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Brain network analysis has been proved to be one of the most effective methods in brain

disease diagnosis. In order to construct discriminative brain networks and improve the

performance of disease diagnosis, many machine learning–based methods have been

proposed. Recent studies show that combining functional and structural brain networks

is more effective than using only single modality data. However, in the most of existing

multi-modal brain network analysis methods, it is a common strategy that constructs

functional and structural network separately, which is difficult to embed complementary

information of different modalities of brain network. To address this issue, we propose

a unified brain network construction algorithm, which jointly learns both functional and

structural data and effectively face the connectivity and node features for improving

classification. First, we conduct space alignment and brain network construction under

a unified framework, and then build the correlation model among all brain regions with

functional data by low-rank representation so that the global brain region correlation

can be captured. Simultaneously, the local manifold with structural data is embedded

into this model to preserve the local structural information. Second, the PageRank

algorithm is adaptively used to evaluate the significance of different brain regions, in

which the interaction of multiple brain regions is considered. Finally, a multi-kernel

strategy is utilized to solve the data heterogeneity problem and merge the connectivity

as well as node information for classification. We apply the proposed method to the

diagnosis of epilepsy, and the experimental results show that our method can achieve a

promising performance.

Keywords: brain network analysis, node importance, multi-modal brain network, PageRank algorithm, disease

diagnosis

1. INTRODUCTION

Brain network analysis has been widely applied to analysis and diagnosis of brain diseases, such
as epilepsy and Alzheimer’s disease (Osipowicz et al., 2016). It mainly benefits from more and
more neuroimaging technologies that can give us insight into the neuroanatomical correlates
of cognition. functional MRI (fMRI) and diffusion tensor imaging (DTI) are of remarkable
importance and widely used to construct brain networks (Osipowicz et al., 2016). Inspired by graph
theory, brain network abstracted as a set of nodes and edges, is developed to describe the correlation
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or interaction among the different regions of the brain. In brain
network, nodes represent region-of-interest (ROIs), and the
edges between nodes represent the correlation between different
brain regions (Fornito et al., 2016). Functional MRI (fMRI) can
reflect temporal correlations between BOLD signals in brain
regions, while diffusion tensor imaging (DTI) can be used to
reveal the physical connectivity between the functionally relevant
gray matter regions (Osipowicz et al., 2016).

According to Fornito et al. (2016), even a slight disruption
in the small-world character of the functional brain networks
would suggest a disruption in the integrity of the cognitive
state systems involved in causing the disease. In practical
application, functional connectivity (FC) can be constructed
from fMRI and structural connectivity (SC) can be constructed
from DTI. So that the FC can be used to detect the consistency
of brain activities while the SC can measure neural fiber
physical connections between different brain regions (Huang
et al., 2019). It is widely acknowledged that both FC and
SC are able to contribute significant information for brain
disease diagnosis. Many recent researches have proved that
combining the two modalities to construct brain network is
an promising technique. Specifically, compared to the single-
modal brain network, the multi-modal brain network can
achieve better analysis and diagnosis results (Song et al.,
2020).

But majority of existing network-based analysis, which fuse
FC and SC, can be divided into the following two categories
(Huang et al., 2019, 2020). In the first category, some approaches
based on data fusion strategy have been adopted, such as
principal component analysis (PCA), multi-view embedding
as well as multi-kernel learning (MKL) (Huang et al., 2019).
More specifically, these approaches are applied to combining
structural and functional network properties, which can reveal
the balance of local and global efficiency between structural
and functional networks (Rudie et al., 2013). Multi-kernel
technology has been proved as an effective way in fusing multi-
modal data (Zhang et al., 2011), and many experiments were
done to demonstrate that the more discriminatory results can
achieve than using only single modality (Zhang et al., 2011;
Dyrba et al., 2015). In the second category, the commonly
used strategy is using one of the modality to assist another
modality (Huang et al., 2020). However, this strategy does not
make full use of the complementary information between the
two modalities. What is more, most of the existing research
ignore the global brain region correlation and the information
of nodes. Although some papers propose to consider node
information, only some simple topology attribute measurement
methods, such as clustering coefficients or average degree are
utilized. More potential and significant node information is
ignored, which can be extracted by higher-order methods.
The difference between such two mechanisms is depicted in
Figures 1A,B.

On the one hand, in the brain network construction,
the previous fusion brain methods construct the functional
and structural brain networks independently, which cannot
comprehensively reflect the interaction between structural
and functional image data. On the other hand, in the feature

extraction of brain network, the previous methods mainly
analyze the connectivity features or the simple topological
features, such as clustering coefficients or average degree,
from the graph of the brain network. Different from above
two categories, we seek to develop a multi-modal jointly
construction method shown in Figure 1C, in which the
interaction between functional and structural data promotes the
discovery of hybrid structural and functional connectivity
and high-order node information of the network can
be obtained.

In this paper, we proposed a unified multi-modal brain
network (UM2BN) construction and fusion method. First,
we make spatial calibration, and then build the correlation
model among all brain regions with functional data by low-
rank representation, so that the global brain region correlation
can be captured. Simultaneously, the local manifold with
structural data is embedded into this model, so the local
structural information can be preserved by manifold learning.
Second, the PageRank algorithm is adaptively used to evaluate
the significance of different brain regions. Finally, a multi-
kernel strategy is utilized to merge the connectivity and node
significance information from the constructed unified network
for classification.

The main contributions can be summarized as the following
four folds:

1. A unified framework to construct brain network by combing
both FC and SC is proposed, in which the space alignment and
brain network construction are carried out under the same
framework and promote each other.

2. The relationship between multiple brain regions can be
comprehensively considered instead of only considering two
brain regions by adding a low rank constraint. And the local
structural information is preserved by manifold learning.

