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Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers,
while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26%
of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In
this article, we principally investigated molecular and cellular mechanisms of
tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver,
pancreas, and colorectal region that illustrate high morbidity in Eastern and Western
countries. Moreover, through this investigation, we not only emphasize importance of the
tumor microenvironment in development and treatment of malignant tumors but also
identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of
GI cancers, as well as systematically evaluate contribution of personalized precision
medicine including cellular immunotherapy, new antigen and vaccine therapy, and
oncolytic virotherapy in treatment of GI cancers.

Keywords: gastrointestinal cancers, tumor microenvironment, tumorigenesis, early detection,
cellular immunotherapy
INTRODUCTION

Gastrointestinal (GI) malignant tumors generally cover esophagus, stomach, liver, pancreas, as well
as colorectal region. Most primary cancers from those parts worldly covered 26% of cancer
incidence and 35% of all deaths related to cancer, while 4.8 million new cases were yearly diagnosed
and 3.4 million people lost their lives due to those malignancies, statistically in 2018 (1). Currently,
clinical scientists are segmentally concentrated on contribution of the tumor microenvironment
(TME) to tumorigenesis and resistance to anticancer therapy (2–4), feasibility of precise
methodologies in detection of GI cancers at early stage based on tumor growth-associated
serological and histochemical changes (5–12), as well as personalized application of biomedical
therapies in reduction of tumor size and control of metastases (13–20). More importantly, through
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combating with cancers over several centuries, many clinicians
eventually and principally come back to the nature of malignant
tumor, in which an outside exhibition of malignant tumors is
uncontrolledly growing but the inside mechanism shows
primary inhibition of immune surveillance and cytotoxic
activity locally and systematically.
TUMOR MICROENVIRONMENT AND
TUMORIGENESIS IN GASTROINTESTINAL
CANCERS

Tumor Microenvironment (TME)
Like Achilles, if we cannot lift him from the ground, he will be alive
last long.TheAchillesmalignant tumors thatdependon is theTME.
The TME ismore like a matrix, in which cancer cells communicate
with non-transformed cells through a variety of cytokines,
chemokines, growth factors, as well as inflammatory mediators,
purposely tomaintain a dynamic equilibrium in causingmetastases
and resisting tophysical, chemical, and immunepressure (2, 21, 22).
The following components principally play critical roles in
tumorigenesis and metastasis, including dendrite cells (DCs), T
lymphocyte, natural killer cells (NKs), tumor-associated
macrophage cells (TAMs), cancer-associated fibroblast cells
(CAFs), and myeloid-derived suppressor cells (MDSCs) as well as
transform growth factor b (TGFb).

Dendrite Cells (DCs)
DCs, as antigen-processing vehicles, are tightly communicating
with tumor-infiltrating T cells in purpose of elimination of
carcinogenic cells and prevention of local tumorigenesis and
systematical metastases. Primarily, DCs are functional to activate
CD4+ and CD8+ T cell via antigen presentation, in which
immature DCs intake the antigen to promote DCs maturation
(23–25). However, based on hypoxic and inflammatory
conditions in the TME, T cells activated by tumor-associated
antigens are much less produced due to reduction of DC
maturation, accumulation of immature DCs, and specific DC-
Abbreviation: GI, gastrointestinal; TME, tumor microenvironment; DCs,
dendrite cells; NKs, natural killer cells; TAMs, tumor-associated macrophage
cells; CAFs, cancer-associated fibroblast cells; MDSCs, myeloid-derived
suppressor cells; TGFb, transform growth factor b; PD-1, programmed cell
death protein 1; PD-L1, program death protein ligand 1; ICIs, immune
checkpoint inhibitors; TIL, tumor-infiltrating lymphocytes; IL2, interleukin-2;
IFNg, interferon gamma; Tregs, T regulatory cells; CTLA4, cytotoxic T-
lymphocyte antigen 4; CSCs, cancer stem cells; EMT, epithelial-mesenchymal
transition; ECM, extracellular matrix; MAPK, mitogen-activated protein kinase;
PI3K-Akt, phosphatidylinositol 3 kinase-Akt; STAT3, Signal Transducer and
Activator of Transcription 3; EAC, Esophageal adenocarcinoma; ESCC,
Esophageal squamous cell carcinoma; Hp, H. pylori; EBV, Epstein Barr Virus;
HCC, hepatocellular carcinoma; PDAC, pancreatic duct adenocarcinoma; CRC,
colorectal cancer; M2PK, M2 pyruvate kinase; FOBT, fecal occult blood test;
CTCs, Circulating tumor cells; AUC, area under curve; ctDNAs, circulating tumor
DNAs; miRNAs, microRNAs; circRNA, circular RNAs; BNCT, boron-neutron
capture therapy; CIK, cytokine-induced killer cells; DC-CIK, dendritic cell-
activated cytokine-induced killer cells; CAR-NK, chimeric antigen receptor-
natural killer cells; and CAR-T, chimeric antigen receptor-T cells; OV,
oncolytic virus.
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mediated impairment of T-cell response (26, 27). Thus utilizing
immune checkpoint inhibitors (ICIs) not only decrease
programmed cell death protein 1 (PD-1) activity on DCs but
also increase DC activity promoted via amonophosphoryl lipid A
produced by E. coli, both of which strongly improve efficiency
and efficacy of cellular immunotherapy to GI cancers (28–34).

T Lymphocytes
T lymphocytes inside or around the TME are the majorly
powerful enforce to fight with cancer cells, in which tumor-
infiltrating lymphocytes (TILs) have been purposely used to treat
GI cancers and TILs expressed in the TME are closely relevant to
therapeutic efficacy (35–40). Generally, cytotoxic CD8+-T cells
are antigen-processed and have ability to eliminate tumor cells,
whereas CD4+ T helper 1 cells (Th1) activate cytotoxic T cells to
secrete interleukin-2 (IL2), interferon gamma (IFNg), and tumor
necrosis factor (41). Thereby, the higher expression of cytotoxic
CD8+-TIL on biopsy, the better prognosis whether with cancer
treatment or not (35–39). However, regulatory CD4+ cells, such
as Th2 and Th17 group, focus on promoting tumor growth (41).
Furthermore, CD4+ T regulatory cells (Tregs) with FOXP3 and
CD25 expression release IL10, TGF-b, and cytotoxic T-
lymphocyte antigen 4 (CTLA4), which tremendously diminish
immune surveillance (42, 43). Expression of Treg cells in biopsy
represents a negative prognosis (43). Interestingly, in Hodgkin’s
lymphoma, Treg cells inhibit malignant cell growing, which
show a good prognosis (44–46). More interestingly, gdT cells
stained in the TME directly destroy transformed cells and
upregulate activity of DCs, cytotoxic T cells, and NK cells in
most malignant tumors (47–50). Invertedly, in situ production of
IL17 via gdT cells recruits MDSCs and increases program death
protein-ligand 1 (PD-L1) expression that is beneficial for
tumorigenesis and metastases (51, 52). Due to contradictory
results, whether presentation of gd TILs in the TME is an eligible
biomarker to evaluate prognosis has always been investigated.

Natural Killer Cell (NKs)
NK cells, another category of TILs, are characterized with
CD16dimCD56bright subset mostly in circulation, whereas
with CD16brightCD56dim subset predominantly in mucosa, in
which CD56bright NK cells have cytotoxic action directly on
cancer cells independent of antigen presentation (53). Different
from functionally killing tumor cells and cancer stem cells
(CSCs) in the bloodstream, NK cells show reduced cytotoxicity
on transformed cells in the TME with producing less IFNg (54).
Unsurprisingly, through combating with immune defense
system, malignant cells also develop several tools to dodge NK
cell-mediated elimination including activation of inhibitory
receptor of NK cells and reduction of NK cell activity induced
by platelets and TGFb (55). However, due to NK-mediated
induction of DC cells and increased activation of more NK
cells via ICI treatment, the existence of NK cells in biopsy highly
predicts a good prognosis in GI cancer therapy (54, 56–58).

