive correlation between larger in-
creases in TMAO values between admission and 4 months and LVEF (rho = 0.25, p = 0.030).
Comparing the correlations of the two different groups using a regression model with an
interaction term (eGFR × TMAO) showed that the correlations for infarct size suggestively,
and significantly, differed for the decline in TMAO levels between admission and 4 months,
and the TMAO increase between 24 h and 4 months, respectively (p = 0.010; p < 0.001), and
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that the correlations for LVEF suggestively differed for delta TMAO levels between 24 h and
4 months (p = 0.013). Lastly, no significant correlations were observed between TMAO val-
ues and infarct-related outcomes when subjects were stratified using 60 mL/min/1.73 m2

as a cut-off value for eGFR.
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Figure 1. LogTMAO levels across time in subjects admitted via the STEMI protocol (n = 379). Mixed
model analysis was utilized to contrast the temporal course of logTMAO between categorical groups.
Data are presented as mean and standard error of the mean (SEM). * = p ≤ 0.05; ** = p ≤ 0.001
Abbreviations: TMAO—trimethylamine N-oxide, STEMI—ST-elevated myocardial infarction.

Table 2. Spearman correlations between TMAO and MRI indices 4 months post-STEMI.

Infarct Size * LVEF

Rho p-Value Rho p-Value

TMAO at admission −0.12 0.064 0.04 0.583

TMAO at 24 h −0.16 0.024 0.06 0.353

TMAO at 4 months 0.05 0.437 −0.02 0.729

Delta TMAO (admission–24 h) 0.01 0.861 −0.02 0.770

Delta TMAO (24 h–4 months) −0.18 0.019 0.10 0.163

Delta TMAO (admission–4 months) −0.19 0.008 0.02 0.726
* Infarct size as % of left ventricular thickness. Abbreviations: TMAO—trimethylamine N-oxide; LVEF—left
ventricular ejection fraction.

Table 3. Spearman correlations between TMAO and MRI indices 4 months post-STEMI stratified by eGFR.

Reduced eGFR (eGFR < 90 mL/min/1.73 m2)
n = 144

Normal eGFR (eGFR ≥ 90 mL/min/1.73 m2)
n = 188

Infarct Size * LVEF Infarct Size * LVEF

Rho p-Value Rho p-Value Rho p-Value Rho p-Value

TMAO at admission −0.28 0.016 0.20 0.068 −0.03 0.779 −0.004 0.968

TMAO at 24 h −0.20 0.107 0.13 0.244 −0.17 0.081 0.008 0.935

TMAO at 4 months 0.24 0.031 −0.10 0.352 −0.12 0.221 0.09 0.351

Delta TMAO (admission–24 h) −0.11 0.421 0.08 0.537 0.10 0.312 −0.05 0.638

Delta TMAO (24 h–4 months) −0.35 0.004 0.19 0.100 0.01 0.914 −0.06 0.575

Delta TMAO (admission–4 months) −0.49 <0.001 0.25 0.030 0.15 0.122 −0.18 0.059

* Infarct size as % of left ventricular thickness. Abbreviations: TMAO = trimethylamine N-oxide; LVEF = left ventricular ejection fraction;
eGFR = estimated glomerular filtration rate.
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4. Discussion

We investigated the sequential changes of TMAO and its relationship to infarct-related
outcomes before and after adjusting for kidney function in STEMI patients. The major
findings of the present study were as follows: (i) TMAO levels significantly decreased
within the first 24 h after PCI and returned to baseline values after 4 months, (ii) TMAO
exhibited suggestive associations with infarct size but not with LVEF, and (iii) eGFR
stratification with 90 mL/min/1.73 m2 as a cut-off value accentuated the association
between TMAO and infarct size in subjects with eGFR < 90 mL/min/1.73 m2.