3. The significant node information is adaptively extracted
by PageRank algorithm from the unified brain network.
Compared with only using simple attributes such as clustering
coefficient or average degree, significant high-order node
information can be obtained, which may help to capture the
slight change in brain network.

4. In order to solve the data heterogeneity problem, an effective
multi-kernel technology is utilized to fuse information of
connectivity as well as node importance for classification.

The experimental results show that, compared with a
series of previous brain network analysis approaches,
our approach can achieve a promising performance in
the diagnosis of epilepsy on a real epilepsy dataset. A
preliminary version of this work has been reported (Yang
et al., 2020).

The rest of this paper is organized as follows. In section
2, we introduce related works. Then, we present the
proposed multi-modal brain network jointly construction
and fusion method in section 3. Section 4 introduces materials
used in the study and provides the experimental results
on epilepsy dataset. In section 5, we give an analysis of
the experimental results. Finally, we summarize our work
in section 6.
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FIGURE 1 | A sketched comparison between existing fusion methods and ours. (A) Multi-modal brain network based on feature integration. (B) Multi-modal brain

network based on structural feature embedding. (C) Proposed multi-modal brain network fusion based on information interaction.

2. RELATED WORKS

2.1. Pearson Correlation Based Brain
Network Construction
Functional magnetic resonance imaging (FMRI) uses blood
oxygenation level dependent (BOLD) changes in brain blood
flow and oxygen consumption to detect the activity of neurons.
Because of its high temporal and spatial resolution, fMRI is
widely used in the field of brain functional network research.
Pearson-based method is the most widely used in functional
network construction methods. Suppose there are two brain
regions, whose BOLD signals are denoted by the vectors x and
y. The connectivity strength between these two brain regions is
measured by

ρ =
Cov(x,y)√
Var(x)Var(y)

(1)

where Cov(x,y) denotes the covariance of x and x, and Var(x)
and Var(y) denote the variance of x and the variance of y.
For each pair of the regions, its connectivity strength can be
calculated by above correlation. All the connectivities from the
same subject form a brain network. As can be seen from the
above description, the connectivity calculation in Pearson-based
method only consider simple pairwise relationship of its attached
brain regions, which may ignore the latent influence of other
brain regions.

2.2. PageRank Algorithm
With the rapid development of the information technology,
the number of users and web pages in the network grows
very quickly. The network topology structure that reflects
the relationship between users and web pages are becoming
more and more complex, making it more difficult to provide
users with high quality, relevant web pages based on user
queries (Pandurangan et al., 2002). To address this issue,
many algorithms have been proposed, among which PageRank
algorithm is widely used because it can well reflect the high-order
information of nodes (Pandurangan et al., 2002). The PageRank
algorithm is based on two hypotheses. One is quantitative

hypothesis: The more nodes connected to one node, the more
important one node is. The other is quality hypothesis: If one
node is more important, then other nodes connected to it are
also more important. According to Gleich (2015), PageRank
algorithm can be used not only in web learning, but also in social
networks and bioinformatics. For example, Markovich et al.
(2017) and Roul and Sahoo (2021) are both typical applications
in web learning. Priyanta et al. (2019) has proved that PageRank
algorithm can be used as an important tool for social network
analysis. Jiang et al. (2017) use PageRank to diffuse information
on two-layer graph model in protein structure analysis, and Liu
et al. (2020) use PageRank to move the homologous proteins
of query proteins to the neighbors of the query proteins in a
protein similarity network. The PageRank algorithm indicates
that if a node has important links to it, its links to other nodes
are also significant (Xing and Ghorbani, 2004). Therefore, both
the brain network and Web network can be abstracted as graph
model, which is composed of a series of nodes and connectivities.
The higher-quality pages point to page A, the more important
page A is. In graph model, brain network and Web network
have similar properties. Brain areas and brain connectivities
correspond to pages and links in the Web network, respectively.
The importance of a brain region in a brain network is related to
the importance of other brain areas transferred by connectivities.
If a brain region is connected to a more important brain region,
its importance will be higher. Therefore, in our model, we use the
PageRank algorithm to evaluate the similarity of brain regions.
The advantage of this method is that the importance of global
brain regions and brain connections are considered in the model
calculation. It is suitable to apply PageRank algorithm in brain
network analysis, because brain network also has these properties
(Gleich, 2015).

3. PROPOSED METHOD

3.1. Notation
Denote boldface uppercase letter as a matrix (e.g., X), boldface
lowercase letter as a vector (e.g., x), and lowercase letter as a
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TABLE 1 | Notations and descriptions.

Notation Definition

X The feature matrix of fMRI time series, X = [x1, x2, ..., xN ].

G The DTI matrix reflects the physical connections.

D The degree matrix of G, Dii =
∑

i Gij or
∑

j Gij .

L The Laplacian matrix of G, L = D−G.

W The brain network matrix.

U The projection matrix.

tr(X ) The trace of matrix X.

XT The transpose matrix of X.

Xij The ith row and jth column element of matrix X.

xi The ith row of matrix X.

xj The jth column of matrix X.

‖ · ‖* The trace or nuclear norm of a matrix.

‖ · ‖2 The l2-norm.

‖ · ‖F The Frobenius norm of the matrix.

〈x, y〉 The inner product between vector x and vector y.

scale (e.g., x). Further, we summarize the important symbols and
definitions used in this article in Table 1.

