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Metaheuristic algorithm integrated 
neural networks for well‑test 
analyses of petroleum reservoirs
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In recent years, well-test research has witnessed several works to automate reservoir model 
identification and characterization using computer-assisted models. Since the reservoir model 
identification is a classification problem, while its characterization is a regression-based task, 
their simultaneous accomplishment is always challenging. This work combines genetic algorithm 
optimization and artificial neural networks to identify and characterize homogeneous reservoir 
systems from well-testing data automatically. A total of eight prediction models, including two 
classifiers and six regressors, have been trained. The simulated well-test pressure derivatives with 
varying noise percentages comprise the training samples. The feature selection and hyperparameter 
tuning have been performed carefully using the genetic algorithm to enhance the prediction accuracy. 
The models were validated using nine simulated and one real-field test case. The optimized classifier 
identifies all the reservoir models with a classification accuracy higher than 79%. In addition, 
the statistical analysis approves that the optimized regressors accurately perform the reservoir 
characterization with mean relative errors of lower than 4.5%. The minimized manual interference 
reduces human bias, and the models have significant noise tolerance for practical applications.

Underground fossil resources, including (gas1, gas condensate2, oil3, and coal4) are essential to satisfy energy 
demand in domestic, transportation, and industrial applications. These energy resources must be managed 
efficiently so that the maximum fluid can be extracted5. Accurate information about these highly heterogeneous 
systems is a prerequisite for reservoir management. The core analysis6, well-logging7, seismic8, and well-testing9 
are the main available techniques for gathering information about hydrocarbon reservoirs for efficient manage-
ment. Since the well testing is a dynamic operation and helps estimate the average properties of hydrocarbon 
reservoir over the drainage area, it attracted high popularity in this regard. During the well-testing operation, the 
pressure response corresponding to a temporary change in flow rate is recorded over time. Well-test analysis is 
an inverse solution approach to investigate reservoir characteristics10. It can be achieved by developing analytical 
or intelligent models of the reservoir which produce similar output responses as the existing reservoir systems11.

The well-test data interpretation methods have always been of keen interest to researchers worldwide. The 
type-curve analysis of the pressure derivatives has been amongst the most popular interpretation techniques12,13. 
The predictive modeling techniques have evolved to be prominent solutions to the well-test analysis problems14–16.

The artificial neural network (ANN) model has been demonstrated for the first time for identifying reservoir 
models using pressure derivative data17. Kharrat and Razavi trained ANN using normalized pressure derivative 
data to recognize homogeneous and dual-porosity reservoir models18. Almaraghi and El-Banbi developed an 
MLP with a back-propagation algorithm for reservoir model identification19. Ahmadi et al. combined time-
series shapelets and machine learning methods (probabilistic neural network, random forest, and support vector 
machines) to detect reservoir models from pressure transient signals20. The confusion matrix has been applied 
in this study to monitor classification accuracy of the suggested strategy. All these three research studies only 
focused on reservoirs’ model identification and made no effort to estimate the associated parameters.

On the other hand, some researchers have utilized the traditional machine learning method only to charac-
terize the reservoirs’ parameters. The Horner plot data of build-up tests from conventional and dual-porosity 
reservoirs was input into the ANN model to predict the initial reservoir pressure, skin, and permeability21. 
Alajmi and Ertekin attempted to estimate naturally fractured reservoir parameters using ANN with coefficients 
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of interpolating polynomials of pressure data and measured the model performance using mean relative error22. 
Adibifard et al. utilized the synthetic pressure transient signals of naturally fractured reservoirs to estimate per-
meability, wellbore storage coefficient, skin factor, interporosity flow coefficient, and storativity ratio23. Indeed, 
these studies are only applicable to estimate some key reservoir parameters and have no business with the model 
identification.

The derivative curve characteristics, including the radial flow regime and the hump, were used to distinguish 
between the infinite homogeneous and dual-porosity reservoirs, alongside estimating their parameters using 
three-layered ANN24. Since this method uses the characteristic shapes of derivative curves, it needs user knowl-
edge/help to distinguish reservoir models.

The recent advances in computational models and deep neural networks have provided promising results 
in different research fields25–30, including well-testing analysis31–35. Convolutional neural networks have many 
parameters due to vectorizing image input, which results in increasing the computational cost and training 
time. Standard recurrent neural networks are unsuitable for establishing long-term dependencies across the 
sequence datasets. The simple architecture of ANN makes it an attractive tool for well-test analysis. Further, 
gradient descent36–38 and evolutionary39–42 optimization algorithms aid in improving the efficiency of the model.