4.1. Admission TMAO Levels and Its Temporal Course

Plasma TMAO levels are prone to influence by an array of factors, including but not
limited to gut microbiome composition, dietary choline and L-carnitine intake, and genetic
heterogeneity of the hepatic flavin monooxygenase 3 enzyme responsible for the generation
of TMAO from trimethylamine [4,20]. Indeed, previous investigations not only showed
variation in TMAO levels across different cardiovascular disease cohorts but also across
cohorts sharing the same cardiovascular disease pathology [6,21,22]. To illustrate, while
investigating the prognostic potential of admission TMAO levels across two ACS cohorts,
Xinmin and colleagues observed higher TMAO levels in the Cleveland cohort (median:
4.28 uM) compared to the Swiss cohort (2.87 µM) [6]. Interestingly, our current Dutch
cohort (median: 3.1 µM) demonstrated closer affinity to the Swiss cohort admission TMAO
level relative to the US cohort. While this observation could be attributed to genetic and/or
dietary similarities between our cohort and the Swiss cohort as a result of their geographic
proximity relative to the US cohort, we cannot draw such a definitive conclusion since
both our study and that of Xinmin et al. lacked information regarding the dietary habits
and genetic background of the subjects involved. In terms of studies exclusive to STEMI
patients, admission median TMAO levels ranged from 2 µM to 6 µM, a range to which our
present STEMI cohort conforms [11,23,24].

Our analysis is the first in (i) delineating changes in TMAO levels across three different
timepoints and (ii) reporting such temporal patterns within the first 4 months in STEMI
patients who underwent PCI. The drop in TMAO values within the first 24 h of admission
in the present cohort indicates that TMAO is prone to acute changes in the post-PCI setting.
We could not, however, pinpoint the precise reason behind such variation as subjects were
not necessarily fasted, nor were they expected to follow a prespecified dietary regimen
upon admission. Analyzing such dietary parameters is of central importance as TMAO
has been shown to exhibit volatile changes in response to acute changes in dietary patterns.
In a pilot study including healthy participants randomized to a 24 h water-only fast or a
24 h ad libitum fed diet, Washburn et al. reported a significant decrease of TMAO levels at
the end of a fasted day, which subsequently returned to admission values within 24 h from
the start of the refeeding phase [25].

The only other report describing the sequential change of TMAO after PCI in STEMI
patients is that of Matsuzawa et al. In their cohort, TMAO significantly increased between
admission (median: 5.63 µM) and 10 months (6.76 µM) [23]. While our present investi-
gation found no significant difference between admission and 4 months, it is important
to note that the TMAO change observed by Matsuzawa et al. was borderline significant
(or rather suggestive when maintaining our definition of significance; p = 0.048). Further-
more, the difference in the temporal period used to measure changes in TMAO levels
between their investigation (10 months) and ours (4 months) could also be a reason behind
this discrepancy.

4.2. TMAO, Long-Term Infarct-Related Outcomes and Renal Function

In addition to the state of post-PCI perfusion, we analyzed the relationship between
TMAO and infarct size, as well as LVEF, as both are important predictors of STEMI
prognosis [26]. Studies conducted on murine models analyzed the relationship between
TMAO and these infarct-related outcomes, but such investigations yielded conflicting
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results [27,28]. In humans, previous reports showed that TMAO levels were not associated
with infarct size as determined by peak admission CK-MB and creatine phosphate val-
ues [20,29]. These findings are supported by the recent work of Zhou et al., in which it was
shown that baseline TMAO levels did not significantly correlate with infarct size nor with
LVEF at 30 days in patients presenting with a first anterior STEMI [30]. Our work extends
these findings as it includes all STEMI patients irrespective of the culprit vessel involved
and reports the relationship between TMAO (at and across three distinct timepoints) and
infarct-related outcomes (at 4 months).

In our study, greater TMAO declines between admission and 4 months reflected
smaller infarcts, and greater TMAO elevations between 24 h and 4 months were sugges-
tively correlated to larger infarcts. It is established that the extent of inflammation—a
process to which TMAO is linked—in the reperfusion phase is pivotal in determining
the size of the infarct [28,31,32]. Such a process ensures the removal of necrotic debris,
yet excessive inflammation in itself could expand the area of damage and, subsequently,
the size of the infarct [31–33]. We hypothesize that greater elevations in TMAO levels
between 24 h and 4 months could reflect the persistence of an overactive inflammatory
response that spills into, and after, the reparative phase, thereby exacerbating the size of
the infarct [33,34].