Tumor-Associated Macrophage (TAMs)
Macrophage cells are essentially in regulation of individual
immunity through activating adaptive immunity, healing the
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wound, and kicking off infectious effectors, in which M1 type
macrophages with IL12brightIL10dim are majorly activated by
IFNg and lipopolysaccharide, whereas M2 type macrophages
with IL12dimIL10bright are typically activated by glucocorticoid
and IL4/13 (59). M1 macrophages produce higher level of IL12
and drive the recruitment of Th1, which promotes antitumor
activity, while M2 macrophage-mediated high secretion of IL10
largely sends votes to tumorigenesis. Within the TME, cytokines
and inflammatory agents predominantly polarize M1
macrophage to M2 subtype, which produces TAMs (60). There
are several receptors commonly expressing TAMs, such as the
mannose receptor and scavenger receptor class A, in which
blocking scavenger receptor class A via monoclonal antibody
amplifies cytotoxicity of NK cells to transformed cells in the
TME (61). In addition to immunosuppression, TAMs also
notably increase tumor angiogenesis, especially at hypoxic area
or hypoxia-induced tumor necrosis region where oligonucleotide
microarray of aggregated TAMs shows extensive activation of
the transcriptional zones encoding angiogenic factors such as
vascular endothelial growth factor and endothelin (62).
Furthermore, TAMs are strictly relevant with tumor invasion
and metastases, and largely prevention of chemotherapy-induced
apoptosis in GI cancers (63–65). These discoveries firmly
identify high expression of TAMs in biopsy as a poor signal of
prognosis in cancer therapy.

Myeloid-Derived Suppressor Cells (MDSCs)
MDSCs have two subpopulations including monocytic group and
granulocytic group that are characterized through expression of
different kinds of membrane markers and immunosuppressive
components (66). MDSCs exhibit two directions in promotion of
tumorigenesis and metastases including accelerating tumor
angiogenesis (67) and inactivating innate and adaptive immune
function through producing high concentration of reactive oxygen
and nitrogen species (68), slowing down amino acid-mediated T-
cell activation and proliferation by less production of arginine (69)
and L-cysteine (70) within the TME and reducing intratumoral
migration of cytotoxic T cells by peroxynitrite-modified
chemoattractant CCL2 (71), as well as enlarging Treg cell-
dependent immunosuppression via IL10, TGFb, IFNg, and
CD40-CD40L interactions (72, 73).

Impressively, MDSCs have a triple communication with DCs,
NK cells, and TAMs. In the TME, MDSC-TAM complex
significantly regulates production of IL10 and IL12, in which
IL10-knockdown animal model verifies that MDSC-dependent
IL10 level is the key factor of reducing IL12 production through
influencing IL12 transcription (74). But cytokine- and
inflammatory mediator-induced production of MDSC-TAM
complex directly leads to high level of IL10 and low level of
IL12 in the TME, which promotes recruitment of Treg cells and
predominantly inactivates antitumor function of cytotoxic T
cells and NK cells (75). Moreover, higher IL10 production also
increases IL4 expression, which basically supports more
transformation of TAMs (76). Recent investigation found that
granulocytic MDSC-induced inflammation decreased NKG2D
expression, an activating receptor of NK cells, which reduced
cytotoxicity in the TME (77), whereas monocytic MDSCs
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amplified expression of activating ligand Rae1 on NK cells to
increase killing activity through NKG2D, which subsequently
lysed MDSCs (78). Furthermore, combining with ICIs and N803,
an IL15 superagonist, NK cell therapy increased cytolysis of
MDSCs in squamous cell carcinoma (79). Also, another case in
treatment of head and neck squamous cell carcinoma reported
that orally bioagent SX-682, a small-molecule inhibitor of
CXCR1 and CXCR2, tremendously abolished MDSC
aggregation and amplified activity of infiltrating NK cells in
the TME (80). These investigations strongly indicate that
MDSCs suppress NK cell-mediated elimination of cancer cells
in the TME. Through studying effects of MDSCs on DCs in
melanoma patients, the evidence showed that MDSCs decreased
antigen presentation of DCs, inhibited incubation of immature
DCs, and blocked recruitment of DCs to cytotoxic T cells, all of
which were activated via IL23-mediated Th17 cell pathway (78,
81, 82). More evidences showed that IL23-mediated Th17 cell
proliferation damaged adaptive and innate immunity and
significantly promoted tumor metastases (78, 83). Therefore,
MDSCs primarily enhance TAM-induced immunosuppression
and selectively downregulate DC and NK cell activity in
promotion of tumor growth and metastases.

Cancer-Associated Fibroblast Cells (CAFs)
Healing tissue damage with scar essentially needs participation of
fibroblast cells, in which paracrine signals transform residential
fibroblasts to myofibroblasts that produce TGFb and a-smooth
muscle actin (84, 85). However, in the TME, myofibroblast cells
independent from mutations in cancer cells or the epithelial-
mesenchymal transition (EMT) are primarily recognized as
CAFs that are abundantly expressed in most malignant tumors
(86). In purpose of constantly activating proliferation and
metastases, CAFs produce various kinds of growth factors such
as hepatocyte growth factor, fibroblast growth factor, and
insulin-like growth factor 1 (87). CAF secretion partially
activates expression of vascular endothelial growth factor that
highly causes angiogenesis (88). Cytokines and chemokines
produced by CAFs are functional on cytotoxic T cells, Treg
cells, and macrophages, which cause both immune enhancement
and immunosuppression (89). Differently, CAF-secreted IL6,
CXCL9, and TGFb reduce T cell response to cancer cells,
especially cytotoxic T cells (90), whereas CAF-mediated
production of CXCL12 (91) and inactivation of focal adhesion
kinase in cancer cells (92) amplify antitumor effects through
diminishing stromal fibroblast activation. Moreover, CAFs in the
TME also contribute to building up the extracellular matrix
(ECM) that consists of fibrovascular cores and remodeling
enzymes for increasing tumor density to resist selective
pressure (90, 93), while TGFb-activated CAFs crucially stop
activity of anticancer medicine (94, 95). Collectively, CAFs
promote tumorigenesis and metastasis through modifying the
ECM, utilizing growth factors for angiogenesis, and preventing
drug access to reduce therapeutic effects.

Transform Growth Factor b (TGFb)
TGFb almost regulates all types of human cells and acts as a
double agent in the TME (96, 97). Generally, TGFb secretion is
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locally responsible to maintain homeostasis, and higher level of
TGFb created by blood platelet and stromal components is
responsible for healing the injury and regeneration; however,
in the TME, not only stromal cells produce TGFb through
paracrine but also malignant cells autocrinally generate more
TGFb (98). Being a cytokine, TGFb activates signal transduction
through Smad-dependent or Smad-independent pathways, in
which Smad-dependent signaling demonstrates that TGFb-
mediated phosphorylation of Smad family protein, Smad2 and
Smad3, via TbR1 receptor interplays with the cofactor to form
the complex that is subsequently translocated into the nucleus
and binds with Smad binding element to activate gene
transcription (99, 100); however, to Smad-independent
signaling, TGFb activity is amplified mostly through mitogen-
activated protein kinase (MAPK) pathway that is activated via
p38, c-Jun amino terminal kinase, extracellular signal-regulated
kinase, and nuclear factor-kB as well as phosphatidylinositol 3
kinase-Akt (PI3K-Akt) (101, 102). The dual roles of TGFb
showing at early and advanced stage of cancers are not due to
the change of TGFb structure, but are mediated through mutant
TGFb receptors as well as interaction of cancer cell-secreted
TGFb with the whole stromal cells such as dendritic cells, T cells,
NK cells, TAMs, CAFs, and MDSCs. To suppress tumor growth,
TGFb arrests cell cycle through inhibiting cyclin dependent
kinase and c-Myc pathways (103), induces cell apoptosis
through activating JNK and Fas pathway, and antagonizing
Bcl-2, Bcl-X, and survivin (104), and eventually prevents cell
immortalization through regulating reverse transcriptase activity
of human telomerase (105). To support tumorigenesis and
metastases, paracrinal and autocrinal TGFb enhances
immunosuppression through diminishing immune surveillance
maintained by DCs, cytotoxic T cells, and NK cells as well as
cytokines such as IL2 and INFg (22), amplifies angiogenesis
through activation of ALK1 and ALK5 pathway and more
production of vascular endothelial growth factor and
connective tissue growth factors in epithelial cells and
fibroblasts (97), and induces the EMT for promoting
metastases through Smad-dependent and Smad-independent
pathway (98), as well as accelerates malignant cells
invasiveness through remodeling the ECM and decreasing
TbR2 signaling and miRNA-mediated protein regulation (99).