However, the well-testing research has not witnessed the implementation of evolutionary optimization as 
genetic algorithm (GA) integrated deep structured prediction models for automatic analysis of the noisy pressure 
transient test data of petroleum reservoirs so far in the published research outcomes. In addition, the simultane-
ous performing reservoir model identification and characterization are so problematic that little research has 
covered that. This paper investigates GA-optimized ANN (GA-ANN) prediction models to classify homogene-
ous petroleum reservoirs and simultaneously estimate the associated reservoir parameters. The homogeneous 
reservoir models with infinite acting (HO-IA), no flow (HO-NF), and pressure supported (HO-PS) boundary 
conditions have been considered, and 50 × 103 pressure derivative (∆p′) data for each state was obtained. Cumula-
tively 150 × 103 labeled pressure derivative signals and their corresponding reservoir parameter, Ln (CDe2S), have 
been used. The classifiers and regressors comprising the fully connected layers have been developed to perform 
the predictions. Further, the binary coded GA has been implemented to tune the hyperparameters and select 
the best features from the input dataset. Later, the GA-ANN models were implemented to perform predictions 
using the test case data. Comparative performance validation of ANN and GA-ANN models using ten well-test 
data shows the superiority of GA-ANN models in reservoir classification and characterization.

Methods
In this section, the data collection and model framework of the models have been discussed.

Data collection.  The pressure signals for HO-IA, HO-NF, and HO-PS reservoirs have been simulated using 
the mathematical models available in the literature34,43. Stehfest’s algorithm has been considered for numerical 
inversion of the Laplace transformation44. The Gaussian noise of 0–2% was added during the data simulation. 
Table 1 represents the details of the noise present in the data samples used for regression model training, and 

Table 1.   Details of noise and number of samples used for classifiers and regressors.

Reservoir type

Noise (× 103)

Labels for classifiers
Total number of samples for 
regressors (× 103)

Total number of samples for 
classifiers (× 103)0% 1% 2%

HO-IA 20 20 10 0 50

150HO-NF 20 20 10 1 50

HO-PS 20 20 10 2 50

Table 2.   Range of characteristics considered for data simulation.

Range CD S rD

Minimum 6.60 × 102 − 1 2271

Maximum 2.70 × 105 40 3211

Table 3.   Details of noise and number of samples for GA optimization of the models.

Reservoir type

Noise (× 103)

Labels for classifiers
Total number of samples for 
regressors (× 103)

Total number of samples for 
classifiers (× 103)0% 1% 2%

HO-IA 5 5 5 0 15

45HO-NF 5 5 5 1 15

HO-PS 5 5 5 2 15
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the ranges of characteristic parameters are available in Table 2. The time (t), pressure change (∆p), and their 
corresponding parameter values Ln (CDe2S) were simulated for each reservoir outer boundary condition using 
the python programming coded algorithm. Each test has 100 pressure data points related to the 100 timesteps.

The ∆p′ of the simulated data samples have been obtained using:

The gathered ∆p’ data have been used for training the classifier and regressors. The classifiers were trained 
with 150 × 103 labeled samples, as indicated in Table 1. Each regressor has been trained with 50 × 103 data having 

(1)�p′ =
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Figure 1.   Illustration of ∆p’ curves for the (a) HO-IA, (b) HO-NF, and (c) HO-PS reservoirs.
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corresponding Ln (CDe2S) values. The synthetic data set has been partitioned into 80% train, 10% validation, 
and 10% test set for classifiers and regressors. The data used during GA optimization of the ANN models are 
presented in Table 3. The data was split into 90% training and 10% validation during GA optimization.

The optimized GA-ANN models have been trained with the data described in Table 1. The 10 test cases, 
including nine simulated and one real-field data45, have been considered to evaluate each ANN and GA-ANN 
model. The logarithmic plots of these cases are reproduced in Fig. 1a–c. W#01, W#04, and W#07 are smooth 
data, W#02, W#05, and W#08 have 1% noise, and W#03, W#06, and W#09 have 2% noise. The Gaussian noise 
percentage in real-field data from W#10 is unknown.