3.2. Problem Formulation of Unified Brain
Network
Our approach aims to learn a unified brain network
representation combing structural connectivity and brain
activities for disease diagnosis. More specifically, we utilize the
matrix W ∈ R

N×N to represent the unified brain network, the
entry of W is Wij, which reflects not only the information of
FC between ith brain region and jth brain region, but also the
information from SC. Suppose xi ∈ R

K×1 is a feature vector
of fMRI time series for ith brain region, X = [x1, x2, ..., xN] is
the feature matrix of brain connection, in which N indicates
the number of brain regions and K indicates the number of
time points of time series. The matrix G ∈ R

N×N reflects the
physical connections, whose entry Gij ≥ 0 is the physical fiber
quantity between brain region i and brain region j. The detail
steps for constructing the unified brain network with functional
and structural data proposed in this paper are as follows.

First, we suppose the feature matrix of brain activities can be
linearly represented by the weight matrixW. It can be expressed
by X = XW, and further written as

min
W

‖ X− XW ‖2F (2)

where xi ∈ R
K×1 is a feature vector of fMRI time series for ith

brain region. In order to make (2) better depict the correlation
between brain regions, space alignment method is adopted.
Inspired by Zhang et al. (2016b), we introduce a projection
matrix U ∈ R

M×K to transform the original k-dimensional data
intom-dimensional compact representations X̃. It is expressed by
X̃ = UX, where X̃ ∈ R

M×N and X ∈ R
K×N . Combined with (2),

the model can be expressed as

min
W

‖ X̃− X̃W ‖2F + ‖ U ‖2F s.t. X̃ = UX (3)

where ‖ · ‖F is utilized to constrain the projection matrix U.
Noteworthy, we make space alignment and brain network

construction under a unified framework, so the two can promote
each other for constructing a more precise brain network
structure. Then, in order to consider the global brain region
information, the low-rank (Han et al., 2019; Yu et al., 2019;Wang
and Guo, 2020) constraint is introduced.

Rank of matrixW is a small number based on the assumption
that each brain region can be approximately represented by a
combination of only a few other brain regions. So objective
function can be defined as

min
W

‖ X̃− X̃W ‖2F +rank(W)+ ‖ U ‖2F s.t. X̃ = UX (4)

Because rank minimization problem is non-convex. Inspired by
Wang et al. (2018, 2019), (4) is reformulated to

min
W

‖ X̃− X̃W ‖2F + ‖ W ‖∗ + ‖ U ‖2F s.t. X̃ = UX (5)

where ‖ · ‖∗ is the trace or nuclear norm of a matrix.
In addition, because DTI can reflects physical connectivity
between functionally related gray matter regions, the matrix G is
introduced to make the correlation model more discriminative.
It has been proved that the foundation of FC is SC (Honey et al.,
2009; Stam et al., 2016). Thus, we assume that the more fiber
bundles exist between ith brain region and jth brain region, the
closer the distance between wi and wj is. Inspired by He and
Niyogi (2004), construct the following objective function:

min
∑

i,j

Gij ‖ wi − wj ‖
2 (6)

On the whole, the final objective function is defined to jointly
minimizing the above problem

min
W

‖ X̃− X̃W ‖2F +α ‖ W ‖∗ +β
∑

i,j

Gij ‖ wi − wj ‖
2

+γ ‖ U ‖2F

s.t. X̃ = UX (7)

where α, β , and γ are positive scalars weight the corresponding
terms in (7).

∑
i,j
Gij ‖ wi − wj ‖

2 can be rewritten as tr(WLWT),

where L = D − G (Xu et al., 2015; Yu et al., 2019). Thus, we
transform the objective function as

min
W

‖ X̃− X̃W ‖2F +α ‖ W ‖∗ +βtr(WLWT)+ γ ‖ U ‖2F

s.t. X̃ = UX,L = D− G (8)

The matrix W is the solution above problem, and the unified
brain network represented by it contains the information of
both FC and SC. Figure 2 gives a schematic illustration of our
proposed method for constructing multi-modal unified brain
network with significant information of nodes.

This paper is an extension of the work in MICCAI (Yang
et al., 2020), but we need to point out that it has improvement

Frontiers in Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 734711

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Multimodal Brain Network Fusion

FIGURE 2 | The flow chart of our proposed method for constructing unified brain network with functional and structural data and fusing connectivity as well as node

information for classification.

in methodology and carried out more extensive experiments to
evaluate the performance. The original method was performed
in original feature space, and this work is conducted in feature
space aligned by the projection shown in Equation (8). Although
both of these two methods represent the signal from one brain
region by signals from other brain regions, the choice of feature
space directly affects the performance of the above representation
model. The space alignment and brain network construction
are carried out under the same framework and promote each
other. In other words, the feature space of correction can help
to establish more effective brain network, and the latter can also
provide guidance for correction.

3.3. Alternating Optimization Algorithm
In order to solve this problem, some alternative optimization
methods can be adopted. Here, the alternating direction method
of multipliers (ADMM) algorithm (Xu et al., 2015) is utilized.
First of all, we make the problem separable by introducing two
auxiliary variables. And then (8) can be reformulated as

min
W

‖ X̃− X̃W ‖2F +α ‖ P ‖∗ +βtr(QLQT)+ γ ‖ U ‖2F

s.t. X̃ = UX, L = D− G,P = W,Q = W (9)

We solve problem (9) by minimizing the following augmented
Lagrange multiplier (ALM) function L

L(W,P,Q,U, X̃,Y1,Y2,Y3) =‖ X̃− X̃W ‖2F +α ‖ P ‖∗ +βtr(Q

LQT)+ γ ‖ U ‖2F +〈Y1,P−W〉 + 〈Y2,Q−W〉 + 〈Y3, X̃−UX〉

+
µ

2
(‖ P−W ‖2F + ‖ Q−W ‖2F + ‖ X̃− UX ‖2F) (10)

where Y1, Y2, and Y3 are Lagrange multipliers, and µ > 0 is
a penalty parameter. ADMM algorithm is an iterative method
that solves for each variable in a coordinate descent manner. The
update formulas for those variables are as follows:

