

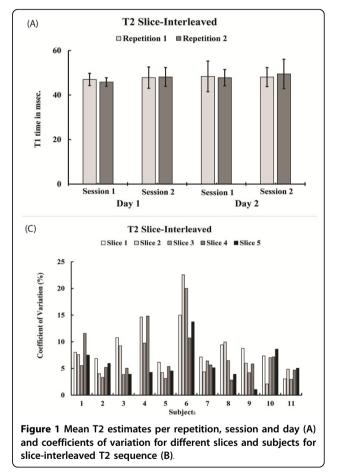
POSTER PRESENTATION

Reproducibility of slice-interleaved myocardial T₂ mapping sequences

Steven Bellm^{1*}, Tamer Basha¹, Long Ngo¹, Sophie Berg¹, Kraig V Kissinger¹, Beth Goddu¹, Warren J Manning^{1,2}, Reza Nezafat¹

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

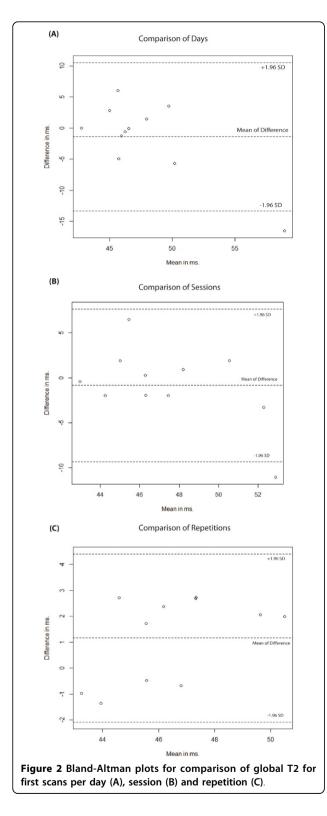
Background


Myocardial T₂ mapping sequence allows quantitative assessment of myocardial edema and inflammation. Commonly, a series of T₂ weighted images with steadystate free-precession (SSFP) are acquired after T₂ magnetization preparation (T₂Prep) with different echo times. Conventionally, a single slice per breath-hold is acquired to image one single slice. Because inflammation/edema is often regional, multiple breath-holds are needed to cover the entire ventricle. The slice-interleaved T₂ mapping sequence was recently proposed to image multiple slices in a single scan by using a sliceselective T₂Prep. While accuracy of this sequence to quantify T₂ was previously studied, the measurement reproducibility is not known. Therefore, we sought to investigate the reproducibility of myocardial T₂ mapping using the slice-interleaved T₂ mapping sequence.

Methods

Eleven healthy subjects (age: 33 ± 16 years, 6 males) were imaged on 2 different days with the same scan protocol using a 1.5T MRI scanner (Philips Achieva). On each day, slice-interleaved T₂ sequence was repeated twice. Subsequently, subjects were removed from the scanner and repositioned, followed by another 2 repetitions of the same scan. The following imaging parameters were used: In-plane resolution = $2.1 \times 2.1 \text{ mm}^2$, slice thickness = 8 mm, slice gap = 4 mm, Field of View = $320 \times 320 \text{ mm}^2$, TR/TE/ α = 2.8 msec. / 1.38 msec. /55°, SENSE-rate = 2.3, and acquisition window = 191 ms, bandwidth = 1879.7 Hz/pixel. Motion correction was performed between different images. T₂ maps were calculated using a 3-parameter fit model. The epicardial and endocardial

¹Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA


Full list of author information is available at the end of the article

contours in the left ventricle were manually drawn in 5 short axis-slices to calculate global and slice-based myocardial T_2 values. Coefficient of variation (CV) analysis for each slice was generated to assess the variability. Bland-Altman plots were used to test for significant differences between repetitions, sessions and days.

© 2016 Bellm et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Results

Figure 1 shows mean T_2 values for different imaging sessions, averaged over all subjects and low CVs *between* subjects (7.2 ± 4.3%). There were low CVs *between days*

 $(6.3 \pm 4.0\%)$ and *between sessions* $(5.0 \pm 4.3\%)$. Fig. 2 shows Bland-Altman plots for T₂ values between first scan of day 1 and day 2 (A), between first scan of session 1 and session 2 (B), and between scan 1 and 2 within each first session (C).

Conclusions

Slice-Interleaved T_2 mapping sequence yields reproducible T_2 measurements with highest CV of 7.2 ± 4.3% for between day scans.

Authors' details

¹Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. ²Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Published: 27 January 2016

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit