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Abstract

The processes of memory reconsolidation and extinction have received increasing attention in recent experimental
research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs
injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral
protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while
extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval,
reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity
between the representations of the original learning and reexposure sessions. This is achieved by assuming that
independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic
changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic
explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or
extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation.
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Introduction

The concept of memory reconsolidation was proposed more

than 40 years ago [1], but has recently regained considerable

attention in the literature [2]. Most of the data in favor of the

reconsolidation hypothesis has stemmed from the finding that

pharmacological agents can induce amnesia when administered

after reexposure to a context in which a memory was originally

learned [3,4]. This finding initially sparked controversy, as studies

of memory extinction had traditionally found a directly opposite

effect: namely, that the same drugs could block extinction,

therefore preserving the original memory [5,6].

A number of studies later tried to reconcile these apparently

paradoxical effects, showing that both phenomena are possible

outcomes of nonreinforced reexposure, and that the occurrence of

one or another depends on the experimental protocol: in conditions

in which extinction is observed in controls, amnestic drugs block

extinction and preserve the original memory; meanwhile, in

conditions causing no extinction, the same drugs cause amnesia,

putatively due to disruption of reconsolidation [7,8]. These results

led to the proposition that the ‘‘dominant trace’’ after reexposure is

the one made labile to amnestic agents [7].

The fact that not all studies could demonstrate reconsolidation

by post-reexposure interventions [9,10] also suggested that there

are ‘‘boundary conditions’’ which are necessary for trace

labilization [11,12]. One of these conditions has been proposed

to be the occurrence of memory updating during reexposure [13],

due to studies in which simple reexposure in the absence of new

information did not lead to reconsolidation, as shown by the lack

of effect of amnestic drugs [14,15]. Similarly, other studies have

shown that very short reexposure trials were also associated with

no effect of these drugs [8,16].

Understanding what determines the occurrence of these

phenomena is important, as modulations of both reconsolidation

and extinction have begun to be tested as therapeutic strategies in

anxiety disorders such as PTSD [17] and phobias [18]. To date,

no mechanism has been postulated to explain how changes in a

single variable such as reexposure duration can lead to these

different outcomes. Since the same drugs can block (or enhance)

both reconsolidation and extinction, however, it is feasible to

hypothesize that the differences between these processes depend

not only on their molecular features, but also – and perhaps

mainly – on their network properties.

Attractor network models have provided a general framework

through which information storage can be modeled in connected

networks, and the existence of attractors in brain structures such as

the hippocampus [19,20], neocortex [21] and olfactory bulb [22]

has received experimental support from electrophysiological

studies. By assuming that memory processing is based on attractor

dynamics, and that updating of a memory trace occurs based on
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mismatch-induced synaptic changes, we propose a model which

can explain how contextual reexposure may lead to reconsolida-

tion or extinction. In this framework, the dominant process

occurring after reexposure depends on the degree of mismatch

between the animal’s current representation of a context and a

previously stored attractor. The model accounts for the different

effects of amnestic agents on reconsolidation and extinction, as

well as for the requirement of dissimilarities between the learning

and reexposure sessions for reconsolidation to occur.

Results

Model Framework
To study the processes described above computationally, we use

an adaptation of the classical attractor network model [23,24].

These highly connected neural networks, which can store memories

as neuronal activation patterns based on Hebbian modifications of

synaptic weights, have been proposed to be simple correlates of

autoassociative networks such as the one believed to exist in region

CA3 of the hippocampus [25,26]. Attractor-like functioning has

been shown to be compatible with both firing-rate and spike-time

dependent plasticity in spiking neuronal networks [27,28]. For the

sake of simplicity, however, and for better correlation with previous

models dealing with the effect of mismatch and memory

representations (e.g. [29]), we use the classical firing rate

implementation, which remains a useful tool for studying emergent

network properties related to learning and memory.

Neuronal activities in the attractor network (meant to represent

a hippocampal auto-associative storage network in our model) are

determined by equation (1):

t
dui

dt
~{uiz

1

2
1z tanh

XN

j~1
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� �� �
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where t is the neural time constant and ui represents the level of

activation of neuron i in a network comprised by N neuronal units,

varying continuously from 0 to 1 for each neuron, and not from

21 to 1 as in classical formulations (see Methods). This can reflect

the firing rate and connectivity of neurons in a more realistic way,

as it solves a series of biologically unfeasible features of the original

formulation, including (a) the requirement of symmetric connec-

tions between neurons, (b) the strengthening of connections

between neurons with low activity and (c) the occasional retrieval

of mirror patterns diametrically opposite to those originally

learned. The term {ui causes the activation level to decay

towards 0, while the term
PN

j~1 wijuj represents the influence of

presynaptic neurons within the attractor network, weighed by the

strength of the synaptic connections wij . Finally, the term Ii

represents synaptic influences from cue inputs. These cue inputs

are thought to represent cortical afferents providing the hippo-

campus with the animal’s current representation of its environ-

ment, based both on external (i.e. sensory input) and internal

information (i.e. retrieved memories) (Figure 1A). The interplay

between sensory information and hippocampal feedback is not

modeled explicitly; instead, the presented cues will be modeled as

relying more on external or internal input depending on

behavioral parameters (see below).

Learning in the model occurs through presentation of an

activation pattern by the cue inputs, which leads to changes in the

synaptic weight matrix W~ wij

� �
, as determined by equation (2):

DW~{cWzHLPzMID ð2Þ
where 0vcv1 is a time-dependent synaptic decay factor [30,31],

and HLP and MID stand for Hebbian Learning Plasticity and

Mismatch-Induced Degradation, respectively, expressed in array form.

Both of these matrices are dependent on the steady state pattern of

neuronal activation that is reached by the network upon cue

presentation (Eq. (1)). The precise meaning of the MID term and

its equation will be explained below; for now, we will mention that

all entries in theMID matrix are related to mismatch between the

cue and a retrieved attractor and, as such, equal zero during initial

learning. The HLP term represents a modified Hebbian learning

factor (see Methods), and it is given by

HLP~S(uT � u){S((1{u)T � u) ð3Þ

where the vector u~(u1,:::,uN ) is the steady state of the network

and S§0 corresponds to a factor representing a sum of the

biochemical requirements for Hebbian synaptic plasticity, such as

receptor activation, intracellular signaling and protein synthesis.

Thus, if two neurons are maximally active (ui = uj = 1), the uiRuj

connection gets reinforced by S; if the presynaptic neuron ui is

active and the postsynaptic neuron uj is silent (uj = 0), then the

connection uiRuj changes by 2S. If ui is silent, nothing happens to

the connection uiRuj. Intermediate values of ui and uj lead to

intermediate effects of these factors. The value of S is what is

modified in simulations studying the influence exerted by

pharmacological agents on initial memory consolidation, reconso-

lidation and extinction. The effect of protein synthesis inhibition

by anisomycin, for instance, is modeled by setting S to 0, thereby

blocking Hebbian plasticity.

Training, reexposure and testing in a simple one-trial learning

task, such as contextual fear conditioning, are modeled by setting

up appropriate cue patterns. Training sessions consist of

presentation of one of three complete patterns (Figure 1B): pattern

1, representing a memory which is unrelated to fear conditioning;

pattern 2, representing fear conditioning training, in which a set of

neurons representing the context is activated along with another

set of neurons representing the presence of danger or an aversive

stimulus (i.e. an electric shock); and pattern 3, representing fear

conditioning extinction, in which the same context neurons are

activated along with a different set of neurons representing

absence of danger. The use of a specific pattern to represent

extinction is motivated by experimental data suggesting that the

extinction process represents the active learning of a new memory

trace [5,6], as well as by studies suggesting that it may be encoded

by neuronal populations which are at least partially distinct from

those involved in the original learning [32,33].