W∗ = (K+KT+2µI)−1((K+KT)+µ(P+Q)+(Y1+Y2)) (11)

P∗ = ϑα/µ(W−
Y1

µ
) (12)

Q∗ = (µW− Y2)(β(L+ LT)+ µI)−1 (13)

U∗ = (µX̃XT + Y3X
T)(2γ I+ µXXT)−1 (14)

X̃
∗
= (µUX− Y3)(2I− 2W− 2WT + 2WWT + µI)−1 (15)

where ϑλ(X) = USλ(6)VT is a thresholding operator with
respect to a singular value λ; Sλ(6ij) = sign(6ij)max(0, |6ij−λ|)

is the soft-thresholding operator; X = U6VT is the singular
value decomposition of X.
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Algorithm 1 Solving Problem (8) by ADMM

Input: X,G, m, α,β, andγ ;

Initialization: Y1 = Y2 = Y3 = 0;µ = 0.1;µmax = 10−7;

ρ = 1.01; ǫ = 10−7;

While not converged do

1. Fix the other variables and update W by using (10).

2. Fix the other variables and update P by using (11).

3. Fix the other variables and update Q by using (12).

4. Fix the other variables and update U by using (13).

5. Fix the other variables and update X̃ by using (14).

6. Update the multipliers and parameters by (15).

7. Check the convergence conditions

‖ P −W ‖∞< ǫ; ‖ Q−W ‖∞< ǫ; ‖ X̃ −UX ‖∞< ǫ .

End While

Output: W

FIGURE 3 | An example diagram showing the calculation principle of

PageRank algorithm.

Multipliers Y1,Y2,Y3 and iteration step-size ρ(ρ > 1) are
updated by using (16),





Y1 = Y1 + µ(P−W)
Y2 = Y2 + µ(Q−W)
Y3 = Y3 + µ(X̃− UX)
µ = min(ρµ,µmax)

(16)

We summarize the process of solving (9) in Algorithm 1.

3.4. Node Information
After building the unified brain network, PageRank algorithm
is utilized to evaluate the importance of different brain regions.
According to Yan and Ding (2011), a simplified version of
PageRank is defined as su =

∑
v∈P(u)

sv
Nv
, where u indicates a node,

and P(u) is the set of nodes that connect to node u. Nv denotes
the number of links of node v and su represents the score of node
u. The calculation process of the algorithm is shown in Figure 3.
For example, in Figure 3, P(A) = {B,C,E} and P(B) = {A,D},
and thus sA = sB/2+ sC/2+ sE/2 and sB = sA/3+ sD.

Suppose the vector s = [s1, s2, ..., sn] ∈ R
N×1 reflects the

importance of different brain regions. Its entry su is the score
of the uth brain region with restriction

∑N
u=1 su = 1. And

the larger the number of su is, the more important the uth
brain region is. First of all, we transform the matrix W into a

matrix B ∈ {0, 1}N×N through a threshold factor r (if Wvu ≥

r, then the corresponding entry Bvu is set to one; otherwise,
the entry Bvu is set to zero). And the value of vector s is
initialized as s = [ 1N ,

1
N , ...,

1
N ].

Tvu =

{
1∑N

i=1 Bui
, ifBuv = 1

0, ifBuv = 0
(17)

Then, we introduce a transfer matrix T ∈ R
N×N to iterative

update vector s, based on the iterative updating formula for s =
T× s, until the convergence condition is satisfied.

3.5. Multi-Kernel SVM Classification
After obtaining the connectivity and node importance
information from the constructed unified network, a multi-
kernel strategy is adopted to fuse these heterogeneous
information. The reasons why we adopt the multi-kernel
fusion method are as follows. The previous study (Zhang et al.,
2011; Huang et al., 2019) has shown that multi-kernel can
effectively fuse multi-modal data and has been successfully
applied into the diagnosis of brain diseases. For example,
Zhang et al. (2011) used multi-kernel to fuse the multi-modal
brain image data for Alzheimer’s disease classification. Huang
et al. (2019) employed multi-kernel to combine functional and
structural connectivity features, and applied it into epilepsy
classification. In addition, the multi-kernel method can handle
heterogeneous multimodal data fusion by kernel trick. In
our method, the obtained brain region features and brain
connectivities are with different dimensionalities. Considering
above two aspects, we adopted the multi-kernel method to fuse
the multi-modal feature in brain network. The first modality
is the connectivity of unified brain network, and the second
modality is the node importance information of unified brain

network. More specifically, k(xi, xj) =
∑

m cmk
(m)(x

(m)
i , x

(m)
j )

is defined as a mixed kernel between the multi-modal training

sample xi and xj, and k(xi, x) =
∑

m cmk
(m)(x

(m)
i , x(m)) is defined

as the mixed kernel between the multi-modal training sample xi
and the test sample x.

∑
m cm = 1 is restricted and a coarse-grid

search is adopted to search the optimal values. Then, we fuse two
kernels into a mixed kernel and a standard SVM classification
algorithm is performed.

4. EXPERIMENTS

4.1. Materials and Preprocessing
Before experiments, we collected raw rs-fMRI data and DTI
data from 306 peoples. Including 114 normal controls (NC), 103
patients with frontal lobe epilepsy (FLE), and 89 patients with
temporal lobe epilepsy (TLE). All the subjects are with right-
handed.The information of the dataset are shown in Table 2.
Those data are collected by Siemens Trio 3T scanner at Jinling
Hospital, Nanjing, China. The scan parameters are as follows:
repetition time = 2,000ms; echo time = 30ms; and flip angle =90◦;
30 transverse slices; field of view (FOV)= 240 × 240mm; slice
thickness = 4mm; interstice gap = 0.4mm; voxel size = 3.75 ×

3.75 × 3.75mm; DTI scans were obtained by using spin echo-
based echo planar imaging sequence. The scan parameters are as
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TABLE 2 | The detail information of the epilepsy dataset.

