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The global tuberculosis epidemic is the most common cause of death after infectious 
disease worldwide. Increasing numbers of infections with multi- and extensively 
drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to 
newly discovered and last resort antibiotics, highlight the urgent need for an efficient 
vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only cur-
rently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. 
More importantly, recent clinical studies on new vaccine candidates did not prove to 
be better than BCG, yet. Here, we propose and discuss novel strategies to improve 
efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses 
upon vaccination already provided promising results in animal models of tuberculosis. 
For instance, neutrophils have been shown to influence vaccine efficacy, both, positively 
and negatively, and stimulate specific antibody secretion. Modulating immune regulatory 
properties after vaccination such as induction of different types of innate immune cell 
death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory 
cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation 
of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to 
enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or 
training the innate immune memory may be exploitable for future vaccination strategies 
against tuberculosis. In this review, we put a spotlight on host immune networks as 
potential targets to boost protection by old and new tuberculosis vaccines.

Keywords: tuberculosis, vaccine, Mycobacterium tuberculosis, host-directed therapy, neutrophils, iL-10, CD1, 
cell death

inTRODUCTiOn

With 1.8 million deaths worldwide, the World Health Organization listed tuberculosis among the 
top 10 causes of death in 2015 (1) and positioned tuberculosis to be the number one killer after 
infectious disease. Alarmingly high numbers of cases with multidrug- (MDR) and extensively 
drug-resistant (XDR) variants, prompted the G20 leaders to single out tuberculosis within the 
emerging problem of antibiotic resistance in their 2017 summit declaration. Nearly, half a million 
people were identified to be infected with MDR strains of Mycobacterium tuberculosis in 2016 but 
not even half of them were treated successfully (1). A number of XDR tuberculosis cases are even 
considered untreatable. Those patients have a survival rate of only 30% (1). These figures high-
light the global tuberculosis health crisis and emphasize how urgently novel vaccines are needed.  
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As of today, the widely used attenuated live vaccine M. bovis 
BCG provides only limited protection. It is effective against 
primary tuberculosis during childhood, which can lead to 
severe outcomes, including meningitis. However, the protective 
efficacy of BCG against pulmonary tuberculosis in adults is 
unsatisfactory and varies tremendously between geographical 
areas, concretely the greater the distance from the equator 
the higher the efficacy (2). Consequently, huge scientific and 
financial efforts have been made to design and develop novel 
vaccine types, hoping to enhance protective immunity against 
tuberculosis in adults. The aims are either to sterilely eliminate 
the mycobacteria or—at least—prevent forms of active disease, 
such as contagious pulmonary tuberculosis in order to limit 
transmission. Still, none of the novel vaccine candidates have 
replaced BCG. A booster vaccine candidate with just one myco-
bacterial antigen, MVA85A, which was promising in animal 
models, failed to enhance BCG-primed protection in a recent 
clinical study in South Africa (3). In this approach, the secreted 
mycobacterial mycosyl transferase Ag85A, involved in the 
synthesis of trehalose dimycolate, cell wall maintenance, and M. 
tuberculosis survival (4), was cloned into a recombinant strain of 
modified Vaccinia Ankara virus (5) to be used as booster vaccine 
following BCG priming. Despite induction of antigen-specific 
multifunctional Th1 and Th17  cells in infants that received 
MVA85A on top of BCG priming (3), 1,399 vaccinees were not 
better protected from tuberculosis than the placebo controls, 
raising the question, whether BCG-centric vaccine strategies 
that aim to elicit potent Th1  cell responses against dominant 
antigens are still the most promising approaches (6).

A different approach to improve vaccine efficacy is to modu-
late host immune networks concomitantly or upon vaccination, 
using old and new vaccines to boost protection. Immune system 
networks may be exploited to bias immune responses toward 
protective immunity against tuberculosis. Various host responses 
following vaccination have been described to interfere with 
establishment of protective immunity similar as it is seen after 
natural infection (7). In this review, we discuss novel approaches, 
which may improve anti-tuberculosis vaccination. These include 
targeting neutrophils as well as the type of phagocyte cell death, 
i.e., necroptosis vs. apoptosis during vaccination. We review 
CD1-binding lipids as antagonists for CD1-restricted T  cell 
responses, which may interfere with proper vaccine-mediated 
immunity. Additionally, immunoregulatory cytokines such as 
IL-10 may also affect vaccine efficacy and, thus, are putative tar-
gets for vaccination-accompanying immunomodulation. Finally, 
based on promising results in immunotherapy of cancer, we will 
consider whether induction of immunogenic cell death has the 
potential to enhance T cell responses.

neUTROPHiLS UPOn vACCinATiOn:  
THe GOOD, THe BAD, OR THe neUTRAL 
FOR vACCine eFFiCACY

Neutrophils are associated with disease in patients with active 
tuberculosis and susceptible mouse strains developing necrotic 
granulomas similar to humans. These potent anti-microbial 

innate immune cells have been shown to represent the main cell 
population in bronchoalveolar lavage and sputum of patients 
with active pulmonary tuberculosis and they carry the main 
mycobacterial load (8). Berry et  al. identified a blood mRNA 
profile, which was dominated by a neutrophil signature and 
allowed to discriminate between active tuberculosis patients, 
latently infected ones, and healthy controls (9). Moreover, 
neutrophil-rich lesions associated with necrotic caseous mate-
rial were found in resected lungs of patients (10). Thus, active 
pulmonary tuberculosis is considered to be neutrophil-driven 
(11). Susceptible mouse models, mimicking the pathology of 
human tuberculosis, such as C3HeB/FeJ, DBA/2, and I/St, show 
strong contribution of neutrophils to mycobacterial load, tissue 
destruction, pathology, and decreased survival rates (12–14). 
Importantly, not only in active M. tuberculosis infection but also 
after subcutaneous BCG vaccination, neutrophils rapidly enter 
the site of injection in large numbers (15). Neutrophil influx is 
also observed in response to vaccination using the synthetic 
trehalose dimycolate analog, trehalose-6,6-dibehenate (TDB), 
in a liposome formulation as adjuvant at the site of subcutane-
ous injection (Figure 1). Trehalose dibehenate was proposed as 
adjuvant to boost efficacy of subunit vaccines against tubercu-
losis (16). Neutrophils have also been shown to shuttle bacte-
rial antigens to draining lymph nodes for T cell priming (17). 
However, contradictory roles for neutrophils regarding vaccine 
efficacy have been described.