Memory retrieval is tested by presenting the cue pattern that

represents the context (Figure 1B), and observing the attractor to

which the network evolves. We model the animal’s behavioral

response by assuming that retrieval of pattern 2 leads to a far

greater degree of conditioned behavior in response to danger than

when the network reaches another attractor (see Methods and

Figure S1). In analogy to the experimental literature, we refer to

the fear conditioned response as ‘‘freezing’’, and use the

percentage of time spent freezing during the test as a measure of

memory in the task.

Nonreinforced reexposure to the context is modeled similarly to

training, except that the cue pattern in this case is a mix of patterns

2 and 3. This is based on the assumption that, upon reexposure to

the context in which fear learning occurred, the memory network

will initially retrieve the aversive memory, with feedback from the

hippocampus signaling the activation of neurons representing

danger in the animal’s contextual representation. Later within the

trial, however, the absence of shock will lead the animal to start

perceiving the context as non-threatening, with sensory informa-

Attractor Model for Reconsolidation and Extinction
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tion prevailing over the stored attractor and causing activation of

neurons encoding the absence of danger. Thus, we assume that the

animal’s contextual representation changes gradually from pattern

2 to pattern 3 as the reexposure session becomes longer, leading

the learning which occurs based on this session to become

progressively more biased toward the new context rather than

toward internal cues, as has been suggested to occur experimen-

tally [34]. Therefore, the final cue pattern I can vary from a

pattern close to pattern 2 (for short reexposure times, in which the

animal perceives the context as aversive throughout the session) to

one close to pattern 3 (for long reexposure times, in which the

animal perceives the context as non-threatening for most of the

session), with reexposure times in between these two extremes

yielding intermediate activation patterns (Figure 1C). In other

words, we assume that the degree of mismatch between the final

context representation during reexposure and the original

representation formed upon initial learning is proportional to

reexposure duration. We refer to this duration as t, and use a

Figure 1. Model description. (A) General scheme of the model architecture. (B) Patterns of 100 neurons used to represent memory 1 (unrelated
memory), memory 2 (shock memory), memory 3 (non-shock memory) and retrieval cue. Red denotes activation, while blue denotes inhibition. Shock
and non-shock memories share the activation of context neurons (red square), which are used to test retrieval. (C) Transformation of cue pattern
according to reexposure duration. For short durations (low t values), the pattern resembles the shock memory (left), while cues for long durations
(high t values) resemble the non-shock memory (right) and intermediate durations (center) yield mixed patterns. (D) Retrieval-induced synthesis in
fear learning. Activation of shock (circle) and context (square) neurons is driven by excitatory cues (red curved arrows), while inhibition of a non-shock
neuron (triangle) is caused by an inhibitory cue (blue curved arrow). This leads to the establishment of excitatory/inhibitory synaptic weights
between neurons (red/blue arrows), which allow reinstatement of the pattern by presentation of the context (right panel). (E) Mismatch-induced
degradation in nonreinforced reexposure. A cue exciting non-shock and context neurons and inhibiting shock neurons is presented (left panel), but
retrieval of the shock pattern occurs due to previously established synaptic weights, causing mismatch between activation patterns in the cue and
attractor networks. This leads to degradation of synaptic weights responsible for the mismatch, causing reinstatement of the shock pattern in
response to context to be weakened in a subsequent test session (right panel).
doi:10.1371/journal.pone.0023113.g001
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transformation from pattern 2 to pattern 3 which is a function of t

to create the cue patterns representing different durations of

reexposure (see Methods).

As in the initial training session, synaptic weights are updated

after the reexposure session following equation (2), and the

Hebbian learning rule acts by means of the HLP term (Figure 1D).

However, the existence of a previously stored attractor for the

context in the reexposure session can lead the memory network to

retrieve an attractor which is different from the cue pattern

employed, leading to mismatch between the two patterns. We thus

introduce a memory updating system which degrades synaptic

weights between the different sets of neurons responsible for this

mismatch, reducing the strength of connections which cause

disagreement with the new cue pattern (Figure 1E). This effect is

modeled by the term MID in (2), which follows the equation:

MID~D(mT � u) ð4Þ

where the degradation factor D represents biochemical requirements

for mismatch-induced updating of synaptic connections – which

are thought to involve, among other things, protein degradation

[35,36] – and m~Inorm{u is the mismatch vector (where Inorm is a

normalized cue vector varying between 0 and 1). Note that when

the retrieved attractor is equal to the cue input (as during initial

learning) there is no mismatch, since u~Inorm in these cases,

leading all entries in vector m to equal zero.

Although the biochemical elements in the model are an obvious

simplification (i.e. synaptic plasticity is certainly more complex

than a synthesis/degradation balance, and involves many other

mechanisms), there is much evidence to suggest that protein

synthesis is a defining factor in long-term memory consolidation

[37], as well as some evidence [35,36] to suggest that protein

degradation through the ubiquitin-proteasome system is involved

in trace labilization during reconsolidation. Therefore, we focus on

these two parameters in our simulations of pharmacological

experiments. The synaptic weight changes induced by these

processes are modeled as occurring during the post-reexposure

period, based upon the activation state reached during the

reexposure session (which presumably sets in motion the

biochemical cascades and transcriptional information which will

drive the protein changes occurring later). Pharmacological

interventions after reexposure are thus modeled as changing

either S or D during the synaptic weight updating process caused

by the reexposure session (Eq. (2)), and the effects of these

interventions are measured by evaluating subsequent retrieval in

response to the cue representing the context.

Learning and extinction in the model
Figure 2 shows normal learning in the model. We first present

the network with two orthogonal patterns with no overlapping

active neurons, one at a time: pattern 1 (an unrelated memory)

and pattern 2 (the shock memory). Presentation of these patterns

leads to the formation of local energy minima corresponding to the

two memories (Figure 2A). Retrieval of either one can occur upon

random network initialization, while presentation of a partial cue

for either of the two patterns biases retrieval towards the

corresponding attractor (Figure 2B). Although we perform our

simulations using only 3 patterns in a small network of 100

neurons, our network framework is capable of storing larger

numbers of memories, with the absolute capacity depending on

parameters such as network size and on the number of active

neurons in each memory pattern, as has been shown to be the case

for other attractor-based models [38,39]. Estimations of storage

capacities for different network sizes and sparseness values are

shown in Figure S2, demonstrating that the model can store a

reasonable number of memories, provided the number of neurons

is large enough and memory patterns are reasonably sparse.

Similarly to what occurs behaviorally, extinction in the model

(represented as learning of pattern 3) can occur either in a single

retrieval session with a cue similar to pattern 3 (i.e. a high t value,

representing a long retrieval session) (Figure 2C) or in multiple

retrieval sessions with intermediate cues (representing multiple

short sessions in which pattern 2 and 3 are both reflected in the

cue) (Figure 2D). Extinction over multiple sessions occurs due to

gradual weakening of the shock attractor, which is repeatedly

retrieved in the presence of mismatch and thus undergoes

degradation, allowing learning of a new attractor (the extinction

memory) to occur eventually. This is in contrast with single session

extinction, in which prompt learning of the extinction memory

prevents retrieval of the original attractor and weakening of the

shock representation (see Figure S3).

The sequence of patterns used to model learning followed by

nonreinforced reexposure to the context, which will be used

throughout the simulations concerning the effects of anisomycin, is

shown in Figure 2E. Learning of patterns 1 and 2 is followed by a

nonreinforced reexposure session of variable duration (modeled by

changing the value of t), and retrieval is later measured through

presentation of the context cue.

Effects of anisomycin on different reexposure protocols
Figure 3 shows the effects of anisomycin administration (i.e.

setting S to 0) in different learning and reexposure protocols.

During initial learning, blockade of protein synthesis inhibits

Hebbian modifications and prevents formation of the shock

memory (Figure 3A), a finding which is consistent with the effect of

anisomycin in various behavioral paradigms of learning, including

fear conditioning [40].