Model framework.  Artificial neural network.  ANN are biologically inspired computer programs that 
learn by discovering relationships and patterns in data. The ANN architecture comprises individual units and 
neurons connected to weights forming sensory structures arranged in layers. The intermediate unit connections 
are improved during training until the prediction error is minimized. As the complexity of the model grows, the 
layer depth also increases, which is why it is known as the multi-layer perceptron. The purest form of ANN has 
one input, one hidden, and one output layer. The input layer takes the signals and transmits them to the hidden 
layers. The hidden layer processes the input as per the activation function, and finally, the output layer provides 
the prediction. Figure 2 illustrates the perceptron. The computation performed at each neuron in the layers of 
ANN is:

(2)yt = τ

(∑N

i=1
ωtiXi + θt

)

Figure 2.   Illustration of the perceptron.

Figure 3.   Schematic representation of (a) ReLU and (b) σ activations.
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Figure 4.   Typical procedure performed by GA.

Table 4.   Details of trained classifier and regressor models.

GA optimization Reservoir type Regressor Classifier

No

HO-IA R01

C01HO-NF R02

HO-CP R03

Yes

HO-IA R04

C02HO-NF R05

HO-CP R06
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Figure 5.   Training (a) accuracy and (b) SCC of ANN classifier.

where ωti is the ith synapse of the tth neuron, θt is the bias of the tth neuron, Xi is the ith input of the tth neuron, 
N is the number of inputs, τ is the activation function, and yt is the output.

Four ANN structures (a classifier and three regressors) were first trained for 100 iterations. The six-layered 
classifier model has rectified linear unit (ReLU) activated hidden layers, and the output layer has sigmoid acti-
vation (σ). The three-layered regressor with ReLU activation function in a hidden layer and a linear activation 
function in an output layer has been trained to estimate Ln (CDe2S) associated with HO-IA, HO-NF, and HO-PS 
reservoirs. The activation functions decide to activate or deactivate neurons to get the desired output. The ReLu 
and σ activation functions convert their inputs (Z) into [0, Z] and [0, 1], as displayed schematically in Fig. 3a 
and b.

Genetic algorithm.  GA is a meta-heuristic structured evolutionary optimization algorithm46 that combines 
survival of the fittest and a simplified version of the genetic inheritance process to optimize the network weights. 
Figure 4 represents the typical procedure performed by GA.

GA performs random sampling to generate the individual chromosomes of the initial population. The fit-
ness function evaluates the estimation performance of the individuals using machine learning algorithms. The 
population evolves using genetic operators:
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•	 Selection The best chromosomes are extracted from the population to generate the mating pool. Available 
methods to select the chromosomes include roulette wheel selection, rank-based fitness assignment, tourna-
ment selection, and elitism. This model uses tournament selection to choose the parent chromosomes for 
the next operator.

Figure 6.   MRE of ANN regressor models for (a) HO-IA, (b) HO-NF, and (c) HO-PS.
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•	 Crossover The chromosomes of the parent individuals are swapped to generate offspring using the one-point 
crossover. The crossover operator ensures the inheritance of better genetic traits the future generations.

•	 Mutation These operators randomly alter the genes of the selected individual with a probability equaling the 
mutation rate. It preserves genetic diversity and encourages GA propagation toward global extremes.

The binary-coded GA optimization has been implemented for feature selection and hyperparameter tuning. 
The number of neurons in the first three hidden layers of the classifier and regressors has been tuned using the 
GA algorithm. Genetic operators, including tournament selection, one-point crossover, and mutation, have 
been used. The crossover and mutation probabilities of 0.6 and 0.2 have been considered. The iterations for 500 
generations have been performed for each ANN classifier and regressor model. The GA was allowed to converge 
to produce the best individuals representing the optimal solution with the best fitness value. The selected features 
and hyperparameters from GA optimization have been used to train the optimized GA-ANN models. A total of 
two classifiers and six regressors have been developed, as indicated in Table 4.

Figure 7.   F1-Score for classifier ANN model during (a) feature selection and (b) hyperparameter tuning.
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Results and discussion
This section covers ANN and GA-ANN model training results and the outcomes of feature selection and hyper-
parameter tuning using GA. The training models’ validation results have been discussed using the test cases, and 
comparative performance analyses were done.