Furthermore, hyperactivation of TGFb signaling in advanced-
stagemalignant tumors also swiftly decreases efficacyof ICI therapy
in the TME (106), whereas malignant tissue insensitive to ICI
treatment exhibits a high expression pattern of TGFb1 (107).
Neutralized monoclonal antibodies individually targeting on
TGFb or dual recognition of TGFb and PD-1/PDL-1 have
achieved significant antitumor effects in treatment of liver cancer,
pancreatic cancer, lung cancer, and urethral cancer (108, 109).
Therefore, once malignant cells finish the transition from locally
seeding to angiogenesis, TGFb ultimately abandons the antitumor
arm and majorly serves to immunosuppression and metastases.

Tumorigenesis in Gastrointestinal Cancers
Esophageal Cancer
Esophageal adenocarcinoma (EAC) and esophageal squamous
cell carcinoma (ESCC) are two major malignant exhibitions at
Frontiers in Oncology | www.frontiersin.org 4
esophagus. Epidemiological studies demonstrate that multiple
factors cause EAC and ESCC, such as smoking, obesity,
gastroesophageal reflex disorder, and Barrett’s esophagus, as
well as epithelial injury via frequently intaking hot solution, all
of which indicate that chronic inflammation is mainly
responsible for malignant transition (110). In chronic
inflammation-mediated esophageal cancers, not only IL6-
STAT3 (signal transducer and activator of transcription 3)
pathway increases epithelial proliferation and apoptotic
resistance in Barrett’s esophagus and EAC but also neoplastic
cells utilize STAT3 signaling to promote tumorigenesis,
angiogenesis, and metastases (111, 112). To ESCC, increased
production of IL6 causes a poor prognosis following neoadjuvant
radiochemotherapy, while higher expression of STAT3 at
surgical resection correlates to increased mortality; however,
siRNA-activated inhibition of IL6/STAT3 signaling augments
chemotherapy sensitivity, accelerates apoptosis, and reduces
angiogenesis, as well as decreases the EMT formation for
metastases (113, 114).

More importantly, in EAC and ESCC, high expression of
CD38-positive MDSCs is abundantly found in the peripheral
blood at advanced stage, while Daratumumab binding with
CD38 expression reduces tumor growth (115). Previous studies
reported that MDSCs increased recruitment of Treg cells in
maintenance of immunosuppression in the TME (116). It is
highly possible that MDSCs promote malignant invasion
through increasing Treg cell activity, in which the higher level
of Treg cells, the stronger prediction of tumor invasion,
metastasis, disease severity, and reduced overall survival (114,
117). Furthermore, due to the TME in esophageal cancers,
especially in ESCC, enormously supporting transition of M1
mac r opha g e s t o TAMs , i nfi l t r a t i n g TAM-ba s e d
immunosuppression (113), and TAM-mediated upregulation of
Treg cell activity tremendously promote the development of
EAC and ESCC through STAT3 signaling (118). Additionally,
TGFb directly increases CAF production in the TME, because of
which, CAF-based secretion of vascular growth factors
accelerates metastases in ESCC, whereas inhibition of CAF
activity in EAC notably improves overall survival associated
with an excellent prognosis (119). Collectively, interplay of
var ious chronic inflammation condit ions act ivates
tumorigenesis in esophageal cancer.

Gastric Cancer
Similar to esophageal cancers, most environmental issues are
directly and indirectly functional on generating gastric
malignancy including high-salt food, pickled food, smoking,
nitrates, and food preservers (120). But malignant tumors
occurring at cardia and gastroesophageal junction are mostly
related to gastroesophageal reflux, intestinal mucosa transition,
and chronic mucosal infection caused by H. pylori (Hp) (121).
External factors and internal issues confirm the contribution of
chronic inflammation in promotion of gastric cancer (122, 123).
Two pathological categories in gastric cancer are intestinal type
and diffuse type, in which intestinal type is closely related to Hp
infection in older males and less morbidity in last several decades
worldly, while diffuse type is characterized with loss of E-
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cadherin expression, frequently occurring in young people
unisexually, and less correlating with precancerous lesion (124).

As extensively reported, microorganisms make a great
contribution in stimulation of tumorigenesis through
dysregulation of cycle progression, protein translation, and cell
survival. Epstein Barr Virus (EBV) and Hp are frequently
emphasized due to mostly triggering PI3K-Akt pathway and
Wnt/b-catenin pathway, respectively (121, 125). Crucially,
mutant PI3KAc, an oncogene encoding a catalytic subunit of
PI3Ka, is remarkably expressed in up to 42% EBV-associated
gastric adenocarcinoma, which predominantly causes DNA
hypermethylation, especially promoting tumor suppressive
gene CDKN2A hypermethylat ion (125) . Moreover ,
amplification of mutant PI3KAc swiftly increases angiogenesis
stimulated by VEGF and EGF through TGFb-CAFs pathway
(125). Also blocking oncosuppressive gene, PTEN, activates Akt
expression and phosphorylation of Akt, which strongly
dysregulates cell apoptosis, tumor invasiveness, and
radiosensitivity (126). miRNA-21 targeting on PTEN
expression rises proliferation and invasiveness of gastric cancer
(126). Dysfunction of Wnt/b-catenin pathway occurs in about
70% gastric cancer patients, in which two virulence factors of Hp,
CagA and VacA, are mainly responsible for such dysregulation
(127). CagA not only interplays with E-cadherin to increase b-
catenin accumulation in cytoplasm and nucleus but also activates
CDX1 and P21 genes also firmly responsible for transition of Hp-
infected gastric epithelium to mesenchymal stemness such as
CSCs (128). Interestingly, chronic inflammation induced via Hp
infection reprograms SALL4 expression, which directly promotes
intestinal metaplasia to neoplastic transformation (129), whereas
increased interaction of SALL4 with Wnt/b-catenin signaling
also accelerates lymphatic node metastases in gastric cancer
patients (130). Furthermore, unsurprisingly, TGFb is a valid
sponsor in upregulation of Hp-induced EMT (131).

Activation of EGFR is responsible for up to 30% gastric cancer
cases, in which increased EGFR expression or mutant EGFR is
responsible for 5–10% patients and correlates with microsatellite
instability molecular subtypes (132). Various coregulators
binding with EGFR and TNFa recruit signaling cascades that
activate MAPK and PI3K-Akt pathways (133). Nevertheless,
HER-2 overexpression exists in 10–30% gastric cancer patients,
in which mutant HER-2 occurs in 5% gastric cancer cases, and is
more prevalent in 7% microsatellite instability cases and 12%
EBV-positive ones (132). Thereby, overexpression of mutant
EGFR and HER-2 is highly associated with metastases and
poor prognosis in gastric cancer patients (132). Furthermore,
specific categories of miRNAs functionally contribute to the
development of gastric cancer through increased oncogene
expression, reduced expression of oncosuppressive genes, and
dysfunction of tumor suppressive proteins; therefore, depending
on miRNAs, they are highly likely to become a practically clinical
tool in detection of GI cancers and evaluation of prognosis (134).

Liver Cancer
Hepatocellular carcinoma (HCC) mostly is diagnosed at the late
stage following viral infection, alcohol overconsumption,
Frontiers in Oncology | www.frontiersin.org 5
steatohepatitis, primary biliary cirrhosis, autoimmune hepatitis,
and aflatoxin contamination, in which chronic viral infections,
such as HBV and HCV, are responsible for 80% cases (135).
More researchers believe that oncogenic background changes,
dysregulation of up- and downstream molecular pathways, and
interaction between stromal cells and cytokines in the TME are
tightly connected with cancer cell transition, proliferation,
angiogenesis, invasion, and metastasis in HCC.

Single-cell transcriptomic profiling of HCC patients identifies
that TME reprogram mainly controls HCC biodiversity, and
VEGF-A-mediated regulation of CAFs and TAMs activities is
only exhibited in malignant cells, especially in high diversity
tumors, but not found in non-malignant hepatocytes (136). This
investigation also verifies that individual activation of VEGF-A
pathway inHCC is completely responsible to immunosuppression,
aggressiveness, and negative prognosis (136). Also, VEGF-A is a
critical trigger of angiogenesis in HCC serving for invasion and
metastases (137). In HBV- and HCV-mediated hepatitis, chronic
infection leads to cirrhotic situation that causes a hypoxic
environment, in which hepatocytes upregulate hypoxia-induced
factor 1a expression, and consequently that causes overexpression
of VEGF at transcriptional level, and finally promotes angiogenesis
in HCC (138). Treatment using lenvatinib and sorafenib targeting
on VEGFs notably significantly improves prognosis in HCC
patients (139). As mentioned previously, TGFb dysregulated
VEGF expression in different kinds of cancers (99); however,
TGFb is a double agent in health and diseased liver. In health
liver, Kupffer cells and stellate cells produce most TGFb except for
hepatocytes,while in an injuredhealth liver, temporary activationof
TGFb is functional on nuclear Yes-associated protein and Smad2
phosphorylation (140) that induces the EMT formation dependent
on activated hepatic stellate cells and hepatocytes-transformed
myofibroblast cells. Moreover, stromal cells in the TME utilize the
fibrosis process induced by EMT for metastases, which has been
actually verified through miRNA-dependent inactivation of TGFb
pathway in reducingHCC tumorigenesis and improving prognosis
(141, 142).