In Figures 3B to 3E, learning of the shock memory occurs

normally (S = 0.8), and anisomycin administration is modeled in

various nonreinforced reexposure protocols with different contex-

tual cues (see Figures 1C and 2E). In very short reexposure trials,

in which the shock memory is retrieved over the full course of the

retrieval session and dominates the contextual representation (i.e.

low t values), anisomycin will have little effect on subsequent

retrieval of that memory, as the degree of mismatch-induced

degradation will be small even in the absence of protein synthesis

(Figure 3B). This is compatible with the ‘‘simple retrieval’’

condition observed with short reexposure durations in experimen-

tal studies [8,16,41].

In reexposure trials with intermediate durations (i.e. ‘‘reconso-

lidation’’ conditions), inhibition of protein synthesis starts to exert

a significant amnestic effect on subsequent retrieval trials

(Figure 3C), as Hebbian learning is blocked and cannot

compensate for mismatch-induced degradation of the shock

memory. This effect is analogous to the reconsolidation blockade

effect described in various experimental studies [3,4]. Finally, in

long reexposure trials, in which the cue pattern will be distinct

enough from pattern 2 to prevent its retrieval, extinction (i.e.

formation of a new attractor representing pattern 3) will occur

after the reexposure session in control conditions. The burning of a

new attractor in the network will also prevent mismatch

degradation of the shock representation; in this case, therefore,

anisomycin will block formation of the extinction memory, but will

not affect the existing shock attractor, leading to preservation of

the shock memory in treated animals (Figure 3D). Such results

closely match the effects of reexposure time on reconsolidation and

extinction found in experimental studies [8,16,41,42].

Attractor Model for Reconsolidation and Extinction
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In agreement with all experimental studies of reconsolidation,

anisomycin administered in the absence of the original learning

context for the shock memory (i.e. upon reexposure to an

unrelated cue) will have no effect on its subsequent retrieval in

our model, demonstrating the context-specificity of the reconso-

lidation blockade effect [43] (Figure 3E). The effect of reexposure

duration in control conditions and in anisomycin-treated animals

upon subsequent memory retrieval is summarized in Figure 3F.

Figure 2. Normal learning and extinction in the model. (A) Energy landscape showing the relative basins of attraction after learning of
memories 1 and 2 (see Methods). The learned patterns are seen as energy minima in blue, while no basin of attraction is observed for the point
corresponding to memory 3. (B) Attractor retrieval after learning of memories 1 and 2. Upon random activation of the network (no cue), retrieval of
both patterns occurs with similar probabilities, while presentation of a cue involving weak (I = 0.1) activation of 4 neurons pertaining to either pattern
leads to preferential retrieval of this pattern. Bars represent mean 6 S.E.M. of percentages of retrieved attractors over 10 sets of 100 simulations. (C)
Fear conditioning and extinction. Memories 1, 2 and 3 are learned sequentially, with bars showing freezing percentages (mean 6 S.E.M. of 100
simulations) in retrieval tests. After learning of memory 1 (green bar), little freezing occurs. Freezing increases after learning of memory 2 (red bar),
but decreases again (blue bar) after extinction learning (corresponding to a single reexposure session with t = 10). (D) Extinction over multiple
sessions. Learning of memories 1 and 2 occurs as in (C) (green and red bars). Extinction learning occurs through 6 reexposure sessions of intermediate
duration (t = 6), leading to a decrease in freezing behavior in retrieval tests performed after each session (blue bars). Time-related decay (c) occurs
only before the first extinction session to allow comparison with the single-session protocol. (E) General protocol used to model nonreinforced
contextual reexposure. Learning of memories 1 and 2 is followed by a nonreinforced reexposure session, represented by a cue pattern which varies
according to reexposure duration. Memory retrieval is then tested by presentation of the context.
doi:10.1371/journal.pone.0023113.g002

Attractor Model for Reconsolidation and Extinction
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Figure 3. Effects of anisomycin administration in initial learning and reexposure. (A) Effect of anisomycin in initial learning. Memories 1
and 2 are learned sequentially, and bars represent freezing percentages (mean 6 S.E.M. of 100 simulations) before (left set of bars) and after (right set
of bars) learning of memory 2. Administration of vehicle (S = 0.8, dark blue) or anisomycin (S = 0, light blue) occurs in the learning session, as indicated
by the syringe. Freezing increases in the vehicle group, but remains at baseline values in the anisomycin group, as learning of fear conditioning is
blocked. (B) Effect of anisomycin in a short reexposure session. Memories 1 and 2 are learned sequentially in normal conditions (S = 0.8), and the left
set of bars shows retrieval after learning of memory 2. During a short reexposure session (t = 1), vehicle (S = 0.8, dark blue) or anisomycin (S = 0, light
blue) is administered, and a retrieval test after this session (right set of bars) shows that freezing remains high in both groups. (C) Effect of anisomycin
in a reexposure session of intermediate duration. Learning sessions are performed as in (B), but with t = 6. Freezing remains high after the reexposure
session in the vehicle group, but decreases markedly in the anisomycin group, demonstrating reconsolidation blockade. (D) Effect of anisomycin in a
long reexposure session. Learning sessions are performed as in (B) and (C), but with t = 10. Freezing decreases in the vehicle group due to extinction
learning, but remains high in the anisomycin group due to blockade of extinction. (E) Effect of anisomycin in the absence of contextual reexposure.
Learning of memories 1 and 2 occurs as in (B)–(D), but the reexposure session is replaced by the learning of an unrelated pattern. Freezing in both
groups remains high, demonstrating the lack of effect of anisomycin in the absence of contextual reexposure. (F) Summary of the effect of
anisomycin in reexposure sessions of various durations. The x axis represents reexposure duration, while lines and blue contours show freezing
percentages (mean 6 S.E.M, represented in the y axis) of anisomycin and vehicle groups in retrieval tests performed after reexposure.
doi:10.1371/journal.pone.0023113.g003

Attractor Model for Reconsolidation and Extinction
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One can observe that the amnestic effect of anisomycin increases

along with reexposure duration until the minimum duration

required for extinction to occur in controls is reached (around

t = 8). In longer reexposure conditions, on the other hand, freezing

decreases in controls with increasing reexposure duration due to

extinction, while anisomycin preserves the original memory by

preventing extinction learning.

Reconsolidation and extinction after different strengths
of training

As observed experimentally [7,8,44], the protocols necessary to

induce reconsolidation and extinction in our model vary according

to the strength of the original learning. In some reexposure

conditions which normally induce reconsolidation in controls (and

amnesia in anisomycin treated animals) (Figure 4A), anisomycin

will have no effect if the initial learning of the shock memory is

made stronger by increasing S during the training session

(Figure 4B), as the stronger memory will not be as affected by

the degradation caused by reexposure. Such results are in

accordance with the behavioral data indicating that longer

reexposure trials are needed to induce reconsolidation of stronger

or more consolidated memories [8]. Another consequence of

strengthening the shock memory is that longer durations of

reexposure, which normally yield extinction (Figure 4C), will lead

to reconsolidation instead (Figure 4D). In this case, anisomycin will

not lead to memory preservation (as occurred after normal

training conditions) but to reconsolidation blockade and amnesia,

similarly to what has been described experimentally [7]. The effect

of reexposure duration on retrieval of the shock memory for

various strengths of initial learning is summarized in Figures 4E

(control conditions) and 4F (anisomycin treatment during

reexposure).

Effect of memory-enhancing drugs on different
reexposure protocols

Experimental data suggests that administration of memory-

enhancing drugs such as D-cycloserine (a partial agonist of the

coactivator site at the NR1 subunit of the NMDA receptor) during

contextual reexposure can improve either reconsolidation or

extinction, leading to an effect which is the opposite of that of

anisomycin [42]. We have simulated that by increasing the value

of S during the reexposure session, based on the enhancing effect

of such drugs upon synaptic plasticity [45]. As found experimen-

tally with D-cycloserine [42] and protein kinase A (PKA)

activation [46], stimulating Hebbian plasticity during reexposure

in reconsolidation conditions (t = 4) slightly improves subsequent

retrieval of the shock memory (Figure 5A, third set of bars). This

improvement was small in our simulations due to a ceiling effect,

as memory in controls already approached saturation values after

normal reconsolidation. On the other hand, increasing S during

extinction conditions (t = 8) improves extinction and lowers

subsequent fear memory retrieval (Figure 5A, fourth set of bars).