Model training performance.  ANN models without optimization.  The training accuracy of the C01 mod-
el over the train and validation set has been represented in Fig. 5a and b. The training, validation, and testing 
sets have achieved classification accuracies of 79.23%, 79.47%, and 79.19%. The mean relative errors (MRE) have 
been observed while training the regressor models [Eq. (3)]. Figure 6a–c indicate the train and validation MREs 
for HO-IA, HO-NF, and HO-PS reservoirs. In Fig. 5, the SCC reduced gradually, accuracy increased for forty 
iterations, and later became constant with slight differences between the training and validation scores. Figure 6 
represents that the MRE attained low values for both training and validation. The statistics suggest that the mod-
els have been trained well without any underfitting or overfitting data.

Figure 8.   MRE for regressor ANN model during (a) feature selection and (b) hyperparameter tuning for 
HO-IA reservoir.
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where N is the total number of Data Samples; yi and ŷi are the ith target and predicted values of the model, 
respectively.

Genetic algorithm optimization of ANN models.  The GA optimization results for feature selection and hyperpa-
rameter tuning over 500 generations are represented in Figs. 7a,b, 8a,b, 9a,b, and 10a,b. Figures 8, 9 and 10 also 
show the count of selected features and the optimal neuron counts for the ANNs of each model, along with the 
best metric scores.

(3)MRE =
100

N

N∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Figure 9.   MRE for regressor ANN model during (a) feature selection and (b) hyperparameter tuning for 
HO-NF reservoir.
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Optimized GA‑ANN models.  The GA-ANN classifiers and regressors have been trained with selected features 
and optimized hyperparameters. Figures 11a,b and 12a–c represent the training performance of the GA-ANN 
classifiers and regressors over 100 iterations. Tables 5 and 6 introduce the metric scores obtained by the trained 
classifiers and regressors. The C02 achieved relatively higher accuracy than C01. The MREs for all the GA-ANN 
models have decreased compared to the ANN models showcasing improved regression performance.

Performance validation of optimized models.  The test cases discussed in Section “Data collection” 
have been used to assess the performance of the trained models. The trained GA-ANN models predicted the 
reservoir models correctly for all the test cases indicating excellent classification performance. The test case data 
were input into the regressors for estimating their associated characteristic parameter, Ln (CDe2S). The predic-
tions using ANN and GA-ANN models have been represented in Table 7. We observe that forecasts of seven out 
of ten test cases resulted in reduced error using the GA-ANN.

Figure 10.   MRE for regressor ANN model during (a) feature selection and (b) hyperparameter tuning for 
HO-CP reservoir.
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Conclusions
This paper investigated the predictors’ feature selection and hyperparameter tuning using GA optimization for 
pressure transient analysis of homogeneous reservoirs. The training results indicate that the optimized GA-ANN 
models yielded lower errors than the manually tuned ANN models. The optimized classification model achieved 
over 79% training accuracy in classifying the HO-IA, HO-NF, and HO-PS reservoirs. The GA optimization 
improved the regression models’ performance, and the optimized regressors predicted the characteristic param-
eter, Ln(CDe2S), with minimized errors. The performance of the predictive models has been validated using ten 
test cases. The optimized classification model accurately identified the reservoir models for all the test cases, 
and the regression models estimated the associated reservoir characteristics with minimized prediction errors.

Additionally, the models have adequate noise tolerance and provide computational efficiency. The proposed 
predictor is a robust tool for identifying and characterizing the homogeneous reservoirs from noisy real-field 
data with minimized human intervention. However, there is scope for improving the accuracy of the classifier 
model. We intend to investigate the performance of the deep structured models for the well-test analysis of 
heterogeneous reservoirs such as dual-porosity and composite reservoirs. Additionally, the performance com-
parison with other evolutionary algorithms, such as particle swarm optimization and Firefly algorithm, shall be 
conducted in future work.

Figure 11.   Training (a) accuracy and (b) SCC of the C02 model.
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Figure 12.   Training MRE of (a) R04, (b) R05, and (c) R06 models.

Table 5.   Accuracy and SCC values attained for the C01 and C02 model.

Model

Accuracy (%) SCC

Training Validation Testing Training Validation Testing

C01 79.23 79.47 79.19 0.4598 0.4546 0.4571

C02 79.48 79.66 79.38 0.4570 0.4545 0.4562
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Data availability
The datasets used or analyzed during the current study are available from the corresponding author upon rea-
sonable request.
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