Neutrophils have been shown to activate B cells leading to 
antibody secretion. After reprogramming by IL-10, among other 
signals, neutrophils entered the marginal zone of the spleen 
upon mucosal colonization by microbes in murine neonates 
(18). Here, the neutrophils exhibited a B cell–helper phenotype 
and induced immunoglobulin diversification and production 
by T  cell-independent B  cell activation. However, splenic 
B cell–helper neutrophils have not been detected in humans so 
far (19). Nagelkerke et al. identified a homogenous neutrophil 
population in human spleen that did not exhibit enhanced 
capabilities over blood neutrophils regarding co-stimulation 
of B cells and antibody production thereof. Classically, B cell-
mediated immunity was thought to contribute only little to 
protection against tuberculosis. However, more recent studies 
reveal the potential of specific antibodies to contribute to 
immune protection against M. tuberculosis infection as compre-
hensively reviewed elsewhere (20, 21). In another study, murine 
bone marrow-derived neutrophils have been shown to exhibit a 
neutrophil–dendritic cell hybrid phenotype when cultured with 
GM-CSF (22). Those cells showed both, typical neutrophil prop-
erties, like NET formation and cathelicidin-mediated bacterial 
killing as well as intrinsic abilities of dendritic cells, like expres-
sion of MHC class II and co-stimulatory molecules and IL-12 
production. The cells were capable of antigen presentation to 
T cells. Therefore, shifting the neutrophil phenotype elicited by 
vaccination toward this unusual subtype, for example, by con-
comitant administration of rGM-CSF, may strengthen vaccine 
efficacy. This subtype of antigen-presenting neutrophil, named 
Nβ, was identified to migrate to the site of HIV infection in an 
NF-kB-dependent manner and activate specific CD8+ T  cells 
(23). However, the function of Nβ neutrophils in tuberculosis 
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FiGURe 1 | Neutrophil influx (arrows) is a response to vaccination with BCG 
as well as a trehalose-6,6-dibehenate (TDB)-containing liposome-based 
adjuvant. The photographs are derived from skin tissue of mice, which were 
subcutaneously vaccinated with TDB liposomes containing ovalbumin at the 
tail base. Thirty-one days after vaccination, cryosections were stained with 
hematoxylin and eosin. * = injection site.
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MPT51, and HspX, and elicits specific Th1 and Th17  cells, 
neutrophil-rich lesions with a necrotic centers were observed 
(24). When neutrophils were depleted during vaccination, 
Th1- and Th17-specific responses, responsible for reduction of 
mycobacterial loads were nullified as were the protective efficacy 
of the mc2-CMX vaccine.

In contrast to immunity-promoting functions of neutrophils, 
effects detrimental for cellular and humoral immunity have also 
been described. Neutrophils can interfere with cell-mediated 
immunity upon adjuvant administration (25). Neutrophil deple-
tion for the first 24 h after immunization restored CD4+ T and 
B cell responses and improved clustering of antigen-specific T cells 
with DCs, as shown by intravital microscopy. The strong suppres-
sive effect of neutrophils on T and B  cell activation depended 
on the small lipid mediators prostanoids since neutrophil influx 
into the lymph nodes was abrogated in cyclooxygenase (COX)-1 
and -2 knock-out mice as well as when specific inhibitors for 
these two enzymes were applied (26). Inhibitors included COX-
1-selective SC-560, COX-2-selective NS-398, and Indomethacin. 
Specifically, the first wave of rapid neutrophil entry was dependent 
on prostaglandins, while the authors identified the neutrophil-
derived eicosanoid thromboxane A2 to control the extent of T cell 
responses. Indeed, thromboxane A2 has been shown to negatively 
regulate physical contact of DCs and T  cells. Treatment by an 
exogenous thromboxane receptor agonist led to random, not 
chemokine gradient-guided T  cell movement. Thromboxane 
receptor-deficient mice showed increased immune responses to 
a model antigen (27).

Taken together, these data demonstrate that neutrophil influxes 
and cross-talk between neutrophils and professional antigen-
presenting cells can negatively influence T cell priming and pro-
liferation upon vaccination. Importantly, neutrophil depletion or 
neutralization of neutrophil-derived immune mediators restored 
protective T  cell responses upon adjuvants administration. 
Thus, targeting neutrophil-mediated regulation of the dendritic 
cell—T cell synapse may improve the establishment of adaptive 
immunity. Moreover, the neutrophils’ short life span of only a few 
days suggests the type of cell death, e.g., immuno-silent apoptosis 
vs. immunogenic apoptosis vs. necrotic cell death, as an additional 
target during immune priming.