eGFR stratification showed that such associations became no longer suggestive in
patients with normal kidney function (eGFR ≥ 90 mL/min/1.73 m2). In the impaired
kidney function group (eGFR < 90 mL/min/1.73 m2), however, such stratification accentu-
ated some of the suggestive associations into becoming significant, where greater TMAO
declines between admission and 4 months became significantly associated with smaller
infarcts and greater TMAO elevations between 24 h and 4 months became significantly
correlated to larger infarcts. These findings are of relevance in as much as the relationship
between TMAO and kidney function is a current topic of discussion. Not only is plasma
TMAO mostly cleared by the kidney, but a “uremic environment”—characteristic of CKD
patients—may also elevate plasma TMAO levels through promoting dysbiosis of the gut
microbiome [35,36]. On the other end of the spectrum, TMAO has been shown to increase
tubulointerstitial fibrosis and collagen deposition in murine models [35]. Thus, the question
that remains in light of our findings and the nature of our post hoc analysis is whether
TMAO’s association with infarct-related outcomes is simply confounded by low eGFR.
This possibility is supported by the findings of the aforementioned works of Zhou et al., in
which TMAO was not shown to be associated with infarct outcomes, and the work of Son-
mez and colleagues, in which decreased eGFR (eGFR < 60 mL/min/1.73 m2) was shown
to be associated with lower LVEF and greater infarct sizes [30,37]. The lack of significant
relationships between TMAO and infarct-related outcomes in our <60 mL/min/1.73 m2

eGFR group does not necessarily refute the confounding possibility, seeing that such group
comprised of only 14 subjects. In terms of LVEF and its association to TMAO (or changes
thereof), we hypothesize that the lack of significant associations between the two variables
to be the result of our study population, as well as the limitations associated with using
LVEF to represent the myocardial function. GIPS-III subjects underwent rapid PCI, thereby
limiting the extent of myocardial infarction and subsequent deterioration of LV function. In
doing so, this rapid PCI approach could have limited the variation in LVEF amongst these
patients, which could explain the lack of an association between LVEF and TMAO [12–14].
Furthermore, inherent to the use of LVEF as a marker of cardiac function and remodeling
are physiological, technical, and clinical limitations [38]. In contrast to LVEF, infarct size
measurement using MRI allows for a more accurate representation of the functional state
of the myocardium and has been shown to be a superior prognostic predictor [39,40]. This
could potentially explain why TMAO levels were significantly associated with infarct size
but not with LVEF.
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4.3. Limitations

Several limitations warrant consideration. First, the post hoc nature of our investiga-
tion limits our conclusion to being correlative rather than causative. Second, the GIPS-III
trial was designed to test metformin in non-diabetic subjects presenting with a first STEMI.
In the Dutch system, STEMI patients undergo rapid primary PCI, thereby limiting infarct
size and preserving LVEF. Moreover, subjects with severe renal dysfunction at presentation
were excluded from the GIPS-III trial. Therefore, our analysis is not free from selection
bias, and conclusions should be drawn with caution in light of other STEMI cohorts. Fur-
thermore, we did not prospectively collect information regarding the dietary patterns nor
antibiotic use prior to or after PCI, both of which are key in influencing TMAO concentra-
tions [4,41]. However, dietary intake at the coronary care unit (CCU) was standardized
according to clinical protocol, and a retrospective review of medical charts revealed that
no antibiotics were used by the patients included. The baseline Descriptive statistics of
post-PCI medication stratified by eGFR with cut-off point 60 mL/min/1.73 m2 can be
found in Table S4.

4.4. Future Perspectives

The fluctuations in TMAO levels after PCI urge future endeavors to investigate the
reasons behind such changes in a controlled environment, taking into account the influence
of diet, genetics, and antibiotic use on the gut metabolite. Additionally, more investigations
are needed to clarify the relationship between TMAO, eGFR, and infarct-related outcomes.

5. Conclusions

In this investigation, we outlined the temporal course of TMAO in the post-PCI
context of STEMI patients and associations between TMAO levels and infarct sizes. These
associations were accentuated in terms of significance in patients with impaired renal
function (eGFR < 90 mL/min/1.73 m2), thereby implying an interplay between renal
dysfunction, higher TMAO values, and infarct sizes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10235677/s1, Table S1: Baseline characteristics of 332 GIPS-III subjects stratified by eGFR
(cut-off: 60 mL/min/1.73 m2). Table S2: Spearman correlations between TMAO and MRI indices
4 months post-STEMI stratified by eGFR (cut-off: 60 mL/min/1.73 m2). Table S3: Descriptive
statistics of delta TMAO values across all eGFR strata. Table S4: Descriptive statistics of postPCI
medication stratified by eGFR (cutoff: 90 mL/min/1.73 m2).
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