These trends hold true for a range of parameters, as shown in

Figure 5B, which summarizes the effects of increasing or

decreasing S during reexposure sessions of different durations.

Effects of blocking mismatch-induced degradation
Experimental evidence for the effects of blocking protein

degradation on memory (usually achieved through the use of

inhibitors of the ubiquitin-proteasome cascade) is somewhat

controversial, with different effects described on initial learning

[36,47,48,49] and reconsolidation [35,36,47]. It has recently been

suggested, however, that protein degradation is necessary for the

amnestic effect of anisomycin on reconsolidation to occur [35,36].

This indeed occurs by blocking mismatch-induced degradation

(i.e. setting D to 0) in our model, which does not affect memory

reconsolidation by itself, but prevents the effect of anisomycin on

subsequent retrieval (Figure 6A). Blocking mismatch-induced

degradation will also prevent multiple session extinction

(Figure 6B), as shown experimentally in one of these studies

[36]. This result demonstrates that the mismatch-induced

degradation system has a physiologic role in our model, as it

allows nonreinforced trials of intermediate duration to lead to

extinction when performed repeatedly, as opposed to the

reinforcement of the original memory which occurs in the absence

of degradation. When compared to experimental findings, it also

suggests that protein degradation through the ubiquitin-protea-

some system could be one of the mechanisms involved in

mismatch-induced degradation of synaptic changes.

Discussion

The results presented show that our attractor network-based

model accounts for the main experimental results concerning the

effects of anisomycin on reconsolidation and extinction of fear

conditioning in different reexposure protocols. More specifically,

the model is in agreement with experimental data suggesting that

nonreinforced contextual reexposure has three possible outcomes,

namely: (a) simple retrieval (i.e. absence of reconsolidation or

extinction), in which anisomycin has no effect on memory; (b)

reconsolidation, in which anisomycin causes amnesia due to

blockade of this process; and (c) extinction, in which the behavioral

response to the original memory is reduced in controls, but

preserved in animals treated with anisomycin [8,16,41].

There are three main assumptions of the model that allow such

results to be obtained. The first one is the existence of attractor

dynamics in the brain, which produces nonlinear transitions

between the retrieval of an established attractor and the

instatement of a new attractor in the network as a function of

the perceived contextual representation during reexposure. The

second one is the existence of a protein-synthesis independent

system which acts to counteract Hebbian plastic changes in

synapses in response to mismatch between an established memory

and new information. The third assumption is that the degree of

dissimilarity between an animal’s contextual representation upon

nonreinforced reexposure and the representation of the original

learning will increase with longer durations of reexposure.

Concerning this last point, it should be noted that the data

presented can also be interpreted with t assumed to represent the

degree of dissimilarity between the reexposure session and the

original learning trial, rather than reexposure duration. In this

case, our results indicate that reconsolidation in our model can be

induced by an experience which is similar to that of the original

learning, but not by one which is identical to it (in which no

mismatch will occur) or radically different from it (which will lead

to instatement of a new attractor and also prevent mismatch). This

is in agreement with experimental data concerning the need of

both similarities (e.g. a similar environment) and differences (e.g.

absence of shock, differences in objects or platform location)

between the original learning trial and the reexposure trial for

reconsolidation to occur [14,15,50,51]. It is also in line with the

view that either updating of an existing memory trace or formation

of a new one can occur upon reexposure, depending on the degree

of contextual similarity [52].

It is noteworthy that the simple retrieval condition described in

our model provides an interesting framework to interpret studies

which failed to demonstrate reconsolidation, but used reexposure

Attractor Model for Reconsolidation and Extinction
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Figure 4. Reconsolidation and extinction after different strengths of training. (A) Effect of anisomycin in a reexposure session of
intermediate duration after regular training. Learning sessions are performed as in Figures 3B–3E, with S = 0.8. Bars indicate freezing in vehicle (dark
blue) and anisomycin (light blue) groups before (left set) and after (right set) reexposure with t = 4 (mean 6 S.E.M. of 100 simulations). As occurs in
Figure 3C, freezing is decreased by anisomycin administration, indicating reconsolidation blockade. (B) Effect of anisomycin in a reexposure session of
intermediate duration after strong training. Learning and reexposure sessions are performed as in (A) except that memory 2 is strengthened by
setting S to 0.95 during the learning session. The same reexposure protocol used in (A) causes a much lower decrease of freezing in the anisomycin
group, indicating that stronger learning can protect the shock memory from reconsolidation blockade. (C) Effect of anisomycin in a long reexposure
session after regular training. Learning sessions are performed as in (A), with S = 0.8. As in Figure 3D, freezing decreases in the vehicle group after
reexposure with t = 10 due to extinction, but remains high in the anisomycin group due to extinction blockade. (D) Effect of anisomycin in a long
reexposure session after strong training. Learning and reexposure sessions are performed as in (C), except that memory 2 is strengthened by setting S
to 0.95 during the learning session. The same reexposure protocol used in (C) is now insufficient to cause extinction in controls, while a decrease in
freezing indicating reconsolidation blockade is observed in the anisomycin group. (E) Color plot summarizing the effect of reexposure on freezing
behavior in the vehicle group after various strengths of initial learning. Freezing percentages after a reexposure session with S = 0.8 (color scale) are
indicated for various reexposure durations (x axis) with different values of S used in initial learning (y axis). Extinction (blue regions indicating low
freezing) occurs at long reexposure durations, but becomes increasingly hard to induce with stronger initial learning. (F) Color plot summarizing the
effect of reexposure on freezing behavior in the anisomycin group after various strengths of initial learning. Freezing percentages after a reexposure
session with S = 0 (color scale) are indicated for various reexposure durations (x axis) with different values of S used in initial learning (y axis). Increased
strengths of initial training favor maintenance of freezing (red regions) instead of reconsolidation blockade (blue regions) in short reexposure
sessions, but can favor reconsolidation blockade in long reexposure sessions by preventing extinction.
doi:10.1371/journal.pone.0023113.g004
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trials in which duration was short [9] or mismatch was not a

prominent feature [10], as these might have been insufficient to

induce significant updating of an existing attractor. The model

also accounts for the fact that different reexposure protocols are

required to induce reconsolidation and extinction of memories of

different strengths [7,8], which could furthermore explain the

Figure 5. Effects of enhanced plasticity during the reexposure session on reconsolidation and extinction. (A) Effects of memory-
enhancing drugs on reconsolidation and extinction. Learning of memories 1 and 2 occurs normally with S = 0.8, followed by a reexposure session of
variable duration. Bars (mean 6 S.E.M. of 100 simulations) indicate freezing after learning of memories 1 and 2 (first set) and after reexposure sessions
of various durations in animals treated with vehicle (S = 0.8, blue) or a memory-enhancing drug (S = 0.95, yellow) in the reexposure session. Freezing is
slightly increased by memory enhancement in short and intermediate reexposure sessions due to reinforcement of the shock memory. In long
reexposure sessions, meanwhile, memory enhancement improves extinction and decreases freezing. (B) Color plot summarizing the effect of
reexposure with various durations and S values on freezing behavior. Freezing percentages (color scale) after reexposure sessions with different
durations (x axis) and S values (y axis) are indicated. For t values of up to 7, decreasing S below the usual value of 0.8 decreases freezing due to
reconsolidation blockade, while increasing S values cause either no effect or slight enhancement of freezing. For t values of 8 or more, decreasing S
causes preservation of freezing by blocking extinction, while increasing S decreases freezing by enhancing extinction.
doi:10.1371/journal.pone.0023113.g005