iMPACT OF THe TYPe OF iMMUne CeLL 
DeATH On vACCine eFFiCACY

For a long time, apoptotic cell death has been thought to be 
immuno-silent or even anti-inflammatory. This paradigm shifted 
when it has been shown that the trigger of apoptosis shapes 
the immunological consequences thereof. For instance, Fas 
ligand-mediated apoptosis, e.g., of tumor cells, induces strong 
inflammatory responses through inflammasome activation, i.e., 
caspase-1 and its IL-1β- and IL-18-activating properties (28). 
Importantly, mycobacteria-infected macrophages succumb-
ing to apoptosis deliver foreign antigens to dendritic cells and 
subsequently cross-prime antigen-specific T cells, thereby, estab-
lishing protection against experimental tuberculosis in mice (29, 
30). Dendritic cells were activated by mycobacterial pathogen-
associated molecular patterns carried along by apoptotic vesicles 

awaits further analysis. After experimental administration of 
the recombinant M. smegmatis-based vaccine mc2-CMX, which 
expresses fragments of the M. tuberculosis antigens Ag85c, 
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from infected cells. In contrast to virulent M. tuberculosis, BCG 
induces apoptosis in macrophages, especially upon IFNγ activa-
tion (31). These findings are corroborated by us as well as others 
showing that attenuated M. tuberculosis strains as well as BCG 
primarily induce apoptosis in neutrophils, whereas virulent 
M. tuberculosis strains induce necrotic cell death in both, mac-
rophages and neutrophils (11, 32–34). Moreover, apoptosis has 
been described as a defense mechanism against M. tuberculosis 
(35). In contrast, Aporta et al. report that BCG as well as the live 
attenuated vaccine candidate M. tuberculosis strain SO2, which 
lacks phoP, does not induce cell death (apoptosis or necrosis) 
in murine bone marrow-derived macrophages and the murine 
macrophage cell line J774, while the virulent parental clinical 
isolate MT103 induces apoptosis, but not necrosis (36). However, 
the contradicting findings regarding macrophage cell death 
induced by M. tuberculosis infection, i.e., necrosis vs. apoptosis, 
may be associated with the different mycobacterial strains (e.g., 
MT103, H37Rv, and Erdmann) or the macrophage types used 
(e.g., murine bone-marrow-derived, human monocyte-derived, 
murine, or human macrophage cell lines), respectively (37–39). 
Of note, the novel anti-tuberculosis vaccine candidate M. bovis 
BCG VPM that expresses listeriolysin but is deficient in urease, 
is a better inducer of macrophage apoptosis than the parental 
BCG strain (40).

The efficacy of whole cell anti-cancer vaccines has been shown 
to depend on the type of induced cell death prior to administra-
tion. In a prophylactic cancer vaccination study, apoptotic vs. 
necrotic tumor cells were studied for their efficacy to induce 
tumor antigen-specific T cells (41). Vaccination with γ-irradiated 
apoptotic tumor cells prevented tumor outgrowth in up to 100% 
of the mice. In contrast, mice that received necrotic tumor cells, 
generated by three freeze-thaw cycles, were protected in only 
0–30% of the cases. The apoptotic tumor cell vaccine recruited 
predominantly dendritic cells as well as CD4+ and cytotoxic 
CD8+ T cells at the site of injection. Injection of necrotic tumor 
cells elicited strong macrophage influx. Apoptotic tumor cells 
increased the survival rates of mice. These data suggest that 
antigens delivered by apoptotic cells to antigen-presenting cells 
can result in a stronger T  cell response than those carried by 
necrotic cells (42). This notion is corroborated by a study, which 
combined dendritic cell-based immunotherapy with immuno-
genic cell death to successfully elicit Th1-mediated immunity to 
glioma (43). Application of necroptotic tumor cells also proved 
to be a successful vaccine strategy against cancer in mice. 
Induction of necroptosis in tumor cells by triggering RIPK3 
resulted in the release of damage-associated molecular pattern 
molecules, subsequent dendritic cell activation, and priming of 
tumor antigen-specific IFNγ-producing T cell (44). Therefore, 
necroptotic tumor vaccines may also be employed, which comes 
in handy since many tumors are resistant to apoptosis induction.

These data indicate that the type of immune cell death upon 
whole cell anti-tumor vaccination shapes elicited immune 
responses. However, vaccination strategies, which determine 
the type of cell death of the antigen-bearing cells, may also 
improve anti-microbial vaccines. Application of an influenza 
vaccine with a microneedle following non-ablative fractional 
laser pretreatment triggered death of antigen-presenting cells 

and dsDNA release. This activated the cGAS/STING pathway 
and led to protective immunity (45). The use of this technique 
for BCG vaccination was effective without generating obvi-
ous inflammatory lesions (46). Analysis of the composition 
of infiltrating immune cells and their fate after tuberculosis 
vaccine application may improve vaccines by locally applying 
cell death inhibitors or inducers at the vaccination site. Upon 
immunization, programed cell death associated with the release 
of DAMPs promotes Th1-mediated immunity, whereas unregu-
lated necrosis fails to induce CD4+ T  cell responses. Certain 
self-lipid antigens have been shown to antagonize activation 
of T and natural killer (NK) T cells (47). One might envisage 
that oxidized lipid antigens, potentially generated during host 
phagocyte necrosis, interferes with induction of immunity by 
vaccination as discussed below.

LiPiD AnTiGen AnTAGOniSTS TO 
COnTROL vACCinATiOn eFFiCACY?

The ability of lipid antigens to prime-specific T  cells upon 
presentation by myeloid antigen-presenting cells via highly 
conserved CD1 molecules indicates the possibility of mycobacte-
rial lipid-based vaccinations in an MHC-independent manner. 
Human antigen-presenting cells can express four CD1 isoforms 
(CD1a–d) that bind a variety of exogenous and endogenous 
lipid compounds (48–50). The relevance of CD1-restricted lipid 
antigens for T  cell immunity has been well characterized for 
autoimmune diseases (51), cancer (52), and infections (53).