More importantly, overexpression of EGFR and insulin-like
growth factor receptors enhances activation of PI3K/Akt/mTOR
signaling in HCC, in which atypical PTEN activity upregulates
activation of the PI3K/AKT/mTOR pathway (143). Previous
researches demonstrated that mutant PTENTs were identified
in 5% HCC patients, while reduced or deleted PTEN expression
was associated with nearly 50% HCC cases (144, 145). Abnormal
expression of PTEN in chronic HBV- and HCV-infected patients
constantly stimulates overactivation of PI3K/AKT/mTOR
pathway, which constitutively promotes tumor grades and
advanced disease stage, and diminishes overall survival in HCC
patients (144). Clinically, everolimus and mTOR inhibitor plus a
PI3K inhibitor (BKM120), Akt inhibitor (MK-2206), and
mTOR/PI3K inhibitor (BEZ235) significantly increase immune
cytotoxic activity, especially in treatment of advanced HCC via
everolimus, in which 40–73% patients quickly catch the disease
stable state in a short-time study (146, 147).

Al ternat ive ly , in a lmost 50–70% HCC pat ients ,
immunostainings identify overexpression of b-actin in
August 2021 | Volume 11 | Article 666340

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu and Liu Tumorigenesis, Early Diagnosis, Cellular Immunotherapy
cytoplasm and nucleus especially for tumor cell proliferation and
suppression of physiological differentiation; however, under
nonmalignant situation, high accumulation of b-actin shows
less contribution to HCC formation (148). Furthermore, the
early-stage HCC demonstrates that b-actin mutation occurs in
17% HCC patients and these mutant regions cover some specific
sites such as phosphorylated site of glycogen synthase kinase-3b
(149). Investigation of clustering b-actin resource in HCC shows
that mutant b-actins are responsible for 12–26% of patients,
whereas mutations in Wnt/b-actin pathway contribute 8–13%
cases, both of which predominantly occur in HCV-infected
population (149). Clinically, genetic profiling of 603 HCC
patients illustrates that either Wnt/b-actin pathway or Myc/
Akt pathway is abnormally activated, which is parallel with
TGFb overexpression (150). Interestingly, through activation of
Wnt/b-actin pathway, miRNAs regulate TGFb-mediated ECM
formation (151), and more evidences expose that due to the ECM
transition, liver has generally become a common site not only for
HCC metastasis but also for other solid tumors (152, 153).

Pancreatic Cancer
As a deadly disease, pancreatic cancer, like mountain Everest, has
always been attractive to many physicians and surgeons in that 5-
year survival rate is only 8% (154), in which 90% pancreatic
cancer is pathologically defined as pancreatic duct
adenocarcinoma (PDAC) and 10-year survival rate is less 4%
(155, 156). Principally, in pancreatic cancer, the TME promotes
tumor growth and angiogenesis, CSCs focus on anticancer
therapy and increased tumor bulk, and interaction between
CSCs and the EMT contributes to metastases.

One of pathological characteristics in PDAC is desmoplasia, a
state of extensive fibrosis around the primary tumor region, in
which the ECM proteins are overexpressed and myofibroblast
cells are tremendously identified (157). Clinical evidences also
demonstrate that desmoplasia displaying in lymphonodes of the
PDAC patients predicts a poor prognosis (157). Desmoplasia
occurring in PDAC tightly depends on the TME in that TME-
associated secretion of connective tissue growth factors,
fibroblast growth factor 2, and TGFb stimulates desmoplasia
formation, especially the absence of anticancer arm of TGFb
caused by reduced Smad4 function depending on RAS-mediated
ERK pathway (158). Due to high fibrosis in desmoplasia, the
TME exhibits hypovascular and hypoxic conditions, through
which pancreatic cancer cells reprogram metabolic pathways,
inactivate apoptosis, and amplify proliferation and anticancer
resistance, as well as promote invasion and metastasis (159). In
purpose of maintenance and enhancement of hypoxia,
pancreatic cancer cells produce more angiostatin, endostatin,
and pigment epithelium-derived factors, whereas the ECM
creates more endostatin, both of which are eventually
countering vessel growing (160, 161). Desmoplasia-induced
hypoxia, especially via hypoxia-induced factor 1a and TGFb,
constantly stimulates production of activated pancreatic stellate
cells, in which stellate cells with quiescent vitamin-A contents
transform into myofibroblast-like type (162). Through this
procedure, normal cellular framework in pancreatic
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microenvironment steps into the carcinogenic ECM, which is
responsible for upregulating secretion of cytokines and
chemokines such as matrix metalloproteinases, platelet-derived
growth factor, epidermal growth factor, insulin-like growth
factor 1, fibroblast growth factor, and stromal-derived factor 1,
as well as small leucine-rich proteoglycans and collagen type I, all
of which make a great contribution to cancer development and
metastasis (162, 163). Moreover, activated pancreatic stellate
cells notably participate into immunosuppression in the TME,
in which activation of stellate cell-dependent IL6 secretion causes
MDSC aggregation deliberately to reduce T-cell proliferation,
and increases Treg cell infiltration via STAT3 pathway (164). In
addition, activated stellate cells also cause more T-cell apoptosis
and Th2 cytokine secretion in the TME through upregulating
Galectin-1 expression (165). Recently, investigation identified
that inhibit ing heat-sensit ive protein 90 restricted
transformation of cancerous pancreatic stellate cells and
diminished IL6 production in the TME, which significantly
amplified effects of ICIs and increased cytotoxic T cells and
Th1 cell infiltration through inactivation of JAK/STAT and
MAPK signaling in PDAC (166).

Hypoxia in PDAC not only stimulates production of activated
stellate cells but also promotes stemness, in which hypoxic
environment indirectly and directly supports CSC creation
(167, 168). Growing with pancreatic cancer cells in vitro
simultaneously, activated stellate cells increase spheroid
formation of malignant cells and upregulate expression of
stemness markers such as ABCG2, Nestin, and LIN28, which
strongly indicates the importance of activated stellate cells in
generating CSC niches (169). Specially, TGFb1 predominantly
secreted by activated stellate cells in PDAC stimulates CSC
production through negatively regulating L1 cell adhesion
molecule expression by TGFb-Smad2/3 pathway, which causes
PDAC to be more progressive (170). More importantly, self-
renewal CSCs have become a major barrier of conventional
chemoradiotherapy, in which gemcitabine is unable to
eradicate CSCs but rather increase the number of CSCs (171,
172). In purpose of maintaining the renewal, increasing the
tumor bulk, and promoting metastases, CSCs dysregulate
several signal pathways including Wnt/b-catenin, hedgehog,
notch, NF-kB, PI3K/Akt, and PTEN (173). Unsurprisingly,
CSCs also secret Actin and Nodal that interact with Alk4/7
receptors to form pancreatic cancer cell sphere; however,
through reduction of Akl4/7 expression and inhibition of
interplay with CSCs, pancreatic cancer cells are more sensitive
to gemcitabine treatment and lead to a long overall
survival (174).