Data Quantity M/Fa Age range Mean age

NC 114 58/56 20–38 26.2

FLE 103 53/50 17–51 24.1

TLE 89 44/45 17–51 25.9

aM/F indicates Male/Female.

follows: repetition time = 6,100ms; echo time = 93ms; flip angle =
90◦; field of view = 240× 240mm; matrix size = 256× 256; voxel
size = 0.94× 0.94× 3mm; 45 slices.

The functional network is constructed through fMRI and
the structural network through DTI. The SPM8 in the DPARSF
toolbox is utilized to pre-process all rs-fMRI images. Specifically,
slice time are collected, corrected, rearranged, and normalized
to the EPI template to obtain the initial functional time series.
Then, the de-trending process is performed to remove spurious
sources of variance. Utilizing the AAL atlas, we divided the
resulting volumes consist of 240 time points into 90 regions
of brain interest (ROIs), so that those time series reflect the
information about brain activities. The DTI data are processed
by the PANDA suite. First, the FSL toolbox is utilized to correct
the DTI distortion, remove the eddies, and extract the brain
mask from the non-diffusion weighted (B0) image. Then, the
TrackVis is used to obtain fiber images by deterministic tracking
method, and defined anatomic areas using AAL conventions
based on each subject’s co-registered T1 images. Finally, the
quantity of fibers can naturally be viewed as the edge strength
of the structural network.

4.2. Competing Methods
In order to verify the effectiveness of our proposed method, we
compare it with several classical and state-of-the-art methods.
These methods fall into three categories: fMRI-based methods,
DTI-based methods, fMRI- and DTI-based methods. More
specifically, fMRI-based methods are Pearson coefficient (PC)
(Betzel et al., 2016), low-rank sparse representation (LSR) (Qiao
et al., 2016), weighted sparse group representation (WSGR) (Yu
et al., 2017), Strength and Similarity GSR (SSGSR) (Zhang et al.,
2019), high-order FC (HOFC) (Chen et al., 2016), topographic
FC (tHOFC) (Zhang et al., 2016a), Graph-CNN (GCNN) (Mao
et al., 2018), and Siamese-GCN (SGCN) (Ktena et al., 2017).
DTI-based methods are Graph kernel (GK) (Kang et al., 2012),
Graph-CNN (GCNN) (Mao et al., 2018). fMRI- and DTI-
based methods are multi-kernel (MK) (Dyrba et al., 2015), our
methods without space alignment, our method without node
importance information, and our proposed methods (JCFBN).
In addition, canonical analysis (CCA), kernel-canonical analysis
(KCCA), and manifold regularized (M2TFS) algorithms are all
utilized to merge multi-modal data. We briefly summarize these
comparison methods as follows.

In the PC (Betzel et al., 2016) method, the functional
connectivitymatrix is defined by Pearson’s correlation coefficient.
Then, we extract the upper triangular element of the functional

connectivitymatrix and compress it into a vector for each subject.
Finally, the standard SVM is exploited for classification.

In the LSR (Qiao et al., 2016) method, a functional brain
network (FBN) is constructed which jointly learns from partial
correlation and sparse representation. Then, based on thematrix-
regularized network learning framework, we further formulate
it as a sparse low-rank graph learning problem. Finally, t-test is
used for feature selection and SVM is adopted for classification.

The WSGR (Yu et al., 2017) method ensures the construction
of more biologically meaningful brain network by integrating
connectivity strength, group structure, and sparsity. In contrast
to traditional sparse representation, a connectivity strength
weight matrix is defined based on Pearson’s correlation matrix
for l-1 norm, and a group partition for l-21 norm is added in
constructing brain networks. Then, a linear SVM is exploited
for classification.

The SSGSR (strength and similarity guided GSR) (Zhang
et al., 2019) method, which exploits both BOLD signal temporal
correlation-based “low-order” FC and intersubject LOFC-profile
similarity-based “high-order” FC as two priors to jointly guide
the GSR-based network modeling. Then, the upper triangular
element of the GSR-based network is extracted, and compressed
into a vector. Finally, a linear SVM is used for classification.

In HOFC (Chen et al., 2016) method, an FC profile is
calculated for each brain region first. Then, based on these FC
profiles, a second layer of correlations is computed between all
pairs of brain regions to generate an HOFC network. Then, for
each subject, the upper triangular element of the HOFC network
is extracted, and compressed it into a vector. Finally, a standard
SVM is used.

The tHOFC (Zhang et al., 2016a) method is similar to HOFC
method. More specifically, topographical profile similarity-based
HOFC (tHOFC) is one types of HOFC method. Both of
them have the idea of computing “correlation of correlations.”
Nonetheless, instead of measuring the similarity of the original
rs-fMRI signals with the traditional FC, tHOFC measures the
similarity of LOFC profiles between each pair of brain regions.

In the GCNN (Mao et al., 2018) model, a specific
convolutional operator is designed for brain network which
applies a row scanning on adjacent matrix to generate the feature
map. Classification results are acquired by the softmax function
based on these feature maps. This GCNN model can deal with
both FC and SC. It is worth noting that the FC is defined by
Pearson’s correlation coefficients, while the SC is obtained by
using the same approach as our proposed method.