Human CD1b can bind and present mycobacterial anti gens 
including mycolic acids and glucose monomycolate to T  cells 
in vitro (54). Other CD1b ligands include mycobacterial diacylated 
sulfoglycolipids (Ac2SGL) and phosphatidyl-myo-inositol diman-
nosides (PIM2) (55). Furthermore, CD1+ dendritic cells have been 
isolated in great numbers from leprosy skin lesions upon M. leprae 
infection, which was associated with active cellular immune 
response (56). Importantly, mycobacterial lipid antigen-reactive 
T cells were identified in blood of patients with latent and active, 
antibiotic-treated tuberculosis (57).

Emphasizing lipid antigen involvement in mycobacterial 
immune responses, direct immunization of guinea pigs with a 
mixture of mycobacterial lipid antigens induced CD4-negative 
cytotoxic T  cells reacting to CD1-expressing, mycobacterial 
antigen-presenting dendritic cells (58). Another study found that 
vaccination of guinea pigs with M. tuberculosis lipids-containing 
liposomes in combination with a non-lipid adjuvant, prior to  
M. tuberculosis infection, reduced pathology and mycobacte-
rial loads, presumably due to CD1-restricted T  cell responses 
(59). Simi lar protection was observed in guinea pigs by a vaccine 
combining Ac2SGL and PIM2 (60). Especially, Ac2SGL showed 
promising results, activating human CD1-restricted CD8+ T cells 
in  vitro isolated from skin test-positive donors (55). However, 
long-term memory protection was not detected even though 
glycolipid-specific immunoglobulin responses can occur after 
lipid antigen presentation (61, 62). To induce memory B  cell 
responses against lipids, well-established anti-protein vaccine 
formulations were combined with glycolipids by conjugating 
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glucose monomycolate to a carrier protein (63). Disappointingly, 
anti-glucose monomycolate antibody responses were not induced.

Even though indications for protective effects upon immu-
nization with mycobacterial lipid antigens were observed, 
detailed knowledge of the mechanisms, interaction character-
istics, and downstream effects remain largely unknown. Most 
studies based on mycobacterial lipid vaccination, lack data on 
long-term memory responses, and prolonged immunity to 
tuberculosis.

Besides exogenous lipids, all CD1 molecules can bind and 
present a broad variety of endogenous, self-derived phospho-
lipids, and glycosphingolipids with differential effects on sub-
sequent T cell activation. Endogenous skin lipids presented by 
antigen-presenting cells via human CD1a molecules have been 
shown to either inhibit or stimulate T cell responses dependent 
on the structural properties and charges of the lipid antigen. In 
contrast to lipids with hydrophilic head groups that protrude 
into the binding groove of CD1 and, thus, prevent T cell receptor 
binding and subsequent T cell activation, highly apolar lipids 
placed deep in the binding groove, facilitated strong T  cell 
receptor binding, and induced an autoreactive phenotype of 
CD1a-restricted T  cells (48). Therefore, autoreactive T  cells 
can become activated upon a shift toward a hydrophobic head 
group lipid composition, which may occur during certain 
autoimmune skin diseases (64, 65). Self-derived lipid antigens 
also indirectly influence the presentation of mycobacterial lipids 
and downstream signaling. Structural crystallography analysis 
revealed that CD1b adapts to different sizes and numbers of 
mycobacterial lipid alkyl chains by capturing small endogenous 
gangliosides, thus, stabilizing the CD1–lipid complex (66). 
Huang et al. identified deoxyceramides and diacylglycerols spe-
cies as scaffolding lipids (47). They were found to nest deeply 
into the binding groove of CD1 molecules and, thereby, affect 
binding of exogenous mycobacterial lipid antigens. The efficacy 
of interference depended on the length of the hydrophobic side 
domains. Hydrophobic long alkyl side chains, protruding into 
the binding groove, inhibited T cell activation, whereas those 
with short hydrophobic domains stabilized the lipid–CD1 com-
plex and facilitated T cell activation (47). These studies strongly 
suggest that the immune system is able to sense inflammation-
induced changes of the lipidome within affected tissues, which 
in turn modulates immune responses. Inhibition of CD1–T cell 
receptor interaction by protruding lipids interrupts T  cell 
activation. Therefore, self-derived lipids, serving either as scaf-
folding molecules or as auto-antigens, may function as agonists 
or antagonists for downstream T cells activation depending on 
their molecular structure. Recent studies tried to utilize these 
findings for development of new therapeutics. CD1d-restricted 
invariant NK T cells were strongly activated to produce Th1 and 
Th2 cytokines by recognition of a CD1d–α-galactosylceramide 
complex (67) indicating α-galactosylceramide as a putative 
adjuvant for vaccination. Addition of a phenyl group or a 
shorter phytosphingosine chain, as in the analog OCH, changes 
CD1d–antigen complexes on antigen-presenting cells and shifts 
downstream NKT cell responses to either IFNγ or IL-4 produc-
tion, respectively (67). These modifications can shape immune 
responses including prevention of autoimmunity, such as 

experimental autoimmune encephalomyelitis in mice (68) and 
improved cancer therapy by induction of NKT cell-driven Th1 
responses (69, 70) suggesting that CD1–lipid–T  cell receptor 
interactions can be targeted to improve vaccine efficacy.