Figure 6. Effects of blocking degradation on reconsolidation and extinction. (A) Effects of blocking degradation on reconsolidation and
reconsolidation blockade. Bars (mean 6 S.E.M. of 100 simulations) indicate freezing percentages after initial learning with S = 0.8 (red) and after an
intermediate reexposure session (t = 6) with vehicle (S = 0.8, D = 1.25, dark blue), anisomycin (S = 0, D = 1.25, light blue), degradation blockade (S = 0.8,
D = 0, light gray) or anisomycin+degradation blockade (S = 0, D = 0, dark gray). Freezing decreases after anisomycin administration in reexposure as
previously shown; degradation blockade has no effect on freezing on its own, but reverses the effect of anisomycin when both treatments are
administered together. (B) Effects of blocking degradation on multiple session extinction. After learning of memories 1 and 2, multiple session
extinction is induced in the vehicle group (blue bars) by performing 6 reexposure sessions with t = 6 as in Figure 2D. Blocking degradation by setting
D to 0 (light gray bars) blocks the decrease in freezing, demonstrating that multiple session extinction depends on mismatch-induced degradation.
doi:10.1371/journal.pone.0023113.g006
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different susceptibility of recent and remote memories to these

processes [3,8,53] if one assumes that reinforcement of memory

traces occurs over time [31]. This assumption can also reconcile

our model with results showing that amnesia induced by

reconsolidation blockade can be transient [54,55], as synaptic

reinforcement could lead to regeneration of the trace in the

hippocampus or neocortex [30]. Finally, if one assumes that

mismatch-induced synaptic changes involve protein degradation,

the model can explain the recently described dependence of

reconsolidation blockade on the activity of the ubiquitin-protea-

some system [35,36].

One should keep in mind that the dichotomy between retrieval-

induced, Hebbian plasticity based on protein synthesis and

mismatch-induced synaptic changes based on protein degradation

is an obvious biochemical simplification, and that both the HLP

and MID terms of the model certainly involve more than protein

synthesis and degradation in a biological setting. In fact, it is likely

that any plastic change in synapses involves both synthesis and

degradation of specific proteins, which would account for studies

showing the requirement of the ubiquitin-proteasome cascade for

initial learning [47,48,49] and normal reconsolidation [47] to

occur. It is also possible that both processes share other

mechanisms such as a dependence on NMDA receptors, as

blockade of these receptors has been shown either to induce

[42,56,57] or prevent [58] reconsolidation blockade depending on

the study. Nevertheless, our simplification is probably valid to

account for the experimental results we have tried to model, if one

assumes that protein synthesis blockade will preferentially affect

mechanisms underlying HLP, while degradation blockade will

preferentially have an effect on MID, at least under some

experimental conditions.

While HLP seems readily relatable to Hebbian-like plasticity

mechanisms such as long-term potentiation (LTP), the mecha-

nisms underlying mismatch detection and MID in the model

remain an open question; nevertheless, it seems natural to

speculate possible relationships of this process with long-term

depression (LTD) and synaptic depotentiation phenomena. LTD

has been shown to involve the ubiquitin-mediated degradation of

proteins such as PSD-95 [59] and, although it normally requires

protein synthesis [60], this requirement is not observed for all of its

forms [61]. Protein synthesis is also not required when low-

frequency stimulation is used to reverse preexisting LTP [62]; this

phenomenon, usually known as depotentiation, shares several

features with LTD [63], but is usually restricted to a short time

window (i.e. hours) following induction of LTP. However, since

MID in our model happens in many synapses which also exhibit

Hebbian plasticity during reexposure, it is possible that LTP-

mediated changes happening during reexposure could reinstate

the lability of synaptic weights to protein synthesis-independent

depotentiation.

If MID can indeed be related to LTD-like phenomena, then

changes in firing rates and spike synchronization among coactive

neurons during reexposure could mediate mismatch detection

through spike-time-dependent plasticity (STDP) [64,65], which

has recently been shown to be compatible with firing-rate based

models of LTP and LTD [66] and with autoassociative plasticity in

recurrent networks [28,67]. In this case, if cue currents to shock

and context neurons are unambiguous and synchronized (i.e.

simple retrieval), such neurons should spike at high firing rates and

in close temporal proximity, leading to the development of LTP in

their mutual connections. On the other hand, if cue inputs to

context and shock neurons become more distinct (i.e. reconsolida-

tion), firing rates and synchrony will decrease and LTD should

become more prominent. Thus, if LTP is disrupted by protein

synthesis inhibition, this could conceivably lead to reconsolidation

blockade. However, if reexposure is long enough to allow

extinction, silencing of the shock neurons would prevent the

occurrence of either LTP or LTD, as both depend on neuronal

spiking; thus, the disruptive effect of blocking protein synthesis on

the shock memory would not occur in extinction conditions, as

observed in our simulations.

The central core of our model’s results is accounted for by the

attractor properties of the Hopfield network, which allow it to

perform either pattern completion (leading to retrieval of the shock

memory upon presentation of the context alone) or pattern

separation (leading to the nonlinear transition between retrieval of

an established attractor and the formation of a new one). Attractor

networks have been classically thought to exist in the hippocam-

pus, particularly in CA3 [25,68], and both pattern completion and

separation have been suggested to occur in the hippocampal

formation by theoretical models [25,69] and behavioral findings

[70,71,72]. Moreover, electrophysiological evidence from place

field recordings suggests the occurrence of discontinuous attractor

transitions in the hippocampus [19]. If our attractor network is

thought to represent the CA3 region, an interesting finding is that

our results depend on a limited degree of overlap between the

shock and extinction patterns (7 to 28%, as observed in Figure S4),

which is in the range observed for place field representations of

similar environments in CA3 [73]; if overlap is higher, pattern

completion will prevent extinction learning. This is in line with the

view that some degree of pattern orthogonalization by the dentate

gyrus is necessary to allow CA3 to separate information between

similar contexts [74] – or, in the case of extinction, between

different representations of the same context.

Nevertheless, the existence of attractor dynamics in other

structures as well has also been suggested by experimental

evidence, such as the sustained activity of neocortical regions

after removal of sensory stimuli [21,75], the observation of abrupt

pattern transitions in response to gradually changing stimuli in the

olfactory bulb [22], and the recent electrophysiological demon-

strations of recurrent connectivity in the lateral amygdala [76].

Therefore, although we have developed our model to describe

phenomena thought to occur in the hippocampus, such as

contextual recognition, it is not dependent on specific features of

hippocampal anatomy (i.e. all it requires anatomically is the

existence of recurrent connections which can sustain attractor

properties). Thus, the mechanisms proposed by the model could

conceivably happen in other structures as well, as most of the

evidence showing the effects of reexposure duration on reconso-

lidation and extinction comes from studies using systemic

injections [8,14,16,41,42].

The amygdala in particular has been shown to be involved in

the reconsolidation of auditory fear conditioning [4], and

pharmacological transitions from reconsolidation to extinction

according to reexposure duration have been observed with intra-

amygdala injections [42,77]. Therefore, it is possible that recurrent

connectivity in this structure [76] could support local attractor

functioning, as proposed by other authors [78]. The observation of

reconsolidation and extinction in invertebrates such as crabs [79]

and fruitflies [41] also suggests that network effects mediating these

processes can exist in the absence of a hippocampus-like structure;

in this sense, our demonstration that a simple network with

recurrent connections can mediate attractor properties subserving

reconsolidation and extinction could be significant for interpreting

these data.

Still, although these systemic interactions mediating reconsoli-

dation and extinction are far from clear, and probably involve

complex modulations among structures [44], we propose that the
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existence of attractor dynamics in the hippocampus could play a

central role in determining the dominant process induced by

contextual reexposure, at least in context-dependent and spatial

memory tasks. The bidirectional communication of this structure

with the entorhinal cortex could provide an anatomical substrate

for the feedback loop between online contextual representations

(mediated by the cortex) and the memory network (located in the

hippocampus) proposed in our framework. In particular, the CA1

area has been proposed to be responsible for comparing current

contextual representations (entorhinal cortex inputs) and stored

attractors (CA3 inputs) [80,81], and could be involved in detecting

mismatch between these representations. This hypothesis is further

strengthened by the recent demonstration that reexposure to a

learning context can induce transient weakening of LTP-related

changes in CA3-CA1 synapses [82]. In Figure S5 and in the

Supporting Text S1, we propose a simple model for how mismatch

detection by the CA1 region could mediate reconsolidation and

account for these results. In this model, differences in activity

between the CA3 and CA1 regions lead to mismatch-induced

degradation and reconsolidation phenomena, while transitions

between reconsolidation and extinction are accounted for by the

attractor dynamics in the CA3 region.