In the SGCN (Ktena et al., 2017) method, a pair of brain
networks are defined by FC matrices and a common graph
structure is defined by the anatomy of brain. Then, the
common graph structure is used for spectral graph convolutional
networks. The model including an inner product layer, which is
used to combined node representations from two brain networks,
and a single fully connected output layer is used to output the
similarity between brain networks, subsequently. Finally, the
KNN classifier is exploited to disease diagnosis.

In the GK (Kang et al., 2012) method, a random walk graph
kernel is used to measure the similarity between brain networks
based on the number of common walks in the two networks.
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TABLE 3 | Performance of proposed method and comparative methods.

Methods NC:FLE NC:TLE FLE:TLE NC:(FLE & TLE)

PC (Betzel et al., 2016) 62.1 63.9 51.7 65.6

LSR (Qiao et al., 2016) 62.0 65.5 59.0 62.7

WSGR (Yu et al., 2017) 61.7 70.9 44.9 63.8

fMRI based SSGSR (Zhang et al., 2019) 62.6 67.0 56.8 64.9

methods HOFC (Chen et al., 2016) 61.5 63.0 57.0 65.2

tHOFC (Zhang et al., 2016a) 62.3 65.9 56.1 65.7

GCNN (Mao et al., 2018) 55.8 67.5 61.4 67.0

SGCN (Ktena et al., 2017) 67.3 74.5 70.5 69.3

DTI based GK (Kang et al., 2012) 56.3 53.0 54.1 61.3

methods GCNN (Mao et al., 2018) 51.6 54.5 56.4 62.6

MK (Dyrba et al., 2015) 61.8 70.2 59.9 68.1

CCA 62.6 67.3 59.2 68.6

KCCA 64.6 68.5 60.7 66.7

fMRI & DTI M2TFS 60.8 64.5 60.2 66.5

based methods UBNfs (Yang et al., 2020) 71.3 75.1 69.0 71.9

Our method Ia 71.6 74.2 67.0 73.6

Our method IIb 69.0 72.0 63.8 71.5

Our method 73.3 75.5 67.9 75.0

aOur method I indicates that our proposed method without carrying space alignment and brain network construction under a unified framework.
bOur method II indicates that our proposed method without combining node importance information for classification.

The best result is highlighted in bold.

Then, a kernel matrix is constructed by these pairwise similarity.
At last, the kernel matrix is fed into the SVM for disease
diagnosis directly.

In the MK (Dyrba et al., 2015) method, a linear kernel matrix
is calculated based on the feature vectors used in the PCmethods,
while the graph kernel matrix is calculated same as the GK
method. Then, the two kernel matrices are linearly combined
into a mixed kernel matrix by grid search to find the optimal
parameters. At last, the standard SVM algorithm is performed
for classification.

The CCA algorithm is used to fuse connectivity and node
importance information of the brain network. These multi-
modal data of different dimensions are mapped to the same
subspace, giving them the same dimension and the greatest
linear correlation. Finally, a more discriminative set of features
is obtained from multi-modal information.

The KCCA algorithm is an extension of CCA algorithm, and
is also used to fuse multi-modal data, namely the connectivity
of the brain network and the node information. Unlike the
CCA method, it uses a kernel function to map the raw data
into a higher-dimensional space and then looks for nonlinear
relationships between different modalities.

In the M2TFS method, the functional connectivity matrix
defining by Pearson correlation coefficient is viewed as the first
modality, the DTI data are viewed as the second modality. First,
M2TFS denotes the feature learning on each modality as a single
task. Then, it uses group-sparsity regularizer to capture the
intrinsic relatedness among multiple tasks. Furthermore, a new
manifold-based Laplacian regularizer is introduced to preserve
the data distribution information from each task. Finally, a multi-
kernel SVMmethod to fuse multi-modal data for classification.

To verify the effect of the space alignment as well as node
importance information, we omit these two parts respectively,
and then calculate the classification accuracies. In the first
case (i.e., our method without space alignment), we directly
use the original fMRI data to construct the unified brain
network. In the second case (i.e., our method without node
importance), we directly utilize the information of brain network
connectivity for disease diagnosis without taking into account the
node information.

4.3. Experimental Setup
In order to evaluate the performance of our proposed method,
we apply it to four different classification experiments, including
NC vs. FLE, NC vs. TLE, FLE vs. TLE, and NC vs. (FLE and
TLE). We use the following measures to ensure the fairness of the
comparison. For parameter setting, we perform our method and
the comparison methods with grid search parameter selection,
and choose the one that performed best as the parameter. For
the splitting of the dataset in experiment, we used five-fold
cross-validation to verify the model’s performance. The whole
dataset was divided into five exclusive subsets, which have the
same or similar size. The experiment was repeated for 5 times,
the reported result was the average accuracy. Noting that it
is necessary to ensure that the test set data is not used in the
model training process. Classification accuracy (ACC) is used as
an indicator to evaluate the classification performance.

4.4. Results on Epilepsy Data
Experimental results of all methods are summarized in Table 3.
As can be seen from Table 3, in the four classification tasks,
the accuracies of the proposed method are 73.3, 75.5, 67.9, and
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FIGURE 4 | Classification accuracies of five different topological attribute measurement methods (Clustering, Avgdeg, Closeness, Radiality, and PageRank algorithm)

on four different classification tasks (NC vs. FLE, NC vs. TLE, FLE vs. TLE, NC vs. (FLE and TLE)).

75.0%, respectively. Compared with other methods, the method
in this paper achieves the highest accuracies in the three tasks:
NC vs. FLE, NC vs. TLE, NC vs. (FLE and TLE). Although
SGCN algorithm has the highest classification accuracy in the
FLE vs. TLE task, the discrepancy between it and the accuracy
of our method 67.9% is relatively small. In addition, observing
the Table 3, we can also draw the following three conclusions.