Upon release of reactive oxygen species, human neutrophils 
oxidized self-lipids by their own myeloperoxidase (71, 72). 
Initial oxidation by a single free radical could trigger an oxidi-
zation cascade, which proceeds within biological membranes, 
resulting in accumulation of oxidized lipid species by just one 
hit (73). Importantly, we have shown that human neutrophils 
underwent necrotic cell death upon infection with M. tubercu-
losis that was dependent on myeloperoxidase-generated reactive 
oxygen species (32). Therefore, infected necrotic neutrophils, 
which are removed by myeloid cells capable to present antigens 
via CD1 molecules, represent a source of oxidized self-lipids 
that potentially interfere with T  cell responses to mycobacte-
ria. Exogenous and endogenous lipid antigens are interesting 
compounds to control CD1 antigen presentation and, thereby, 
silencing or activating CD1-restricted T cell responses in order 
to modulate immunity against mycobacteria during infection or 
vaccination with whole attenuated mycobacteria. Interestingly, 
CD1-restricted M. tuberculosis—as well as pollen lipid-specific 
T  cells have been shown to produce the anti-inflammatory 
cytokine IL-10 (74, 75), which is able to interfere with BCG 
vaccination efficacy (76, 77).

neUTRALiZinG AnTi-inFLAMMATORY 
iL-10

Immune responses during infection have to be tightly controlled 
in order to avoid excessive inflammation and subsequent tissue 
damages. Anti-inflammatory cytokines such as IL-10 prevent 
immunopathology by restraining both, Th1 and Th17  cell 
activities (78). Due to its negative effect on protective adaptive 
immune responses, IL-10 signaling has been associated with 
detrimental course of infection in experimental tuberculosis in 
mice (77, 79). Importantly, increased IL-10 production upon 
vaccination against various pathogens was shown to limit their 
protective efficacy (80, 81). Several studies reported induction of 
IL-10 upon BCG challenge in both, humans and mice (82–85). 
IL-10-deficient mice vaccinated with BCG revealed higher sple-
nocyte numbers generating IFN-γ, IL-17A, and TNF-α when 
compared with wild-type ones (76, 77). Accordingly, BCG-
vaccinated mice were better protected against M. tuberculosis 
infection after treatment with an IL-10-neutralizing antibody 
(76, 77). Thus, controlled short-term regulation of IL-10 levels 
during BCG vaccination represents a promising host-directed 
immune modulation to expedite mycobacterial clearance, 
establish better T cell-mediated immunity and thereby improve 
vaccination efficacy.

Agonists for C-type lectin receptors, particularly treha-
lose dibehenate (TDB), have been highlighted as promising 
adjuvant candidates for anti-tuberculosis vaccination (86). 
TDB is the synthetic analog of the mycobacterial cell wall 
glycolipid trehalose-6,6′-dimycolate (TDM), which binds to 
the macrophage-inducible C-type lectin, also known as Mincle, 
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and subsequently induce pro-inflammatory cytokine secretion 
(16, 87, 88). Interestingly, Lindenstrom et al. demonstrated that 
CAF01, a liposome preparation containing TDB, could trigger 
potent and sustained Th1 and Th17 responses (86). Mincle was 
identified as target for vaccine adjuvants with strong immuno-
genic properties against M. tuberculosis infection in mice (89).  
We recently showed that Mincle signaling was also critical for 
IL-10 secretion in response to TDM or BCG challenge in vitro 
(90). Our studies demonstrated that IL-10 secretion down-regu-
lated IL-12 production, a pivotal cytokine for proper induction 
of Th1 responses (91). Thus, it would be interesting to investigate 
whether anti-tuberculosis vaccines including those formulated 
with TDB or other Mincle ligands can be combined with anti-
IL-10 antibodies to improve both, efficacy and duration of protec-
tion against M. tuberculosis. It remains to be elucidated whether 
this approach can be extended to other anti-inflammatory 
cytokines such as TGF-β and IL-27. In conclusion, controlled 
short-term down-regulation of IL-10 levels after vaccination may 
be a promising host-directed modulation to drive a Th1-/Th17-
mediated memory response and promote long-term immunity. 
In this context, regulation of immune cell populations that inter-
fere with developing Th1-derived protection upon vaccination,  
e.g., myeloid-derived suppressor cells (MDSC) and regulatory 
T cells (Tregs), have the potential as pharmaceutically controllable 
switch points to improve long-term vaccine efficacy.

COnTROLLinG Th1-SUPReSSinG 
iMMUne CeLL SUBPOPULATiOnS

Depletion of immune cell subsets, such as MDSC and Tregs by 
monoclonal antibodies have been shown to improve clinical 
outcome and vaccination efficacy (92). Increased frequencies 
of MDSC have been shown in blood samples and at the site of 
M. tuberculosis infection in chronic as well as recently infected 
patients (93–95). MDSC suppressed CD4+ and CD8+ T  cell 
proliferation and cytokine secretion ex vivo. After successful 
anti-tuberculosis treatment, MDSC frequencies became normal-
ized accompanied by MDSC maturation as indicated by expres-
sion of co-stimulatory surface molecule CD80. Importantly, 
when MDSC were depleted in M. tuberculosis-infected mice 
by administration of all-trans retinoic acid, mycobacterial 
burden, and pathology in lungs were reduced (96). In tumor-
bearing mice, researchers found that MDSC migrate along a 
gradient of the pro-inflammatory alarmin S100A8/9 leading 
to MDSC accumulation (97). Blockade of S100A8/9 binding to 
MSDC resulted in decreased frequencies of MDSC. Moreover, 
mice deficient for S100A9 generated potent tumor rejection 
responses, while S100A9 overexpression led to accumulation of 
MDSC and reduced numbers of differentiated dendritic cells and 
macrophages. Of note, S100A8/9 comprise 45% of all cytosolic 
proteins in neutrophils, while its amount is 40× lower in mono-
cytes (98). As mentioned above, massive infiltration of neutro-
phils at the site of BCG vaccination as well as M. tuberculosis 
infection may be the reason for the reported upregulated levels 
of S100A8/9 during tuberculosis (99, 100), which may result in 
accumulation of MDSC and, ultimately, suppression of proper 