Still regarding the CA1 area, an interesting analogy can be

drawn between our computational results, based on fear

conditioning experiments, and electrophysiological data derived

from hippocampal place cell recordings in this region. Different

studies have suggested that ‘‘morphing’’ between two contexts with

different place fields can either lead to continuous updating of

these place fields [83] or to abrupt changes from one place field

representation to another [19], probably depending on the

protocol through which intermediate patterns are presented

[29]. These findings have been suggested to be related to attractor

dynamics [19,29] and show some similarities with the results of our

model, in which fear-related attractors can be either ‘‘updated’’

through reconsolidation or replaced with a new attractor encoding

extinction. The fact that fear conditioning can induce partial

remapping of place fields for the conditioning context [84] suggests

that such an analogy between shock/non-shock representations of

a context and different place field representations may be

warranted.

As expected from a theoretical model, our framework generates

a number of predictions concerning the effects of amnestic agents

on different learning and reexposure protocols. Some simple

experimental predictions on the behavioral, biochemical and

electrophysiological levels which would lend support to the general

framework of the model are the following:

(i) Only an attractor which is actively retrieved by the

network should be affected by reconsolidation blockade, as

mismatch-induced degradation will act upon the connec-

tions that maintain this attractor. Such specificity has

already been shown for memories learned in different

contexts [43] and our data predict that it can also happen

for different representations of the same environment. This

suggests that the extinction memory itself could be subject

to reconsolidation once it becomes dominant over the

original memory, if some form of mismatch (e.g. a

reminder of the shock memory) is introduced in a

reexposure session (for an example of this, see Figure S6).

The first experimental evidence for this prediction has

recently been reported using the inhibitory avoidance task

[85].

(ii) If the effects we describe are indeed happening in the

hippocampus, one would expect them to be observed not

only in contextual fear conditioning, but also in spatial

memory paradigms. Therefore, in spatial tasks in which

more than one behavioral strategy can be learned, such as

reversal learning protocols in the Morris water maze in

which two distinct platform locations are learned in

sequence, our model predicts that the one which is

retrieved by an animal at the time of nonreinforced

reexposure should be the one subject to reconsolidation

blockade. Besides providing support for the model’s

general framework, such a finding would strengthen the

case for involvement of the hippocampus in mediating

reconsolidation/extinction transitions.

(iii) The mismatch degradation system described in our model

should be activated more strongly after reconsolidation-

inducing reexposure protocols than after extinction-

inducing ones. This leads to the prediction that molecular

cascades involved in this system should be activated

differently after short and long reexposure durations, and

that signatures of this differential activation could be

detected through molecular/biochemical analysis of brain

tissue. Interesting candidates to be evaluated for this

purpose include the ubiquitin-proteasome system [36], and

possibly the endocannabinoid system, which has shown to

modulate reconsolidation and extinction in opposite ways

[86].

(iv) If one assumes the analogy between shock/non-shock

representations and place field representations as valid, this

means that extinction-inducing protocols should lead to a

partial remapping of place cells in the conditioning

context, similar to the one observed with initial condition-

ing [84]. This more indirect prediction is based on the

assumption that place field representations can also be

stored as attractors, as suggested by electrophysiological

data [19].

(v) If the abovementioned prediction is proved true, an

additional electrophysiological prediction is that the time

for place cell remapping during fear extinction should

match the time course of the transition between reconso-

lidation and extinction in the behavioral protocol used

(which has usually been shown to be in the range of 5–

30 minutes in studies of contextual fear conditioning tasks

in rodents [8,16]).

Finally, although our model argues for a network view of

reconsolidation and extinction, this does not mean that differences

between the two processes do not exist at the biochemical level.

On the contrary, it is likely that dissimilarities between them also

depend on the activation of different molecular cascades, as

suggested by some studies which have pointed out pharmacolog-

ical and biochemical differences between the two processes

[8,86,87,88]. In this sense, our model provides at least one

explanation why some drugs could have differential effects on

reconsolidation and extinction – namely, that they could be

targeting mechanisms which are not involved in classical Hebbian

plasticity, but rather in trace labilization (i.e. affecting MID but not

HLP in our model). If this is the case, the same drug could produce

differential effects in reconsolidation and extinction trials under

some conditions (see Figure S7), as has been recently shown with

drugs acting on the CB1 receptor [86]. Naturally, it is also possible

that there are other instances of memory modulation that were not

included in our model and could account for these effects.

In summary, by assuming the existence of attractor dynamics

and mismatch-induced updating of plastic changes in neural

networks, we provide a parsimonious explanation for the
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occurrence of reconsolidation and extinction after nonreinforced

reexposure in fear conditioning tasks. Although in a biological

setting the modulation of these processes probably involves many

other factors as well, we believe our model is an interesting proof

of principle of the fact that both reconsolidation and extinction can

be explained by a unified set of plasticity mechanisms (i.e. the HLP

and MID terms in our equations), albeit operating in different

synapses. Therefore, the usual tenet that reconsolidation and

extinction represent distinct processes at the cellular and molecular

level might not be entirely true, as differences between the network

aspects of the two processes could be more important in their

distinction. This view is supported by the striking similarities

between the pharmacology of reconsolidation and that of

extinction, which certainly outnumber their dissimilarities in the

existing literature. Such aspects should be taken into account for

adequately translating knowledge from animal studies of memory

into useful clinical approaches for the treatment of psychiatric

disorders.

Methods

General model framework
In line with previous research, we model the attractor network

responsible for storing the memory patterns as a fully connected

neural network [24,29,30,31]. Neuronal activities in this network

are determined by Eq. (1), which fully defines its dynamics and

constrains neural activation (u) to values between 0 and 1 through

the term K(1+tanh(Swijuj + Ij). This represents a change from the

original Hopfield formulation, in which u is unbounded and can

achieve negative values as well. In that formulation, however, u is

typically regarded as the membrane potential, while

V(u) = (tanh(u)+1)/2 would represent the firing rate or activity

level of a neuron. In this sense, in our model u can be thought of as

a direct measure of the firing rate, without the intermediate step of

calculating the membrane potential.

As mentioned in the results session, the 0/1 implementation can

reflect the firing rate and connectivity of neurons in a more

realistic way, as it does not assume unrealistic features such as

symmetric connectivity and reinforcement between silent neurons;

this kind of change from the original Hopfield formulation has also

been implemented by other authors in different ways [89,90].

Furthermore, the use of a 0/1 activation scheme also prevents the

retrieval of ‘‘mirror attractors’’ (i.e. retrieval of a pattern

diametrically opposite to the one which was originally learned)

and diminishes the retrieval of spurious patterns when sequences

of correlated patterns are learned, as in the case of our simulations,

since it prevents the strengthening of connection between inactive

neurons, which can lead to the development of abnormal

connectivity between neuronal populations when the patterns

used are not completely arbitrary.

Modeling of synaptic weight strengthening and
degradation

The final steady state pattern achieved by Eq. (1) will in turn

induce changes in the synaptic weight matrix W~ wij

� �
as

determined by Eq. (2), with the HLP and MID terms defined in

equations (3) and (4), respectively. In these equations, the notation

B*A denotes connections from A to B. Therefore, note that the first

term in Eq. (3) represents the strengthening of positive synaptic

connections among coactive neurons, while the second term models

a reduction in the strength of synaptic connectivity from active to

inactive neurons. Moreover, as the entries of W can achieve

negative values, the second term in (3) can bring about inhibition

from active to inactive neurons, as in classical formulations (see

Figure 1D). To prevent a memory or a set of memories from

completely dominating and suppressing the other memories, we

require that the magnitude of synaptic entries in the matrix W

saturates at a maximum value s0. We implement this by truncating

the entries that become too large back to s0, and by using a similar

procedure for synaptic values that decrease below 2s0.