First, the fMRI-based method achieved better results
than the method based on only DTI data, indicating
that fMRI data contained more effective information
than DTI data in the epilepsy disease diagnosis tasks. In
general, the multi-modal method combining fMRI and
DTI data achieved higher classification accuracy than using
only single modality. This indicates that the multi-modal
classification method is indeed an effective method in brain
disease diagnosis.

Second, the classification accuracies can be improved by
combining the node information measured by PageRank
algorithm. More specifically, we utilize our proposed method
without node importance to classification, and the accuracies
are only 69.0, 72.0, 63.8, and 71.5%. Compared with adding
node importance information, the accuracies are relatively
poor. This can indicate that the node importance of brain
network measured by PageRank algorithm does contain
important information, which is helpful for the diagnosis
of epilepsy.

Third, the space alignment operation improves the
final classification accuracies. Our goal is to construct a
more precise brain network structure by making space
alignment and brain network construction under a unified
framework. The results show that 1.7, 1.3, 0.9, and 1.4%
can be improved in the four classification tasks of NC
vs. FLE, NC vs. TLE, FLE vs. TLE, NC vs. (FLE and
TLE), respectively.

4.5. Comparison of Other Topological
Attributes
We also conducted experiment to verify that the PageRank
algorithm introduced to evaluate the importance of different
brain regions is reasonable and can achieve good results. Other
commonly used topological attribute measures, e.g., Clustering
coefficient (Clustering), Average degree (Avgdeg), Closeness
centrality (Closeness), and Radiality are, respectively, used to
evaluate the importance of brain regions, and the results of
PageRank algorithm are compared. Specifically, we maintain
the same experimental setup, changing only the method used
to estimate the node information. The experimental results are
reflected in Figure 4. As can be seen from Figure 4, we can see
that, compared with other measurement methods, introduced
PageRank algorithm achieves the highest accuracies in all four
different experiments. Thus, it can be verified that the PageRank
algorithm is reasonable and effective in the assessment of unified
brain network node importance information.

4.6. Discussion on the Effect of Space
Alignment and DTI Constraint
When the characteristic dimension is large, the distance between
samples tends to be consistent, and the information of the
relationship between samples is easy to be concealed. So it
is usually necessary to reduce the dimension of the data in
advance. However, this process is independent of the subsequent
structural information mining and cannot guarantee the original
data structure information contained in the feature space
after dimension reduction. In order to solve this problem,
we introduce space alignment into the construction process
of unified brain network. Space alignment and brain network
construction are carried out under a unified framework, and
the two promote each other. On the one hand, a better feature
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TABLE 4 | Performance comparison of the proposed method and its variants.

Methods NC vs. FLE NC vs. TLE FLE vs. TLE NC vs. (FLE and TLE)

UM2BN-1a 71.6 74.2 67.0 73.6

UM2BN-2b 70.9 73.0 65.8 71.6

UM2BN-3c 70.4 72.5 65.0 70.5

UM2BN 73.3 75.5 67.9 75.0

aUM2BN-1 indicates our method without carrying space alignment and brain network

construction under a unified framework.
bUM2BN-2 indicates our method without DTI constraint.
cUM2BN-3 indicates our method with neither space alignment and DTI constraint.

The best result is highlighted in bold.

space is beneficial to the mining of precise brain network
structure information. On the other hand, precise brain structure
information is also helpful to the selection of a better feature
space. In addition, we use DTI to constrain the correlation
between the two brain regions [expressed in (5)]. According
to Honey et al. (2009) and Stam et al. (2016), a reasonable
hypothesis is that the more fibers between brain region i and
brain region j, the closer Wi and Wj is. Therefore, Equation
(5) is constructed inspired by He and Niyogi (2004). In order
to validate the rationality and effectiveness of space alignment
and DTI constraint, we delete the linear feature extraction part
and the DTI constraint part in the final objective function,
respectively, but guarantee other experimental setup are the
same. We show the classification accuracies in Table 4. As
can be seen from Table 4, during the course of brain network
construction, deleting any part of two in the objective function
will reduce the classification accuracies. It shows that both
space alignment and DTI constraint contribute to the more
precise brain network structure. Results demonstrate that the
two promote each other, which can improve the performance of
disease diagnosis.

5. DISCUSSION

5.1. Analysis of Convergence
In order to verify the rationality of the solving process of the
objective function (8), we randomly select three samples and,
respectively, draw the convergence curve in Figures 5A–C. As
can be seen from Figure 5 that with the increase of iteration
times, the value of the objective function first decreases then
tends to be stable. And it can be seen that our proposed method
can converge to a certain value within 600 iterations.

5.2. Analysis of Parameter Sensitivity
During the experiment, there are three hyperparameters that
affect the construction of brain network, i.e., α, β , and γ . In
order to study the influence of these parameters, we conduct the
following experiments: First, we fix the parameter γ as the default
value 1.0, study the influence of two hyperparameters α and β ,
and reflect the experimental results in Figure 6. Among them,
both of α and β range from {0.01,0.05,. . . ,50}. It can be seen that
when the range of parameters α and β is within {0.01,0.05,. . . ,50},
our proposed algorithm is relatively stable. After that, we set both
parameters α and β as 1.0, study the influence of parameter γ on