Th1 immune responses. Indeed, S100A8/9, specifically derived 
from neutrophils, was responsible for diabetes-induced throm-
bocytosis (101). Blockade of S100A8/9 binding to its receptor 
by administration of Paquinimod was beneficial. Specific inhibi-
tion of S100A8/9 by Paquinimod reduced inflammation and 
pathology under various disease conditions, including leukocyte 
recruitment during sterile inflammation, experimental systemic 
sclerosis, and experimental osteoarthritis (102–105). Therefore, 
MDSC may represent the S100A8/9-driven connection that links 
massive neutrophil influx to impaired Th1 immune responses 
and memory phenotypes thereof. Vaccination efficacy may ben-
efit from treatments regulating MDSC influx or their maturation 
during vaccination-induced immune priming.

Another immune cell subpopulation playing a detrimental 
role in the successful establishment of Th1-mediated control 
of M. tuberculosis infection are Tregs. Increased frequencies of 
FoxP3+, IL-10-, and TGFβ-releasing Tregs have been found in 
peripheral blood and at the site of infection in tuberculosis 
patients (106–108). After successful treatment, those frequen-
cies decreased to similar levels as in healthy controls (108). For 
mice, it has been shown that Tregs are responsible for impaired 
generation of protective immunity against tuberculosis. After 
aerosol infection of mice, preexisting M. tuberculosis-specific 
Tregs expanded in the draining lymph nodes (109). Accumulation 
of those Tregs in the lungs resulted in delayed arrival of pathogen-
specific IFNγ-producing CD4+ and CD8+ effector T  cells and 
suppression of protective immunity. Induced expansion of both, 
Tregs and IFNγ-, perforin-producing T effector cells by s.c. admin-
istration of rIL-2 led to accumulation of those subsets in the 
lungs of M. tuberculosis-infected macaques (110). Interestingly, 
infiltrating Th1 effector cells and Tregs orchestrated both, con-
trol of M. tuberculosis burdens as well as resistance to severe 
inflammation and tissue damage. Targeted inhibition of Th2 
and Tregs generation by administration of the small compounds 
suplatast tosylate and D4476 reduced M. tuberculosis burden 
and established a protective Th1 immune response (111). The 
same research group shows in a follow-up study that the same 
treatment enhanced BCG efficacy upon vaccination so that  
M. tuberculosis burdens were reduced in lungs and spleens of 
mice after infection (112). Mycobacteria-specific Tregs already 
occur after administration of commonly used BCG formula-
tions as well as during clinical trials with novel candidate 
vaccines (113). To enhance vaccine efficacy and Th1-mediated 
immunity upon BCG vaccination against M. tuberculosis infec-
tion, Tregs have been successfully targeted. Dhiman et al. showed 
that human NK1.1+ NK cells promoted CD8+ T cell responses 
and concomitantly reduced frequencies of M. tuberculosis-
specific Tregs in an IL-22-dependent manner (114). BCG vac-
cination of mice generated those IL-22- and IFNγ- secreting 
NK  cells and their specific depletion upon vaccination led to 
higher numbers of Tregs, increased mycobacterial burden, and 
reduced T cell responses after M. tuberculosis infection. More 
importantly, concomitant administration of rIL-22 and BCG in 
NK1.1+ cell-depleted animals restored CD4+ T  cell responses 
and BCG vaccination efficacy, indicating that IL-22 treatment 
can improve vaccination efficacy. Another study shows that a 
novel subunit vaccine booster candidate induced strong and 
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specific Th1-mediated IFNγ and IL-2 production, while Tregs 
were down-regulated (115). This formulation included a fusion 
protein of Ag85B, Mpt64, and Mtb8.4 formulated in an adjuvant 
containing dimo-thylidioctyl ammonium bromide and BCG-
polysaccharide-nucleic acid, consisting of polysaccharides and 
nucleic acids extracted from BCG. Finally, subsequent adminis-
tration of a Tregs-depleting anti-CD25 antibody upon BCG vac-
cination, resulted in an increased IFNγ response, and reduced 
mycobacterial load upon M. tuberculosis infection (116).

Thus, temporal regulation of highly relevant immune sub-
populations, such as MDSC and Tregs that otherwise modulate 
immune responses and protect from exacerbated inflammatory 
tissue destruction, may display a crucial step in shifting the 
immune memory toward a protective Th1 response upon vac-
cination with BCG-based vaccines. Besides other T cell popula-
tions, which also modulate immune responses upon vaccination, 
but have been comprehensively reviewed before (117–119), an 
innate lymphoid cell population, namely NK cells, has recently 
found its way into the spotlight of tuberculosis research.