After reaching the steady state upon a cue presentation, all units

belong to one of four categories: AA, SA, AS and SS, where A stands

for Active and S stands for Suppressed, with the first letter indicating

the nature of the cue currents and the second letter denoting the

final unit activity upon reaching the steady state. For the

computation of the mismatch vector, we normalize the cue

currents I , making them achieve values between 0 and 1 through a

transformation defined by Inorm~(I{Imin)=(Imax{Imin). There-

fore, it follows from Eq. (4) that when the retrieved pattern is in

complete agreement with the input cue, all entries in the matrix

MID have zero values, since all units belong either to category AA

or to category SS.

When mismatch occurs between the attractor network pattern

and the cue currents, this means that there are units pertaining to

either AS or SA categories – that is, there are neurons that were

suppressed in the retrieved pattern despite activation by the cue

current and, conversely, neurons that were active despite cue

suppression. The synaptic changes induced by mismatch occur

only at the connections linking: (a) active units (AA or SA) to AS,

and (b) active units to SA. As a result, in the first case, mismatch-

induced degradation acts to decrease the inhibition from active

units towards units that are rendered inactive despite the existence

of excitatory cue currents arriving at these neurons (AS units; see

Figure 1E). Thus, upon subsequent presentation of the same cue

pattern, the overall drive (i.e., cue currents plus within network

influences) to the AS units is increased, making these units more

likely to switch to the AA category. Similarly, in the second case,

the strength of connections from active units to SA units decays to

lower values as a result of the mismatch-induced degradation

(Figure 1E). Consequently, SA units become more likely to switch

to the SS category upon subsequent presentation of the same

pattern. Note that the effects mentioned here are a consequence of

the definition of the mismatch vector (m~Inorm{u), upon which

MID is dependent (Eq. (4)). For instance, an AS unit j has its

correspondent m entry value equal to mj = +120 = +1, whereas a

SA unit k has mk = 021 = 21. Therefore, by employing

MID~D(mT � u), the connection strength from an active unit i

(i.e, ui = +1) to an AS unit j will be changed by MIDji = +D, whereas

the connection to a SA unit k will change by MIDki = 2D. Taken

together, these two types of mismatch-induced degradation

facilitate the learning of new memory patterns that introduce

conflicting information.

Modeling of retrieval tests and nonreinforced reexposure
Memory retrieval is tested by presenting the cue pattern which

represents the context, with Ij~0:1 of its strength at training for

context neurons j and 0 for other neurons (Figure 1B), and

observing the attractor to which the network evolves. In order to

have a closer correlation between attractor retrieval in our

computational model and the behavioral measures of memory

used in experimental studies of fear conditioning, we model the

retrieval of a particular memory pattern as leading to a certain

amount of freezing during the test session. Therefore, we assume

that upon retrieval of the shock pattern the animal exhibits a high

amount of freezing (90% of the test duration), while other memory

patterns induce a low, baseline freezing time (10% of the test

duration) (see Figure S1).
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Cue inputs during the reexposure sessions are modeled by:

I~I2z(I3{I2) � f (t) ð5Þ

where vectors I2 and I3 represent the cue inputs for patterns 2 and

3 (Figure 1B), respectively, and t represents the amount of

reexposure time (which varies between minimum and maximum

values tmin = 0 and tmax = 10 in the simulations). The function f (t)
monotonically varies between 0 and 1 and determines the ratio

between pattern 3 and pattern 2 present in the cue input I , which

is thus assumed to depend on the reexposure time t. We use a

sigmoid defined by f (t)~1=(1z exp (tmax=2{t)), but any

monotonically increasing function onto [0,1] provides qualitatively

similar results.

Visualization of attractor basins
In agreement with previous research, the strength of the stored

memories could be estimated from statistics of full pattern retrieval

induced by either partial cue presentation or random initialization

of the neural units. In addition, we also developed a new method

(used in Figure 2 and Figures S3 and S6) to estimate the basins of

attraction for these patterns, defined as follows. Although each

pattern constitutes a point in a large N-dimensional space

(N = 100), the number of patterns P presented to the network is

low (P = 3). This allowed us to use Multiple Discriminant Analysis

(MDA) [91] to project these patterns into a low-dimensional

encoding subspace of dimension P21 (in the examples used in this

work the resulting dimension is D = 2, a plane). This projection can

be obtained by performing and eigenvalue/eigenvector decompo-

sition of the total covariance matrix Sb given by the formula:

SB~
XP

k~1

(Ik{I0)T (Ik{I0), I0~
1

P

XP

k~1

Ik ð6Þ

Here, Ik is the corresponding pattern for each class and I0 is the

global mean vector. This method allows the projection of

continuous N-dimensional neural states into this subspace, using

the matrix comprised by the first P21 eigenvectors. We then

compute their corresponding energy (Lyapunov) function [24] in

the original space, using the formula:

E~{
1

2

X
i,j

wijuiujz
1

2

X
i

ui ð7Þ

Finally, the average energy corresponding to a region in the

low-dimensional space is determined as the local mean energy

over a set of nearest neighbors and displayed as a 3D color map.

While we do not prove that network dynamics converge to a local

minimum for all possible initial states, numerical simulations

indicate that this is indeed true for all cases analyzed with the 0/1

network used in our work. As a result, this method is useful for

providing enhanced intuition about the relative strength of the

stored patterns, allowing direct visualization of their corresponding

basins of attraction.

Model parameters
The model parameter values employed in simulations were

t= 1 and N = 100 and c= 0.15; s0 = 1; S = 0.8; D = 1.25 (unless

where otherwise noted). Ii varied from 25 to +5 for each neuron

according to the learning pattern presented (see Figures 1C and

2E). Although parameters such as S and D cannot be directly

estimated from experimental evidence, results qualitatively similar

to ours can be obtained for a reasonably wide range of parameters,

albeit with reconsolidation and extinction occurring at different

values of t, as observed in Figure S8.

For each protocol studied, we ran 100 simulations with different

initial conditions of activation randomly chosen from a uniform

distribution on [0,0.1], and the reported result constitutes the

mean 6 S.E.M. of these simulations, unless where otherwise

specified.

Supporting Information

Figure S1 Comparison of attractor retrieval and freez-
ing percentages. (A) After learning unrelated memory 1, testing

yields retrieval of this attractor (green bar, mean 6 S.E.M. of 10

sets of 100 simulations) even in the presence of contextual cues,

leading to a low percentage of freezing (grey bar). (B) After

learning of memory 2, retrieval of its attractor (red bar)

predominates over that of memory 1, leading to substantially

higher freezing. (C) After a long duration of reexposure leading to

extinction (t = 8), retrieval of attractor 3 becomes dominant (blue

bar), causing decrease of freezing. (D) Correlation between

retrieval of attractor 2 (x axis) and freezing percentages (y axis,

mean 6 S.E.M.) demonstrates a linear relation.

(PDF)

Figure S2 Effect of network size and pattern sparseness
on memory storage capacity. (A) Storage capacity of

networks with different number of neurons. Different numbers

of arbitrary patterns (x axis) with random overlap are stored in the

synaptic weight matrices W of networks of different sizes, varying

from 100 to 700 neurons (color lines), using the same learning rule

as in our model (Eq. (3)). Parameters are similar to those used in

other simulations, including the size of the memory patterns (14

neurons) and corresponding cues (4 neurons). Retrieval is

evaluated by providing the network with a cue pertaining to one

of the learned memory patterns and testing the correlation

between the activity of neurons in the retrieved pattern and in the

original memory pattern, as done by other authors [92,93]. For

each point, 200 retrieval trials using randomly chosen cues and

random initial conditions were performed, and the percentage of

trials in which successful retrieval occurred (defined as an r

value . 0.7 for the correlation) is shown. Memory capacity

increases steadily with network size, showing that our network

model is able to store a large amount of patterns if sufficient

neurons are added to the network. (B) Same as in (A), except that

the patterns and cues used are half the size as in (A) (i.e. 7

neurons/pattern, 2 neurons/cue). One can observe that memory

capacity greatly increases using sparser patterns, as reported to be

the case in previous attractor models.