For entirely understanding the procedure of metastases in
PDAC as well as contribution of CSCs in metastases, more
investigations evidently show that the EMT insidiously plays a
pivotal role during invasion through inducing CSC production
continuously (175, 176). The most critical event in forming the
EMT is to transform epithelial cells from a normally mature
condition into mesenchymal phenotype, which causes
morphogenetic changes occurring in embryonic development,
organ fibrosis, and tumor metastasis, as well as less expression of
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epithelial markers such as E-cadherin, desmoplakin, and
plakoglobin and overexpression of mesenchymal markers
including vimentin, fibronectin, and a-smooth muscle actin
(177, 178). Interestingly, hypoxia-inducible factor 1a is
functional on expression of SIP1, Snail, Twist1, and Zeb1
indirectly or directly, while hypoxia-inducible factor 2a
directly regulates Twist1 expression, both of which enlighten
the essential role of hypoxia in induction of the EMT formation
(179–181). Impressively, Zeb1 suppresses E-cadherin expression
to promote metastases through downregulating expression of
stemness inhibitors such as miR-203 and miR-200, in which
TGFb directly causes upregulation of Zeb1 signaling in the EMT
(176, 182). Furthermore, circulating tumor cells (CTCs)
depending on the EMT-mediated extravascular invasion and
migration occupy 100-fold increases of CD24+ and CD44+

expression that are highly exhibited in pancreatic CSCs
associated with therapeutical resistance and negative prognosis
(183, 184). That TGFb predominantly secreted by activated
stellate cells strongly enhances CSC production in desmoplasia
indicates that interaction between CSCs and the EMT crucially
supports metastatic infrastructure and pathological progression
in PDAC.

Colorectal Cancer
Clinical practice using non-steroid anti-inflammable drugs such
as COX-2 antagonists but not aspirin exhibits 40–50% reduction
at risk of colorectal cancer (CRC), which strongly demonstrates
that chronic inflammation initially promotes tumorigenesis in
CRC (185, 186). Further evidences verify that COX-2-mediated
prostaglandin E2 production is critically responsible for CRC
invasion (187). However, recent researches substantially
identified that prostaglandin E2 secreted by CAFs essentially
correlates with immunosuppression, angiogenesis, and
metastases in CRC, in which upregulation of COX-2
expression on CAFs promotes migration and invasiveness
(188), reduction of COX-2-mediated miR-335 expression
blocks CAF-induced carcinogenesis through restoring PTEN
activity (189), and dysregulation of NK cell function by
hepatocellular CAFs depends on prostaglandin E2 and
indoleamine 2,3-dioxygenase activity (190). Therefore,
transformation of normal fibroblasts to CAFs is a milestone in
CRC formation, which purposely remodels the TME through
reprogramming secretion of the ECM proteins (191). Moreover,
CAFs in CRC strongly amplify immunosuppression in the TME
through CAF-mediated enhancement of TAM and MDSC
activities (192, 193), CAF-dependent promotion of Treg cell
proliferation (194), and CAF-induced PDL-1 overexpression on
cancer cells (195), as well as CAF-activated reduction of
cytotoxic T cell activity (196). Furthermore, exosomes
predominantly secreted by CAFs typically contain miR-21,
miR-378e, and miR-143, most of which travel from CAFs to
cancer cells in response to increased expression of the EMT
markers and stemness to become more aggressive phenotype,
which is parallel with results obtained from cancer cells
transfected with miR-21, miR-378e, and miR-143 (197).
Therefore, miR-21-contained vehicles majorly created by CAFs
play an essential role in upregulation of cancer cell-based tissue
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damaging, especially causing more metastases to liver in CRC
(198). Eventually, CAF-dependent exosome secretion is
inherently in recruitment of CSCs to resist oxaliplatin or 5-
fluorouracil treatment in CRC therapy; however, inhibition of
exosome production significantly reduces such kind of behaviors
(199). In addition, CAF-induced IL17a secretion also notably
promotes self-renewal and invasiveness of CSCs and worthfully
to know that chemotherapy of CRC unfortunately upregulates
IL17a secretion (200).
CLINICAL APPROACHES IN DIAGNOSIS
OF GASTROINTESTINAL CANCERS AT
EARLY STAGE

Currently, conventional screening cancer tools including
plasma-based tumor markers, barium enema, GI endoscopy,
and computed tomography have been practiced extensively in
asymptomatic population for decades of years in purpose of
identifying malignant tumors at early stage, in which GI
endoscopy is strongly recommended due to high accuracy of
histology; however, invasive nature, unhappier feeling, and
noticeable cost have conditionally slabbed this optimal practice
for a large-scale of screening tests (201, 202). Most of serum
tumor markers generally show less specific in early detection of
GI malignancies except for afetoprotein and CA19-9 with highly
predictable value of hepatocellular cancer and pancreatic cancer,
respectively (203, 204). According to diversity of cytokines,
chemokines, and glycoproteins in the TME, it is necessary to
comprehensively apply novel biomarkers for early diagnosis of
GI malignancies, which are not independent from traditional
cancer-screening tests.

M2 Pyruvate Kinase (M2PK)
Glutaminolysis and glycolysis almost exist in all kinds of solid
tumors in that hypoxia in the TME significantly upregulates
glycolysis d in malignant tissues (205, 206). Being a rate-limiting
enzyme, M2PK plays a crucial role in regulation of glycolysis, in
which tetrameric structure of M2PK exhibits high affinity to
phosphoenolpyruvate, whereas a dimeric form, named tumor
M2PK with low affinity to phosphoenolpyruvate, is
predominantly expressed in malignant tumors (207). A large
number of evidences demonstrate that increased expression of
tumor M2PK in screening samples especially correlates with GI
cancers and also has a pan-sensitive to malignancies in brain,
thyroid, lung, breast, ovary, cervix, kidney, bladder, and prostate
(205, 208–215).

As a meta-analysis study showed, tumor M2PK as a plasma
marker had 62.1% sensitivity and 89% specificity in detection of
gastric cancer and esophageal cancer (216). According to
different stages of gastric cancer, tumor M2PK has 71%
sensitivity to metastatic cases, whereas CA72-4 is 57%, while to
the cases without metastases, tumor M2PK has 63% sensitivity,
whereas CA72-4 is 25% (11). The study focusing on accuracy of
tumor M2PK, CEA, CA19-9, and CA72-4 in diagnosis of GI
cancers confirms that tumor M2PK is significantly higher in
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screening esophageal cancer, gastric cancer, and CRC than other
three tumor markers, while in pancreatic cancer, tumor M2PK
has a similar predictable rate as CA19-9, but more sensitive than
CEA and CA72-4 (6). Furthermore, a comparable meta-analysis
study found that screening pancreatic cancer through CA19-9
and M2PK together has 60% sensitivity and 95% specificity (11).
More conveniently, testing tumor M2PK in fecal samples is
significantly sensitive and reliable than fecal occult blood test
(FOBT) due to intermittent bleeding or the absence of bleeding
in CRC, in which tumor M2PK shows 68.8 to 91.0% sensitivity
and 71.9 to 100% specificity, whereas FOBT has 40% sensitivity
only or less (217). Therefore, combining with conventional
plasma tumor markers and periodic endoscopy examination,
tumor M2PK is practically selected as an earlier alert signal in
detection of GI malignancies, especially in screening CRC.

Circulating Tumor Cell and Circulating
Tumor DNA
CTCs are tumor cells that have broken away from primary
tumors or metastatic sites, and then enter into the blood
circulation in purpose of distal metastases (218). Comparing
with other peripheral blood cells, the number of CTCs is
extremely low, generally 10-7 to 10-8, and lifetime mostly lasts
for several hours (219–221). Currently, using CTCs to screen GI
cancers in normal population is not actually realistic due to
remarkably low fraction of CTC-positive patients, screening
markers less specific for CTCs assessment, and tremendously
lower level of CTCs detected at early-stage tumors (222–224). A
cohort study of 138 CRC patients at stage I to III demonstrates
that postoperative CTC-positive patients who were negative at
preoperative CTC test independently predict a really poor
prognosis, whereas preoperative CTC-positive patients have
similar results as preoperative CTC-negative group in
evaluation of prognosis (225). Therefore, CTC test may be
highly valid to patients with extensive metastases, post-surgery
relapse, or the high-risk population with family history of GI
cancers as well as a good candidate in prediction of prognosis
after chemoradiotherapy.

Circulating tumor DNA (ctDNA) is a kind of cell-free DNA
originally traveling from primary cancer site, metastatic location,
or CTCs to the bloodstream, in which the size of ctDNAs is
generally shorter than normal cell-free DNAs, lifetime lasts for
16–150 min, and can be released into exosomes (226, 227).
Different from CTC test, ctDNAs screening has employed
tumor-specific genetic markers and epigenetic markers in
discrimination of ctDNAs from normal cell-free DNAs (228),
and sensitivity of ctDNA detection has exhibited microscale level
through molecular barcoding techniques (229). Furthermore,
identification of ctDNAs through low-coverage genome
sequencing has not required genomic information of primary
malignancy (230), and ctDNA detection using plasma samples is
more accurate than in serum due to lower level of wild-type
DNA released (231). Through combinative application of both
ctDNAs and CTCs techniques as well as through detection of
hypomethylation or hypermethylation of ctDNAs at promoter
region of cancerous and oncosuppressive genes, ctDNAs have
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been extensively used in early diagnosis of GI cancers. However,
due to few amounts of ctDNAs released into the circulation,
ctDNA technique is encountering some challenges in detection
of ultra-early stage of GI malignancies (232, 233).