nATURAL BORn KiLLeRS

Because of their ability to rapidly induce cell death without 
the need of further activation, for instance in response to virus 
infected cells and tumor cells, NK cells were classified as innate 
lymphoid cell population (120). However, upon infection, 
NK cells were found to display a memory-like phenotype pro-
viding so-called innate memory (121–123). This phenomenon 
has also been described upon M. tuberculosis infection (124). 
For instance, NK cells recovered from pleural fluid from tuber-
culosis patients were a major source of IFN-γ as well as IL-22 
production when restimulated with M. tuberculosis ex vivo 
(125, 126). In murine tuberculosis models but also in patients 
latently infected with M. tuberculosis, NK cells expand, mature, 
and produce IFN-γ upon both, M. tuberculosis infection and 
BCG vaccination (127, 128). Venkatasubramanian et al. found 
reduced mycobacterial burden in the lungs of M. tuberculosis-
infected C57 BL/6 mice after adoptive transfer of NK cells that 
matured and expanded in response to BCG vaccination. This 
observation is in contrast to findings by Junqueira-Kipnis et al. 
reporting similar lung CFUs of M. tuberculosis-infected C57 
BL/6 mice after antibody-mediated depletion of NK cells, sug-
gesting a priming effect of BCG, which induces a memory-like 
NK cell popuation. Thus, a potential protective role for NK cells 
during M. tuberculosis infection, especially in human individu-
als, requires further investigations (129). Indeed, a recent phase 
1 clinical trial with 72 tuberculin skin test-positive participants 
from South Africa revealed that re-vaccination with BCG 
boosted frequencies of IFNγ-secreting NK cells in response to 
BCG (130). Notably, this was in contrast to BCG-specific CD4, 
CD8 as well as γδ T cells, which numbers were only transiently 
enhanced after re-vaccination. Sustained elevated frequencies of 
NK cells were still observed after 1 year.

The memory-like phenotype of NK cells in response to BCG 
is based on epigenetic reprogramming, a phenomenon also 
termed “trained immunity” (131) that has been observed also for 
myeloid-derived innate immune cells.

TRAininG innATe iMMUniTY TO BOOST 
vACCine eFFiCACY

The ability to develop an immunological memory has been 
attributed exclusively to lymphoid cells of the adaptive immune 
system, i.e., T and B  cells. Recently, memory properties 
have also been described for prototypical cells of the innate 
immune system, namely macrophages and monocytes among 
others (132). Beneficial effects of BCG vaccination on several 
unrelated diseases, including non-mycobacterial infections, 
allergies, and cancer, in an antigen-independent manner have 
been comprehensively reviewed elsewhere with regard to innate 
memory characteristics (133–135). For instance, monocytes 
of BCG-vaccinated healthy individuals produced more IFN-γ, 
TNFα, and IL-1β in response to otherwise unrelated bacterial 
or fungal pathogens compared with the unvaccinated control 
group (136). The same study showed that 100% of severe 
combined immunodeficiency mice were protected from dis-
seminated candidiasis after vaccination with BCG compared 
with only 30% of non-vaccinated mice. The authors conclude 
that BCG vaccination can instruct innate immune cells through 
epigenetic reprogramming based on histone methylation to 
provide antigen-independent protection in an NOD1 signaling 
pathway-dependent manner.

It remains to be elucidated whether targeting innate memory 
can be employed to improve anti-M. tuberculosis vaccination. 
As reviewed by Netea and van Crevel, several studies revealed 
that BCG-vaccinated household contacts, either juvenile or 
adults, of active tuberculosis patients were significantly less 
often interferon-gamma release assay (IGRA)-positive than 
non-vaccinated individuals, which was even more striking 
after a second BCG boost (133). The authors suggest that 
innate immune cells trained by BCG vaccination are able to 
eliminate M. tuberculosis before adaptive immunity kicks 
in leaving these individuals IGRA-negative, whereas those 
failing to clear the initial infection turn IGRA-positive. 
Corroborating these observations, Kagina et  al. showed that 
house hold contacts of tuberculosis patients, which did not 
develop active tuberculosis, did not have increased mycobac-
teria-specific T  cell responses (137). Thus, the capability of 
humans to control M. tuberculosis is not necessarily correlated 
with enhanced immune protection by antigen-specific T cells 
and, therefore, indicates the relevance of vaccination-triggered 
innate immune activation for clearance of an initial infection 
or, at least, reduction of the infection dose. Subsequent boost 
of acquired immune control may lead to latent tuberculosis 
without pathogen elimination. Identification of the vaccine 
associated triggers for innate immune cell training may 
thereby help to design better vaccine formulations to protect 
against active tuberculosis.

HOST-DiReCTeD iMMUne MODULATiOn 
TO iMPROve vACCinATiOn SUCCeSS

Concomitant administration of immune-modulating factors 
together with a vaccine has been studied mainly in other 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Schaible et al. Improve Tuberculosis Vaccines Targetting Immunity

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1755

FiGURe 2 | Improving efficacy of classical BCG vaccines by host-directed immune modulation. Potentially detrimental molecules, mechanisms, and outcomes 
leading to poor vaccine efficacy are color-coded in red, beneficial ones in green, and modulators thereof in blue. Neutrophil infiltration at the site of vaccination may 
limit vaccine efficacy and generation of a proper and lasting Th1 memory response. Neutrophil attraction is mediated by IL-8, prostaglandin E2, and leukotriene B4, 
which can be blocked by Reparixin, Zileuton, and Ibuprofen/Aspirin, respectively. The type of cell death upon vaccination may be beneficial or detrimental, i.e., 
immunogenic apoptosis vs. necrosis, respectively. The latter can be blocked by the myeloperoxidase inhibitor ABAH or anti-oxidants. Degranulation of neutrophils’ 
highly toxic molecules, preventable by Doxycyclin, may lead to tissue destruction and release of the alarmin S100A8/9 that attracts myeloid-derived suppressor cells 
(MDSC). S100A8/9 can be blocked by Paquinimod. MDSC inherit highly potent T cell-suppressive properties, potentially limiting establishment of Th1-mediated 
immunity. This mechanism can be counteracted by all-trans retinoic acid. Among MDSC, macrophages and regulatory T cells may be attracted to the site of 
vaccination. Together they shift the immune response to an IL-10-driven Th2 phenotype that inhibits protective Th1 responses shaped by IL-12 and IFNγ, which 
have been shown to be protective against Mycobacterium tuberculosis infection. Spatiotemporal treatment with a blocking anti-IL-10 antibody may rescue 
successful generation of a Th1 immune signature. Application of rIL-22 or anti-CD25 antibody may limit regulatory T cell (Treg) contribution.