classification accuracies, and reflected the results in Figure 7A.
It can be seen from Figure 7A that when the value range of
γ parameter is {0.01,0.05,. . . ,50}, the classification accuracies
change only slightly for four different classification tasks. It can
be concluded that the proposed method is relatively stable under
different values of α, β , and γ . In addition, the parameter m
used in the linear feature extraction will also affect the final
experimental results. We also conduct experiments to study the
influence of this parameter on the classification accuracies, as
shown in Figure 7B. It can be seen that when parameter m
changes within the range of {20, . . . , 220}, the classification
accuracies of the four different tasks will also change. For the
NC vs. FLE task, the optimal m value range is 100–180. For
the NC vs. TLE task, the optimal m value range is 120–160.
For the FLE vs. TLE task, the optimal m value is 100–160. And
for the NC vs (FLE and TLE) task, the optimal m value is in
the range of 60–80. Before using the PageRank algorithm to
evaluate the importance of nodes in the brain network matrix
W, a thresholding operation needs to be performed on the initial
brain network. The parameter r is to control the sparsity of
the network in thresholding. The larger the value of r is, the
sparser the network after thresholding is. In the experiment, we
control the value range of r in the range of [0.1, 0.2,...., 0.8], and
determine the optimal value of r by searching the candidate set.
The experimental results are shown in Figure 7C. As can be seen
from this figure, the experimental accuracy is sensitive to the
value of r. If the value of r is too large or too small, it will cause
poor accuracies. The reason might be as follows. When the value
of r is too large, there are too few or even no edges are preserved
in the network, and the PageRank algorithm cannot extract the
relationship among most of the nodes. When the value of r is
too small, the network is very dense, which leads to average the
importance of the node. Experimental results show that in the
NC vs. FLE and NC vs. TLE tasks, the best value of r is 0.3;
in the FLE vs. TLE and NC vs. (FLE and TLE) tasks, the best
value of r is 0.4.

5.3. Analysis of Information Brain Regions
This work adopted the indicator proposed in Zhu et al.
(2018) to evaluate the brain region importance. We establish
the discriminant model from brain connectivities to labels
by non-negative elastic-net sparse constraint. Then the
connectivities can be ranked according to the value of the
representation coefficients.In order to prove the effectiveness
of the proposed method, we select top 12 significant alterations
of connectivity and reported in Figure 8 for three classification
tasks, respectively. It can be found that some brain connectivities
involving brain regions such as Parahippocampal gyrus,
Precuneus, and Superior temporal gyrus have significant
changes. It means that these connectivities are the key to
distinguish between normal people and FLE patients. There are
similar findings in the literatures (Woodward et al., 2014; Zhang
et al., 2019). Similarly, in the NC vs. TLE task, brain regions
such as Parahippocampal and Amygdala are selected, which was
supported by the work of Reinsberger et al. (2010) and Qiao et al.
(2016). In the FLE vs. TLE task, some connectivities about brain
regions such as Middle frontal gyrus, ParaHippocampal, and
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FIGURE 5 | The convergence property of our proposed objection function. (A–C) Are the convergence curves with three random samples, respectively.

FIGURE 6 | When constructing brain network, the influence of parameter α and parameter β on the all four classification tasks: NC vs. FLE, NC vs. TLE, FLE vs. TLE,

NC vs. (FLE and TLE). (A) Shows the resutls on the task of NC vs. FLE. (B) Shows the resutls on the task of NC vs. TLE. (C) Shows the resutls on the task of FLE vs.

TLE. (D) Shows the resutls on the task of NC vs. (FLE and TLE).

Amygdala have significant changes. Reinsberger et al. (2010) and
Exner et al. (2002) have also mentioned this finding. Extensive
evidence proved the effectiveness of the proposed method.

5.4. Limitations and Future Work
Although the experimental results show that our method
has achieved good results in epilepsy diagnosis. But it still

Frontiers in Neuroscience | www.frontiersin.org 11 September 2021 | Volume 15 | Article 734711

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhu et al. Multimodal Brain Network Fusion

FIGURE 7 | The results of our method with different parameters. The effect of parameter γ on our method with different classification tasks is reflected in (A). And the

impact of parameter m during the course of space alignment with different classification tasks is showed in (B). The accuracies of our method with different threshold r

on different classification tasks are displayed in (C).

FIGURE 8 | Top 12 significant alterations of connectivity between normal controls and patients with FLE (A), normal controls and patients with TLE (B), patients with

TLE and patients with FLE (C).

has some limitations. First, the nodes used in this study
are defined by the AAL template, which divides the brain
into only 90 ROIs. In the future, we will try to use
other templates to divide the brain more finely. Second,
PageRank algorithm is utilized to extract node information
of the unified brain network, and then fuse connectivity
and node information for classification. The experimental
results show that, compared with other common topological
attribute measurement methods, the PageRank algorithm can
get better results. However, there are currently some variants
of PageRank algorithm, such as weighted PageRank (Xing
and Ghorbani, 2004). In future work, we will try to use
variants of PageRankmethods, whichmay improve classification
accuracies. Third, in order to verify the effectiveness of our
method, we apply it to the multi-modal epilepsy dataset. The
experimental results show that our method achieves good
results in four different classification tasks. In the future, we
will consider extending our method to other brain disease
diagnosis tasks to further explore the application value of our
proposed method.

6. CONCLUSION

In this paper, a unified brain network construction algorithm
is proposed, which is jointly learned from both functional and
structural data, and make full use of complementary information
between each other. In our method, we make the space alignment
and multi-modal brain network construction under a unified
framework, so that the two can promote each other. Instead of
only considering two brain regions, we comprehensively consider
the global brain regions relationship by low-rank constraint. And
the local structural information can be preserved by extending
the local manifold learning into this model. What is more,
we take into account not only the connectivity, but also the
node importance information of the unified brain network,
extracted by PageRank algorithm. Finally, a multi-kernel strategy
is utilized to solve the data heterogeneity problem and merge the
connectivity as well as node information for classification. At last,
we apply the proposedmethod (JCFBN) to the epilepsy diagnosis,
and the experimental results show that our method can achieve a
promising performance on all four classification experiments.
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