In esophageal cancer, ctDNAs targeting CASZ1, CDH13, and
ING2 genes show significant high level of hypermethylation in
ESCC patients but mild level in healthy controls, whereas
dysregulation of 5-hydroxymethylcytosine expression on
ctDNAs also has remarkable sensitivity in screening ESCC;
therefore, ctDNA detection based on these two different
patterns is highly likely to identify the early-stage esophageal
cancer (234, 235). Through screening methylation and
hypermethylation of 14 genes in 1193 samples, ctDNA
approach has 65% sensitivity and 95% specificity in diagnosis
of gastric cancer, whereas in comparison with CEA, CA72-4,
CA19-9, and CA50, the higher concentration of ctDNAs tested
by alu-dependent branch DNA assessment, the more accuracy in
early diagnosis of gastric cancer, which has 79% sensitivity and
91.8% specificity (236, 237). Therefore, combining
hypermethylation of CASZ1, CDH13, and ING2 genes with
increased ctDNA burden is a valuable approach for a large-
scale screening of upper digestive cancers. Using somatic copy
number aberration (SCNA) via low-depth whole genome
sequencing technique demonstrates that increased ctDNA
burden has area under curve (AUC) value of 0.874 in early
diagnosis of HCC and 0.933 at advanced stage of HCC, whereas
application of ctDNA panel focusing on eight targeted genes has
83.3% sensitivity and 90.5% specificity in screening HCC;
thereby, screening people through a panel containing multiple
ctDNAs with increased ctDNA burden comprehensively
provides a specific method in diagnosis of HCC (238, 239). To
detect pancreatic cancer, several investigations clarify that single
ctDNA-mediated tests are not sensitive at the early-stage;
however, through combining with conventional serum tumor
markers, specific proteins expressed in the TME and methylation
at protomer regions of cancer-related genes, ctDNA technique
significantly increases sensitivity and specificity in diagnosis of
pancreatic cancer (240, 241). Using ctDNAs to detect
methylation expression at promoter regions of 17 genes
exhibits 91.2% sensitivity and 90.8% specificity to discriminate
PDAC patients from chronic pancreatitis group (242). Through
examining methylation at both ADAMTS1 and BNC1 genes in
screening PDAC, ctDNAs tests remarkably accomplish the
accuracy with 94.8% sensitivity and 91.6% specificity (243).
Moreover, detection of mutant KRAS through ctDNAs
combined with other four protein markers notably has 64%
sensitivity and 99.5% specificity in diagnosis of PDAC patients
from healthy controls (244). Thereby, the methodology of
integrating ctDNAs with KRAS mutation, methylation on
targeted genes, and high expression level of tumor-specific
proteins predominantly occupies a position in early diagnosis
of pancreatic cancers. Similarly to detect early gastric cancer,
increased ctDNA burden through Alu83 and Alu244 is also used
to detect CRC, combination of which with methylation of
specific gene achieved higher sensitivity in CRC diagnosis
(245). Furthermore, using ctDNAs to examine B4GALT1 gene
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hypermethylation performs 50% sensitivity and 100% specificity
in early diagnosis of CRC, whereas hypomethylation of LINE-1
gene tested by ctDNAs yields 65.8% sensitivity and 90.0%
specificity in screening CRC (246). Therefore, testing M2PK-
positive samples depending on increased ctDNA burden,
hypermethylated B4GALT1 gene, and hypomethylated LINE-1
gene is a reliable methodology in early detection of CRC.

Circulating microRNA
microRNAs (miRNAs) generally composing of 19–24
nucleotides are functional on 3’-UTR of messenger RNA,
which effectively regulates targeted protein expression (247).
miRNAs are endurable in various physiological changes and
resist to RNase activity, thereby circulating miRNAs extensively
and stably present in 12 kinds of cell-free body fluids and
excretions including serum, plasma, urine, and feces (248).
Since downregulation of miR-15 and miR-16 expression was
firstly recognized as a novel biomarker in diagnosis of B-cell
chronic lymphocytic leukemia (249), clinical professionals have
applied circulating miRNAs in detection of GI cancers
considerably and identified several unique expression patterns
in early diagnosis of esophageal cancer (250, 251), gastric cancer
(252), liver cancer (253), pancreatic cancer (254), and CRC (255).

Comparing to healthy controls, the expression panel
containing miR-16-5p, miR-197-5p, miR451a, and miR-92a-3p
is specially associated with ESCC, whereas the group of miR-16-
5p, miR-320c, miR-638, and miR-92a-3p is significantly higher
in squamous dysplasia, a precancer pathology, especially
miRNA-21 overexpression highly correlating with alcohol-
induced ESCC (250, 251). In a cost-effective screening of
gastric cancer, 12-miRNA panel shows 87% sensitivity and
68.4% specificity, which is remarkably higher than CEA and
CA-19-9 (252). A meta-analysis study of circulating miRNA-
mediated detection of HCC demonstrates that the higher
expression group of circulating miR-21, miR-122, and miR-223
is more specific in diagnosis of HCC than in healthy, hepatitis, or
cirrhosis group, in which confident rates of miR-21, miR-122,
and miR-223 are 0.9293, 0.8128, and 0.8597, respectively,
especially miR-21 expression in high priority (256). Screening
of pancreatic cancer proves that the expression group containing
miR-125a-3p, miR-5100, and miR-642b-3p achieves the most
promising result in discrimination of cancer patients from
healthy ones, which shows 98% sensitivity and 97% specificity
(254). Moreover, in diagnosis of CRC, the expression pattern
consisting of miR-15b, miR-17, miR-21, miR-26b, and miR-145
has the best predictable performance, especially miR-21 and
miR-26b with maximal specificity (257). Recently, circulating
exosomes were also considered as the early biomarkers in
diagnosis of GI cancers; however, the reliability of this
approach mainly depends on analysis of contents within the
circulating exosomes, especially miRNAs and cell-free
DNAs (258).

Finally, through reviewing 42 investigations significantly
relevant to the diagnostic performance of circulating miRNAs
in GI cancers, this meta-analysis study concludes that comparing
to CEA and CA19-9, circulating miRNAs have become reliable
biomarkers in early diagnosis, moderately with 75% sensitivity
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and 81% specificity, and multiple-miRNA screening assay
significantly achieves more accurate result than a single-
miRNA test, as well as plasma-dependent miRNAs assay is
precisely used in diagnosis of gastric cancer, while serum-based
miRNA test is more suitable for CRC detection (259).

Circular RNA
Circular RNAs (circRNA), non-coding RNA with closed circular
form, have been discovered in mammalian cells for decades and
structurally characterized through high-throughput sequencing
over 10 years, in which circRNAs are functional on the axle of
circRNA-miRNA-mRNA responsible for target gene expression,
interplay with RNA-binding protein in regulation of target
protein activities, and act as posttranscriptional regulators
influencing parental gene transcription and splicing (260). Due
to strongly resisting to exoribonuclease, circulating circRNAs are
stably and extensively expressed in exosomes, serum, plasma,
saliva, and urine (261). Since ciRS-7 firstly exhibited sponging
action on miRNA-7 to promote carcinogenesis, different kinds of
cancers have shown unique existing patterns of circRNAs that
are practically applied in diagnosis of malignancy at early stage
(261). Moreover, recent investigation demonstrated that artificial
expression of circRNA targeting on miRNA21 eliminated
miRNA-21-mediated promotion of gastric cancer (262).
Therefore, examining expression pattern of circRNAs sponging
on cancer-specific miRNAs is highly likely to become a more
efficient methodology in early diagnosis of GI malignancies.