fields than tuberculosis. Especially in experimental cancer 
therapy, blockade of anti-inflammatory cytokines and T  cell 
inhibi tory receptors, such as TGF-β, programmed death-1, 
and CTLA4, respectively, resulted in increased T cell-mediated 
tumor regression (138, 139). Interestingly, administration of 

drugs that systemically suppress certain immune responses, 
namely the COX-2 inhibitors celecoxib and NS-398, enhanced 
tumor vaccine efficacies against breast cancer and pancreatic 
adenocarcinoma (140–142). Treatment of HIV patients with a 
COX inhibitor rescued T cell functions and humoral memory 
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responses to tetanus toxoid, a T cell targeting vaccine (143). Of 
note, small lipid mediators produced by the cyclooxygenease 
pathway have been shown to attract neutrophils to the site of 
M. tuberculosis infection (13). Inhibition of neutrophil infiltra-
tion by Ibuprofen ameliorated tuberculosis pathogenesis and 
mycobacterial loads in susceptible C3HeB/FeB mice and, there-
fore, may be exploitable to improve anti-tuberculosis vaccines 
including BCG.

Macrophage responses may also serve as targets for host-
directed therapies accompanying anti-tuberculosis vaccina-
tion. Taus et  al. found that pretreatment of THP-1 cells with 
monosodium urate (MSU) crystals resulted in enhanced ROS 
production, promotion of phagosome–lysosome fusion, and 
increased killing of BCG by those cells, likely in an NOD-
like receptor-mediated inflammasome-triggering process 
(144). MSU alone had no effect on BCG viability, indicating 
its pro-inflammatory properties, and capability to enhance 
anti-microbial responses. Moreover, BCG vaccination in the 
presence of MSU resulted in reduced colony-forming units 
in draining lymph nodes, showing increased killing of BCG 
in  vivo. Again, BCG viability within the vaccine formulation 
was not affected by MSU. Interestingly, when mice were infected 
with M. tuberculosis Erdmann 10  weeks after vaccination,  
M. tuberculosis burden was reduced in the lungs and spleens, 
when the BCG vaccine was complemented with MSU in com-
parison with BCG alone. These findings raise the question, if 
enhanced killing of BCG upon vaccination, which is considered 
to counteract the maintenance of long-term immunity, may 
improve vaccine efficacy.

In another approach, the autophagy-inducing drug Rapamycin 
was used to successfully enhance processing and presentation of 
Ag85B by murine antigen-presenting cells (145). Immunization 
with Rapamycin treated dendritic cells led to increased Th1-
mediated protection from M. tuberculosis infection. Thus, BCG 
vaccine efficacy may be enhanced by concomitant augmentation 
of autophagy.

Only a few studies assessed immune-modulatory approaches 
upon vaccination against tuberculosis. Surprisingly, repeated 
vaccine injections of BCG in already M. tuberculosis-infected 
BALB/c mice resulted in increased levels of IL-17, neutrophil 
influx into the lung, and tissue damage (146). This detrimental 
outcome of vaccination had been prevented by concomitant 
administration of a blocking anti-IL-17 antibody. Host-directed 
modulation of IL-17 upon vaccine treatment may have important 
implications for vaccinations in individuals that are already 
infected with M. tuberculosis.

Although there is only a small amount of data available, few 
publications show promising first results for increasing BCG 
vaccine efficacy by adjunct modulation of the host immune 
system. However, we can probably learn from data derived from 
tumor vaccination and other non-infectious disease vaccines 
boosted by concomitant immunotherapy. These results will be 
instrumental to develop novel strategies by temporarily adjusting 
the immune network to favor a long-term protective memory 
immune response against tuberculosis (Figure 2). Re-purposing 

already known host-directed therapeutics for anti-tuberculosis 
vaccination strategies may improve the protective efficacy, even 
of the “old” BCG.

COnCLUSiOn

So far, novel strategies to boost vaccine efficacy against 
tuberculosis are based on enhancement of the BCG vaccine by 
addition of antigens that are expressed by M. tuberculosis, but 
not M. bovis BCG, e.g., ESX-1 secretion-mediating ESAT-6, 
TDM-synthesizing Ag85, and ESX-5-associated PE/PPE, or by 
genetically modifying BCG to express immunity-promoting 
mediators such as GM-CSF or IL-2 (147, 148). To improve vac-
cination efficacy against M. tuberculosis infection, focusing on 
more M. tuberculosis antigens may enhance the frequency of 
specific T cells, but may not solve the problem that BCG and 
next generation anti-TB vaccine types also elicit immunomod-
ulatory functions that hamper immune-priming efficacy. 
Short-term shapeshift of the local immune responses upon 
vaccination may result in far-reaching long-term consequences 
for establishment of protective memory immunity against  
M. tuberculosis infection. These immune modulations may 
include regulation of neutrophil and MDSC influx to the site 
of vaccine application, prevention of detrimental kinds of cell 
death that interfere with generation of a protective memory 
immune response, and facilitation of other beneficial types 
of cell death, interference with T cell-inhibiting presentation 
of (self-)lipids after vaccination-mediated inflammation, 
temporal regulation of adverse, anti-inflammatory cytokine 
profiles, e.g., IL-10, and spatiotemporal modulation of 
immune cell subpopulations that suppress T effector cells, 
like Tregs and MDSC. Promising results of immune modulation 
during vaccination in other application areas, namely cancer 
vaccine research, highlight the potential of such host-directed 
improvements.
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