(PDF)

Figure S3 Comparison of relative memory strengths
after single session and multiple session extinction. (A)

Basins of attraction after single session extinction. Learning of

memories 1, 2 and 3 occurs as in Figure 2C, with extinction

learned in a single reexposure session with t = 10. Energy

landscape shows relative basins of attraction after learning of the

3 memories. The energy minimum for memory 2 persists, but is

higher than that of memory 3, leading to behavioral dominance of

the extinction memory. (B) Basins of attraction after multiple

session extinction. Learning of memories 1 and 2 occurs as in (A),

while extinction occurs through 6 reexposure sessions with t = 6 as

in Figure 2D. The energy minimum for memory 2 is significantly

reduced by multiple sessions of extinction when compared to a
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single session, due to the effects of mismatch-induced degradation.

This could be related to the finding that spaced extinction trials

can lead to less spontaneous recovery and renewal of the original

memory than massed trials [94].

(PDF)

Figure S4 Effect of pattern overlap on the development
of reconsolidation and extinction. (A) Freezing rates in a

retrieval test performed after a reexposure session of variable

duration in control conditions (S = 0.8) with different degrees of

overlap between memory 2 and memory 3 used in the simulations.

The percentage of coactive neurons in both patterns is indicated in

the y axis, while the duration of reexposure (t) is indicated in the x

axis, with the color scale representing freezing at a subsequent

retrieval test. One can observe that above a certain degree of

overlap (around 30% of active neurons in common), extinction

does not occur with the parameters used in the simulations,

suggesting that some degree of pattern separation is necessary for

extinction learning. (B) Freezing rates after reexposure of various

durations under anisomycin (S = 0). Blockade of HLP shows that

reconsolidation blockade occurs in a wider range of overlap (from

7 to 80% of active neurons, approximately) than extinction

blockade, which is only observed with up to 30% overlap, as in (A).

(PDF)

Figure S5 CA3-CA1 model for mismatch detection,
reconsolidation and extinction. (A) Model scheme. Output

from the entorhinal cortex (EC) reaches both the CA3 and CA1

regions, providing information on the current context. CA3

neurons possess autoassociative connections, and send information

on their retrieved attractor to CA1. (B) Initial learning,

reconsolidation and extinction of aversive memories in the CA3-

CA1 model. Left column shows a more detailed view of the model

scheme, with sample neurons representing the context (square),

shock (circle) and absence of shock (triangle). Middle column

shows activation of the same neurons during initial learning,

reconsolidation and extinction, while the right column shows the

synaptic weight changes caused by this activation. (I) Initial

learning. Context and shock neurons are activated in all three

networks (middle column), leading to strengthening of synapses

(solid arrows) between coactive neurons (both in CA3 collaterals

and in CA3-CA1 synapses) and inhibition of non-shock neurons in

CA3 (circle-capped lines), as shown in the right column. (II)

Reconsolidation. Ambiguous information from the EC leads to

partial activation of shock and non-shock neurons in CA1, while

CA3 still retrieves the original pattern (middle column). The

mismatch generated between CA3 and CA1 shock neurons leads

to mismatch-induced degradation of their connections (discontin-

uous arrow), which is compensated by Hebbian learning both

within CA3 and in CA3-CA1 connections. (III) Extinction. Cue

patterns indicating absence of shock lead to instatement of this

pattern both in CA1 and CA3 (middle column). Synaptic weight

changes show formation of a new attractor representing extinction

in CA3 and strengthening of connections between non-shock

neurons in CA3 and CA1, while connections between shock

neurons remain unaltered. (C) Effect of anisomycin in reexposure

sessions of various durations in the CA3-CA1 model. The x axis

represents reexposure duration, while the lines show freezing

percentages (y axis) of vehicle (red) and anisomycin (blue) groups in

retrieval tests performed after reexposure. The dependence of

retrieval on reexposure duration in both groups is qualitatively

similar to what is observed with the general model in Figure 3F.

(PDF)

Figure S6 Selectivity of reconsolidation blockade to the
retrieved attractor. (A) Reconsolidation of fear conditioning.

Bars show freezing percentages after learning memories 1 and 2

(left) and after a subsequent reexposure session with t = 5 (right) in

animals treated with vehicle and anisomycin in reexposure. As in

Figure 3C, freezing remains high after reexposure in the vehicle

group, but decreases due to reconsolidation blockade in the

anisomycin group. (B) Reconsolidation of fear extinction. Left bars

show freezing after learning of memories 1 and 2 followed by fear

extinction with a long reexposure session (t = 10), which leads to

learning of memory 3. As occurs in Figures 2C and 3C, memory 3

is dominant after this protocol, leading to low freezing.

Subsequently, a reexposure session with the same duration as in

(A) is performed; vehicle or anisomycin is administered in this

session, and right bars show freezing in a subsequent retrieval test.

Freezing remains low in the vehicle group, but increases in the

anisomycin treated group, indicating that the extinction memory,

which was preferentially retrieved during reexposure, becomes

susceptible to reconsolidation blockade. (C) Energy landscapes

showing relative basins of attraction for memories 1, 2 and 3 after

learning of memories 1 and 2 (left) and after a subsequent

reexposure session (t = 5) with vehicle (middle) or anisomycin

(right). Right panel shows a decrease in the basin of attraction of

memory 2 (shock memory). (D) Energy landscapes showing

relative basins of attraction for memories 1, 2 and 3 after learning

of memories 1, 2 and 3 (left) and after a subsequent reexposure

session (t = 5) with vehicle (middle) or anisomycin (right). Right

panel shows a decrease in the basin of attraction of memory 3

(extinction memory).

(PDF)

Figure S7 Differential effects of enhanced mismatch-
induced degradation on reconsolidation and multiple
session extinction. (A) After learning of memory 2, increasing

D from 1.25 (blue bar) to 1.5 (orange bar) during a reexposure

session (t = 7.5) leads to a decrease in freezing as compared to the

vehicle group, as the reinforcement of memory 2 is impaired. (B)

In a multiple session extinction protocol (6 sessions with t = 6), the

same increase in D used in (A) leads to an acceleration of memory

extinction.

(PDF)

Figure S8 Effect of S and D variations on the develop-
ment of reconsolidation and extinction. (A) Freezing rates

in a retrieval test performed after a reexposure session of variable

duration (x axis) with different values of S (y axis) used throughout

the simulations (i.e. learning of memories 1 and 2 and reexposure

sessions), while D is fixed at 1.25. One can observe that, with the

other parameters kept fixed, extinction happens for S values

varying from 0.6 to 0.9, although at different reexposure

durations. (B) Freezing rates retrieved as in (A), but with

anisomycin administration (S = 0) simulated during reexposure,

with different values of S used during learning of memories 1 and

2. Reconsolidation occurs for values of S varying from 0.7 to 1,

albeit at variable reexposure durations. (C) Freezing rates retrieved

as in (A) and (B), but with different values of D throughout the

simulations, while S is fixed at 0.8. D values have little effect on the

occurrence of extinction, as there is no mismatch between current

context and retrieved attractors in extinction conditions; however,

high values of D (i.e. above 1.6) can lead to an amnestic effect

under reconsolidation conditions, even in the absence of

anisomycin. (D) Freezing rates retrieved as in (C), but with

anisomycin administration during reexposure. Reconsolidation

blockade is observed at all values of D included in the simulations,

although higher values lead to amnesia at progressively shorter

reexposure durations.

(PDF)
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