Using a pool of circRNAs to screen ESCC identifies that
upregulation of circ-DLG1 and circ-TTC17 combining with
downregulation of hsa_circ_0001946, hsa_circ_0062459 and
circ-SMAD7 has 79% sensitivity and 85% specificity, in which
positive samples in this pool test have 5-fold higher possibility in
transition to ESCC than normal controls (263). Through
analyzing 343 plasma circRNAs expressed in gastric cancer
pat ients and hea l thy contro l s , downregula t ion of
hsa_circ_0001017 and hsa_circ_0061276 has the best
diagnostic performance with 95.5% sensitivity and 95.7%
specificity (264). Another study shows that lower expression of
plasma hsa_circ_0000181 has 99.0% sensitivity and 85.2%
specificity in gastric cancer (265). Therefore, the expression
group of hsa_circ_0001017 and hsa_circ_0061276 and
hsa_circ_0000181 is practically becoming a novel biomarker
for early diagnosis of gastric cancer. For HCC detection,
upregu la t ion of s even c i r cRNAs expre s s ion p lus
downregulation of five circRNAs expression in serum shows
the best combinative performance, in which the expression
group covering hsa_circ_0004001, hsa_circ_0004123, and
hsa_circ_0075792 has 90.5% sensitivity and 78.1% specificity
(266). Furthermore, two independent studies identically discover
that plasma circ-LDLRAD3 overexpression significantly
correlates with pancreatic cancer, in which together with
CA19-9, combinative test has 80.3% sensitivity and 93.6%
specificity in early diagnosis of pancreatic cancer (267, 268).
Thus, integrating conventional tumor markers with circRNA
expression highly possibly obtains more precise diagnosis in
screening of pancreatic cancer. Similar methodologies are also
used in early diagnosis of CRC, in which combining with CEA
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and CA19-9, the group of downregulated expression of plasma
circ-CCDC66, circ-ABCC1, and circ-STIL increases AUC value
0.780–0.855 (269). Another investigation focusing on early
diagnosis of CRC shows that using upregulated expression
group of hsa_circ_0001900, hsa_circ_0001178, and
hsa_circ_0005927 precisely identifies CRC patients in the
CEA-negative group with AUC value 0.859 (270). Therefore,
combinative patterns of using circRNAs with CEA and M2PK
will maximally increase the diagnostic accuracy in
screening CRC.
CELLULAR IMMUNOTHERAPY IN
TREATMENT OF GASTROINTESTINAL
CANCERS

Cellular immunotherapy is a combinative methodology of
applying cellular therapy and immunotherapy in personalized
cancer treatment (271–273), in which personalized analysis to an
individual cancer patient is the key strategy to achieve a clinically
effective treatment (273). Personalized investigation in cancer
therapy includes genomic DNA sequencing, genomic exons
sequencing, cancer-specific mutant genes sequencing,
dysfunction of signaling proteins analysis, neoantigen
detection, loss of immune cytotoxicity, and diversity of the
TME (274). However, following nearly one century training,
oncological clinicians have been used to dogmatically applying
conventional chemotherapy and radiotherapy in almost all
cancer treatment. Whether therapy-induced immune
alterations are responsible for an effective therapy is less
attractive in main menu despite the critical role of cellular
immunotherapy to malignancy having been successfully
exhibited through Dr Coley’s vaccine in 1893 (275). Actually,
Coley’s vaccine strongly indicates that turning cold tumor to hot
through immune modulation is an essential conversion from
treatable to clinically curable. Currently, cellular immunotherapy
includes neoantigens and vaccines, adoptive cell therapy, CAR-
T/NK techniques, and oncolytic virus (OV) in purpose to recover
immune normalization, reduce immunosuppression in the TME,
increase tumor-specific antigen expression, and locally rebuild
inflammatory conditions, as well as rearrange tumor vasculature.

Combination of Conventional
Chemotherapy and Radiotherapy With
Cellular Immunotherapy
For many years, a number of investigations have demonstrated
that using pan-cytotoxic chemotherapy in cancer treatment
causes a direct immunosuppression (276, 277), PDL-1
overexpression (278), recruitment of CSC-mediated drug
resistance (200), and increased VEGFR-1-activated metastases
(279), as well as myelosuppression (280), all of which objectively
and comprehensively indicate that conventional chemotherapy is
not an approach of precise medicine in cancer treatment.
Surprisingly, through combining with certain kinds of
chemotherapeutic agents, cellular immunotherapy significantly
increases overall survival than singly using chemotherapy (281,
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282). Further analysis elucidates that chemotherapeutics
specifical ly acting on MDSCs and CSCs to reduce
immunosuppression in the TME remarkably amplify efficiency
and efficacy of ICI treatment and adoptive cell therapy (282,
283). Previously, clinical professionals supposed that apoptotic
cancer cells or chemotherapy-induced mutation should have
expressed more neoantigens; however, this idea is highly likely
a misconception (284), but through applying histone deacetylase
inhibitors or radioactive treatments, neoantigens expressed on
cancer cells are notably beneficial for cellular immunotherapy
due to enormously increased antigenicity (285, 286). Moreover,
boron-neutron capture therapy (BNCT) not only precisely and
largely eliminates tumor volume but also produces a large
amount of various neoantigens due to radiation-damaged
DNAs extensively existing in survived cancer cells, which are
specifically utilized by cellular immunotherapy for constantly
attacking (287, 288).

Adoptive Cell Therapy
Adoptive cell therapy includes TILs, cytokine-induced killer cells
(CIK), dendritic cell-activated cytokine-induced killer cells (DC-
CIK), NK cells, CAR-NK (chimeric antigen receptor-natural
killer cells), and CAR-T (chimeric antigen receptor-T cells), in
which TIL methodology showed clinical effects firstly on patients
with metastatic melanoma in 1983 (289), and currently, TIL
(290), DC-CIK (291), NK (292), CAR-NK (293), and CAR-T
(294) all have achieved convincing results in cancer treatment,
especially through DC-CIK, NK, and CAR-NK approaches.

As given knowledge, DCs are the most powerful antigen
presentation immunocytes, which directly command cytotoxic
T lymphocytes to attack cancer cells; therefore, depending on
DC-mediated recruitment of CIKs through tumor-associated
antigens, DC-CIK therapy efficiently and specifically eliminates
malignant cells (295). Through three meta-analysis studies of
more than 8 thousand patients with gastric cancer and CRC,
comparing to individual application of chemotherapy, CIK/DC-
CIK plus chemotherapy significantly increases overall survival
and progression-free survival in drug-resistant patients, and
swiftly improves most adverse events caused by chemotherapy
(28, 296, 297). Similar results are also exhibited in CIK/DC-CIK
therapy of pancreatic cancer and HCC, especially in advanced-
stage patients (298, 299). Interestingly, infusion of allogeneic
CIKs has also demonstrated encouraging effects on
hematological malignancies (300). Comparing to DC-CIK
therapy, as innate immune system, NK cell treatment occupies
a unique advantage, in which tumor-associated antigen
presentation is not compulsory for NK cell cytotoxicity,
cytokine release syndrome is less possible to occur, and human
leukocyte antigen matching is not stringently required for donor
NK cell infusion; therefore, despite autologous NK cells showing
very limited clinical efficacy (301), allogeneic NK cells including
semi-allogeneic NK cells, NK cells isolated from umbilical cord
blood, and iPSC-derived NK cells all show extraordinary
immune killing specificity to malignant tumors without graft-
versus-host disease (53, 302). Multiple infusions of allogeneic NK
cells to stage-III/IV pancreatic cancer patients significantly
increase overall survival and progression-free survival to 13.6
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months and 9.9 months, respectively (303), whereas to
unresectable primary HCC, are 23.2 months and 15.1 months,
respectively (304), both of which clinically identify allogeneic NK
cell therapy as a novel and promising methodology in treatment
of GI cancers. Recent investigations discovered that PD-1 and
PDL-1 expressed on DCs and NK cells reduced DC-activated
maturation of cytotoxic T lymphocytes (305, 306) and NK-
mediated antigen presentation of DCs (307–312), but through
applying ICIs, both DC-CIK and NK therapies exhibit the higher
level of cytotoxic activity to cancer cells (313–315).

Through studying the principle of TILs, clinical scientists
naively consider that arming T cells from cancer patients with
Chimeric tumor-specific Antigen Receptors (CAR-T) is efficient
to destroy cancer cells precisely, and CAR-T technique indeed
achieves the success in treatment of some kinds of hematological
malignancies (316). However, different from attacking an
individual malignant cell with unique antigen expression in the
bloodstream or in the lymphatic nodes, CAR-T therapy to solid
tumors is like using the sharpness of a knife to fight with the
thickness of a tank, disadvantages of which include
immunosuppression of the TME in solid tumors always
primarily focusing on T cells, loss of tumor-associated antigens
at the surface of mature solid tumors, and high cell density of
inside solid tumors stopping CAR-Ts entering into the bulk, as
well as extremely lethal side effects caused by immunotoxicity to
the normal cells co-expressing tumor-associated antigens (317,
318). Also, due to continuously selective pressure caused by
specific CAR, cancer cells may highly possibly abandon unique
antigen expression through endocytosis. Therefore, in purpose of
promoting immune normalization but not enhancement (319),
rebuilding normal immunity in cancer patients through cellular
immunotherapy is far more essential than CAR expression. Due
to specific cytotoxicity to malignant tumors and much less
possibility of inducing cytokine storm, clinical scientists design
CAR-NK technique through equipping NK cells with chimeric
antigen receptors, and have applied CAR-NK in patients with
relapsed and refractory acute myeloid leukemia to test safety and
tolerance (320). Whether CAR-NK therapy has more
therapeutical advantages in solid tumors than combinative
treatment of DC-CIK plus allogeneic NK cells, clinicians still
have a long way to go. Following identification of specific
biomarkers of TAMs, MDSCs, CAFs and CSCs, CAR-NK
therapy certainly makes a great contribution in breaking
through immunosuppression in the TME and strongly provide
a beneficiary immune infrastructure for other kinds of
cancer therapies.

Vaccine and Oncolytic Virus
Vaccines used in cancer therapy mainly depend on transferring
tumor-associated antigens to antigen presenting cells such as
DCs, and then inducing CD4+ helper T cells and CD8+ cytotoxic
T cells to eradicate cancer cells (321). Genetic vaccines including
DNA and RNA vaccines are theoretically able to synthesize all
sequences encoding targeted antigens; however, according to
various levels of protein translation, immunogenicity produced
by genetic vaccines is hard to control (322). Despite DNA
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vaccines achieving pathological regression in treatment of
intraepithelial neoplasia caused by human papillomavirus
infection (323), clinical trials have not shown effective results
in solid tumors therapy such as breast cancer (324), CRC (325),
prostate cancer (326), and melanoma (327). Similar to DNA
vaccines, messenger RNA vaccines containing 20 epitopes
inoculated for patients with advanced-stage GI cancers have
not obtained clinical efficacy, although they are safe and have
activated immune response to neoepitopes (328). Actually, DC
vaccines are more appropriately applied for cancer therapy in
that they are ex vivo induced through the whole cancer cells,
tumor lysates, peptides, DNAs, and RANs, which are strongly
functional on tumor-specific cytotoxic T cells to eliminate cancer
cells. Therapeutic DC vaccines have been extensively used in
treatment of GI cancers at phase II or III trials, in which DC
vaccine combining with MAGE peptide safely promotes immune
response to tumor-specific antigens and significantly reduces
tumor marker expression in nearly 90% advanced GI cancer
patients (329), but for accomplishment of more optimal
prognosis, prior to using DC vaccines, it is critical to examine
NK cell activity in the candidates (330). Furthermore, in situ
vaccines generated through chemoradiotherapy show more
beneficial to cancer patients than conventional vaccines in that
there is no screening requisition of positive antigen expression
(331, 332). Almost all clinical trials demonstrate that adding ICIs
into vaccine therapy remarkably increase vaccine-mediated
cytotoxicity, which partially explains why individually using
vaccine therapy only achieves suboptimal impact in cancer
treatment (333, 334). Currently, the challenges vaccine therapy
needs to deal with are multiple immunogenic antigen expression,
construction of highly potent vaccine vectors, and breakthrough
of immunosuppression in the TME.

Oncolytic virotherapy includes various kinds of viruses
targeting a large range of malignant tumors, in which cancer
cells are vulnerable to viral infection due to absence of type I
interferon system and mutations promoting attachment of
viruses (335, 336). In cancer therapy, using adenoviruses as a
platform to express tumor-specific antigens and tumor-
suppressive proteins has exhibited the promising results in
preliminary animal studies, and currently in human studies,
telomelysin-targeted adenovirus is testing in treatment of
esophageal cancer, whereas evaluation of ideal viral vectors is
processing in gastric cancer therapy, as well as more clinical trials
are manipulating in treatment of pancreatic cancer, primary
HCC, and CRC (337). Currently, clinical scientists are also
concentrated on myxoma virus due to absence of infection to
human beings and extremely sensitive to cancer cells; however,
there still have a distance for clinical application (338).
Furthermore, in diagnosis of GI cancers, depending on specific
expression of fluorescence and bioluminescence on infected
cancer cells, OVs, being tracing signals, are used to accurately
expose the border of malignant tissue in surgery, and precisely
identify the primary tumor and metastatic microtumors through
nuclear medical imaging techniques such as CT, MRI, SPECT,
and PET-CT (339–343). Through practicing oncolytic
virotherapy, some barriers clinicians have to quell include
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tumor heterogeneity, general immune elimination of OVs, and
capability to hack into tumor bulk and induce more activated
cytotoxic T cells in the TME.
CONCLUSION

To successfully apply personalized therapy in cancer treatment, it is
crucial to set up an assessment of tumor heterogeneity (344). In this
review, we seemly underrate the importance of tumoral
heterogeneity, in fact, which has been broadly discussed in parts
of diagnosis and cellular therapy. Due to high variability of single
subclone- or multiple subclone-induced tumor evolution in the
same tumor or metastatic regions of the same tumor, as well as in
different types ofGI cancers, intratumoral genomic heterogeneity is
highly beneficial for early diagnosis via liquid biopsy (345–347),
while intertumoral heterogeneity-mediated changes of temporal
and spatial plasticity and stemness in theTMEprecisely support the
significance of comprehensive therapeutic principle (348, 349).
Complexity of tumor heterogeneity essentially reflects adaption of
genomic heterogeneity to selective pressure and utility of
angiogenesis and immunosuppression through the TME for
distant metastasis (350–352). Tumor heterogeneity also strongly
indicates that rebuilding immune normalization to block
interaction of intertumoral heterogeneity with the TME is a
practical methodology to alter cancer therapy to chronic
disease management.

Through systematically discussing key contributions of various
components in theTMEto tumorigenesis andmetastases, reliability
of early diagnostic methodologies, and personalized application of
cellular immunotherapy in GI malignancies, it has become more
apparent that immunosuppression induced by TAMs, MDSCs,
CAFs, and CSCs in the TME and autocrine-paracrine network
supported by stromal cells and cytokines and growth factors,
especially TGFb, are critically responsible for resistance to
anticancer therapy and significant reduction of overall survival.
Therefore, based on personalized investigation of each cancer
patient including seeking mutant target genes and neoantigens,
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evaluating immune cytotoxicity in the TME, and recovering
immune normalization, precise cellular immunotherapy is highly
likely to change cancer treatment into a state of managing chronic
disorders and eventually achieve the coexistence via normalization
of immune surveillance. Due to complex of the TME, precise
methodologies used to detect GI cancers at early stage primarily
depend on the personalized combination of M2PK, miRNAs,
ctDNAs, cancer-produced exosomes, and CTCs with
conventional tumor markers and serologically biochemical
examinations, in which CTC methodology is far more beneficial
in evaluation of treatment efficacy and prognosis. Prior to
treatment, a solid tumor is like an onion, in which anticancer
mechanismof each layer is highly changeable, thereby, one step-by-
step comprehensive treatment plan primarily includes that using
BNCT technique efficiently reduces tumor volume and tears the
tumor shell, and then applying OVs targeting TAMs, MDSCs, and
CSCs with ICIs or dual recognition antibody of TGFb and PD-1/
PDL-1 maximally destroys immunosuppression and amplifies
immunotoxicity of infiltrating T cells in the TME; furthermore,
alternative infusion of DC-CIKs and allogeneic NK cells
significantly eliminates most cancer cells with or without
neoantigen expression. Such a therapy plan remarkably shrinks
and eradicates the whole onion layer by layer. For CTCs or
temporary formation of metastatic microtumors, CAR-T and
CAR-NK therapies predominantly contribute to remove them.
Surely, through recovering immune normalization in cancer
patients and high-risk population, prevention of cancers in the
community is far more critical than diagnosis and treatment.
Whether precisely selecting the personalized cellular
immunotherapy based on the diversity of the TME or rigidly
relying on the unspecific chemotherapy, your choice.
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